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The force needed to pull a cylindrical stud from a soft elastomeric film depends on
their elastic and geometric properties. For a rigid stud and a thick elastomeric
film, the pull-off stress (r) depends on the elastic modulus (E) of the film and
the radius (a) of the stud as r � (E=a)1=2 (soft adhesion). However, when the film
is very thin, the pull-off stress is significantly higher than the case with thick films,
and its value depends on the elastic modulus and the thickness (h) of the film as
r � (E=h)1=2 (hard adhesion). Here, we study the pull-off behavior of a soft cylin-
drical stud, one flat end of which is coated with a high modulus thin baseplate.
As the flexural rigidity of this baseplate is varied, we observe the transition
between the two types of adhesion. We present a simple physical interpretation
of the problem, which could be of value in understanding various biofouling and
adhesive situations.
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I. INTRODUCTION

Kendall [1] employed the energy balance criterion of Griffith [2] to
study the adhesion and fracture at soft interfaces under various set-
tings. Among his numerous contributions, a special case involves pull-
ing rigid studs from soft elastic layers. In recent years, considerable
attention has been paid to these classes of problems in the context of
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understanding, among others, the adhesion of rigid objects to soft
materials [3–10] and the release behavior of fouling organisms [11–
13] from various surfaces.

Next to Kendall’s pioneering contributions, the most comprehensive
studies to date in this field are those of Shull, Creton, and their colla-
borators [5–10], who used the probe tack test to examine varieties of
situations: fully confined films (thickness of the film being much smal-
ler than the stud radius), unconfined films, and films of intermediate
confinements. Although the extreme situations of confined and uncon-
fined films as studied by these authors are in general agreement with
those of Kendall [1], Shull et al. [5, 8, 10] also proposed a valuable
interpolating equation, supported by finite element analysis, that
can be used for films of intermediate confinements. By measuring
the stress in the film as a function of displacement, these authors suc-
cessfully verified the predictions of their theoretical analysis [7, 8, 10].

Singer et al. [11, 12] and Chaudhury et al. [13] applied Kendall’s
methodologies to study fouling release problems. Fouling organisms
readily colonize marine vessels. One of the strategies that is being
investigated in the ONR (office of Naval Research) program in the
United States is to promote easy removal of the foulants from naval
vessels by painting them with organic coatings. Most fouling organ-
isms secrete adhesive films, which interact either strongly or weakly
with organic coatings. However, even when weak interaction prevails,
it is not an easy task to remove the organisms from surfaces, because
they maximize adhesion by manipulating the mechanical and geo-
metric properties of the adhesives. Some organisms [13–15] could
maximize the removal stress with adhesives that spread on a surface
by thinning progressively so that the stress singularity at the edge of
contact is weakened. Barnacles [16–18], conversely, use relatively
thick and high modulus adhesive, removal of which is difficult because
it is incapable of storing sufficient elastic energy by deformation under
moderate external stress. Marine mussels [19] maximize adhesion by
distributing the force to multiple attachment sites that act indepen-
dently. However, the encouraging finding is that the polymeric films
of low modulus and low surface energy do promote easy release of fou-
lants [11–13, 16–18]. The mechanisms underlying the release of fou-
lants from the soft films can be understood, at least qualitatively, in
the light of the pioneering studies by Kendall [1] and Shull et al. [5–
10]. Quantitative prediction of the release force, however, is rather
difficult because of the complex interplay of the various properties of
the organisms and coatings.

Here, we examine the adhesion and fracture of a model foulant with
an elastomeric film using an axisymmetric pull-off test along the same
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line as those pioneered by Creton and Lakrout [7] and Shull et al.
[5–10], but with a difference in the model system. The model foulant,
in our studies, is created by bonding a thin baseplate to one flat end of
a soft elastomeric stud. The rigidity and the dimension of the base-
plate are varied over a wide range to delineate the transition between
hard- and soft-fouling releases. We attempt to present a simple physi-
cal interpretation of the problem with the hope that it would be of
value in dealing with biofouling and other adhesive situations.

II. RESULTS AND DISCUSSION

Description of the Model

We begin with a brief introductory review of the main result of linear
elastic fracture mechanics (LEFM) that is used for subsequent discus-
sions. More detailed presentation of this kind of analysis can be found
in Reference [10]. LEFM assumes that all elastic deformations follow
Hooke’s law, in which the elastic strain energy (UE ¼

R
Fdd) for a sys-

tem is expressed in terms of either a force-stiffness or a displacement-
stiffness relationship:

UE ¼ 1

2

F2

k
or UE ¼ 1

2
d2k; ð1Þ

where F is the tensile force, k is the stiffness or spring constant of the
system, and d is the tensile displacement. The ratio of force to displace-
ment k is defined as: k ¼ F=d. Applying Griffith’s fracture criterion [2]
to Equation (1), one obtains the strain energy release rate (Gc) as

Gc ¼ � @UE

@A

����