12th International

DIANA Users Meeting

• 2rd October 2018 Universidade do Porto, Porto, Portugal

Long-Term performance of a T-shaped girder bridges by using 1D, 2D and 3D FE modelling

a comparative analysis –

Emanuele Canestro*, Alfred Strauss & Helder Sousa

* main author and speaker

12th

ting Contents

- **Motivations**
- Long-term performance
- FE Modeling 1D, 2D and 3D approaches
- Analysis description on a tested prestressed concrete beam DF 12th DIANAmee'

12th DIANF

Results

12th

Conclusions

Objectives

12th D

- Investigating the time-dependency behaviour of the concrete
- Modelling with different FEA approaches (1D,2D and 3D)
- Comparing the efficiency of the results
- Assessing the time invested on developing an FE model
- Providing a better and overall view useful for further analysis

Long-Term Performance

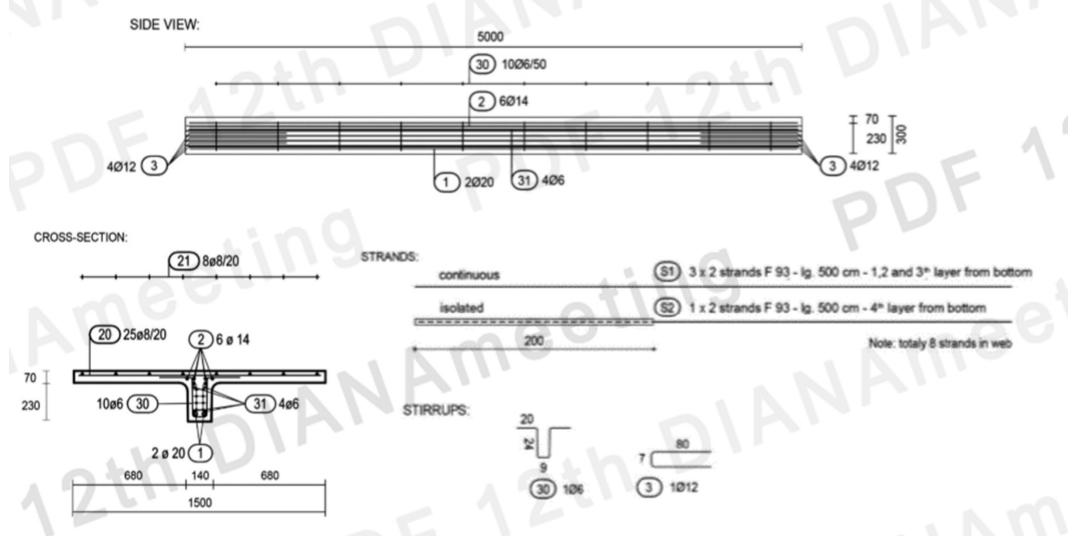
- The Long-Term performance is influenced by the following phenomena:
 - Evolution of compressive strength
 - Variation of the Modulus of Elasticity
 - Shrinkage
 - Creep
 - Steel relaxation
- Ameeting The fib Model Code for Concrete Structure 2010 has been used to evaluate the aforementioned phenomena.

FE Modelling

1D, 2D and 3D approaches

1D Beam element

- Dimensions *d* are smaller compared to *l*
- They describe axial force, shear and moments
- Axial deformation, shear deformation, curvature and torsion


2D Plane stress

- The thickness must be small compared to b
- The loading must act in plane of the element
- There are only stress on the surface
- The out-plane strain is influenced by Poisson effect

• 3D Solid element

- The thickness is relevant compared to the width
- They may have linear, quadratic or cubic interpolation
- The stresses are spread in all directions (x,y,z)

- Prestressed concrete beam*

* A. Strauss, B. Krug, O. Slowik, and D. Novak, "Combined shear and flexure performance of prestressing concrete T-shaped beams: Experiment and deterministic modeling," Struct. Concr., vol. 19, no. 1, pp. 16–35, 2018

- Prestressed concrete beam
 - 3D Brick elements Model *

• 1D Beam elements Model *

* (DIANA output)

- Prestressed concrete beam
 - **Material properties**
 - Concrete
 - ✓ Elastic (static analysis)
 - ✓ Viscous-elastic (time-phased analysis) Tensile strength fct
 - Passive reinforcement
 - Elastic
 - Prestressing steel
 - ✓ Elastic (static analysis)
 - ✓ Viscous-elastic (time-phased analysis)

Loading

- Self-weight
- Prestressing forces
- Point load (x = 1 m)

Boundary Modeling

- Steel cylinders as roller and pinned connection1

Load type	Magnitude	Analysis	
Self-weight	3.36 kN/m	Linear/Phased	
Steel bars	898 MPa	Linear/Phased	
Point Load	65 kN	Phased	

Steel bars

200

8050

0.3

450

Steel tendons

198

8050

0.3

1875

Steel load plate

210

8050

0.3

Concrete

37.49

45

2.7

3.8

Normal

2450

0.2

Young's Modulus E

[GPa] Compressive

strength [MPa]

[MPa]

Medium Tensile

strength [MPa]

Cement hardening

(32.5 N)

Density [Kg/m³]

Poisson ratio

Yield stress

[MPa]

- Prestressed concrete beam

• Linear analysis

– Aim of evaluating the primary behaviour of the three models

prestressing

7.0 6.0

5.0

4.0 3.0

2.0

1.0

0.0

-1.0

displacements

1D Beam elements

2D Plane stress

3D Brick elements

elements

- Load cases considered:
 - ✓ prestressing force
 - ✓ Self-weight
 - ✓ Point load
- Results: displacement diagrams

Time-phased analysis

- Three phases for a <u>period of analysis of 5 years</u>
 - ✓ Pouring and curing period: $t \in [0 3]$ days
 - ✓ Prestressing and point loading: t = 3 days
 - ✓ Long-term performance: $t = [3 \ 1825]$ days

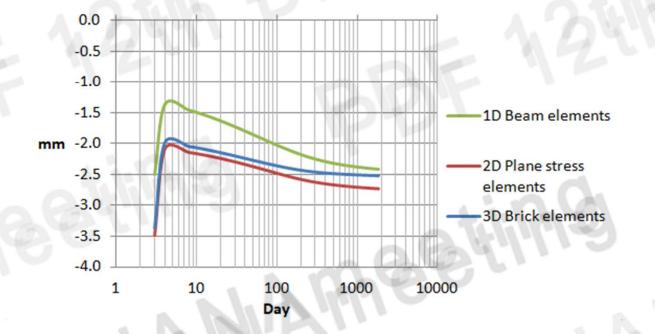
Results – Linear analysis

- Prestressed concrete beam

Vertical displacements

FE model type	Self-weight	Prestressing	Punctual Load	Analytical solution (for a UDL).	- 1
1D: Beam elements	-1.6	7.2	-7.8	-1.3	$\frac{5ql^4}{384EI}$
2D: Plane stress elements	-1.3	7.0	-6.1		
3D: Brick elements	-1.5	6.8	-6.3		304 <i>L1</i>

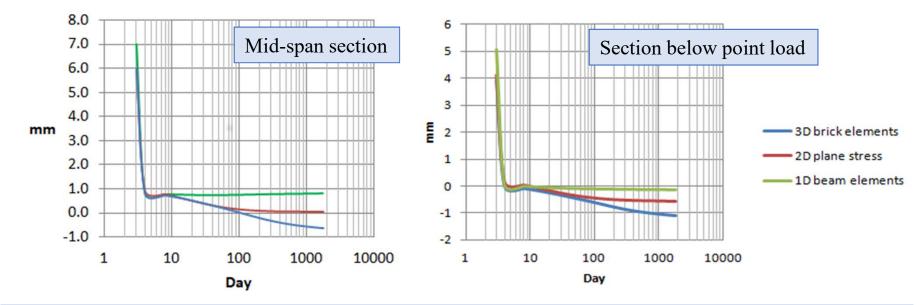
1D:


2D

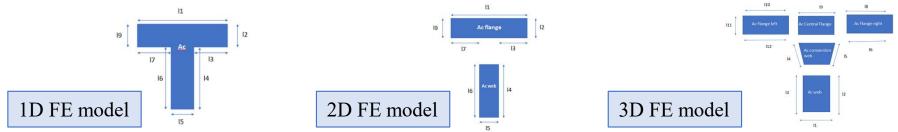
3D

... The results show good agreement between FE models and with analytical solution (the latter for the case of self-weight)

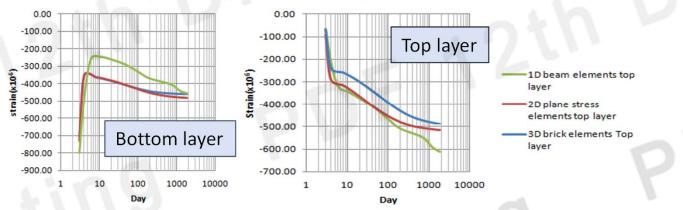
Results – Phased analysis - Prestressed concrete beam


Horizontal displacements (support)

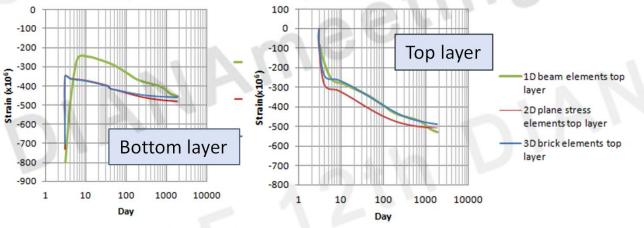
... Overall, the results gives evidence that the support displacement tends to converge despite the FE approach


- Prestressed concrete beam

Vertical displacements

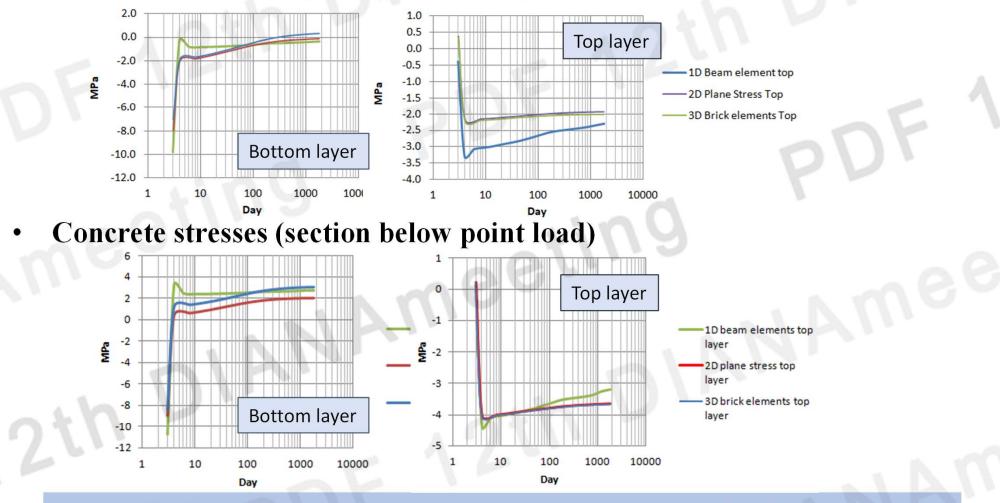

The results gives evidence that 1D and 2D models underestimate vertical deflections over time

Note on the notional size:



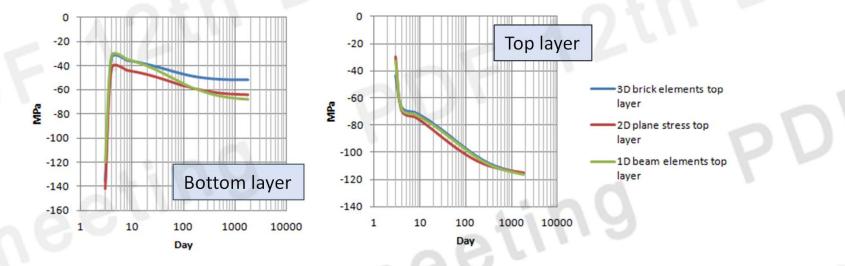
- Prestressed concrete beam

• Concrete strains (mid-span section)


• Concrete strains (section below point load)

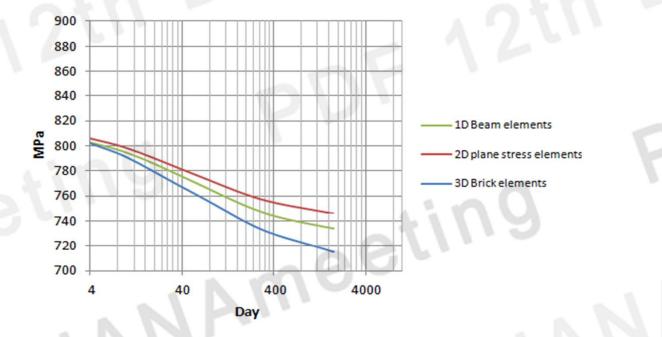
: 1D FE overestimates strain at early stages of the service life, whereas convergence is observed up to the 5 years period, despite the FE approach

- Prestressed concrete beam


• Concrete stresses (mid-span section)

: 1D FE overestimates stresses at early stages of the service life, whereas convergence is observed up to the 5 years period, despite the FE approach

- Prestressed concrete beam


Reinforcement stresses

:. 3D FE approach leads to higher levels of prestress loss. Moreover, the results tends to diverge overtime for the reinforcement layout at the bottom layer

- Prestressed concrete beam

• Prestress force in the tendon

... 3D FE approach leads to higher levels of prestress loss. Moreover, the results tends to diverge, with evidence of continuing after the 5 years period

Conclusions

- Linear analysis
- DIANAmeeting Results shows good agreement between 1D, 2D and 3D FE approaches, giving confidence for the time-phased analysis.
- The option for choosing a more complex model (i.e. 3D FEM) seems not worthwhile for the case under analysis 12th DIANAmeeting

PDF 12th DIANAmeet

Conclusions

- Time-phased analysis
 - Substantial differences for the vertical displacement in both magnitudes and trends over time
 - 1D and 2D FE model underestimate deflections by showing an asymptotical behavior within the 5 years period, which is against the results obtained with the 3D FE model
 - Overall, concrete stresses and strains are overestimated by 1D FE model at early stages of the service life, despite convergence over time is overall observed between different FE approaches
 - Despite prestress losses are in the same order of magnitude for all FE approaches (up to \cong 4 %), results shows divergency over time with higher losses obtined by the 3D FE model

Conclusions

- Further steps
 - Comparison of these results to the available monitoring data is planned already for better assessment of the effective structural behaviour of prestressed concrete structures over time

Monitoring:

- Strains (embedded in concrete)
- Rotations
- Accelerations
- Temperatures
- Environment: wind, rain & snow
- Since construction (2013)
 - Construction
 - Loading test
 - Operational lifetime

0,29 m 0,04 m CH 2 CH 5 CH 5 CH 4 S S I Messuhr O 5 D

Luft, T., Strauss, A. and Krug, B. (2015) Tools for measuring data analysis of components equipped with strain gages using the example of three pre-stressed reinforced concrete roof elements, Universität für Bodenkultur Wien, Wien, Austria

12th International

DIANA Users Meeting

• October 2018 Universidade do Porto, Porto, Portugal

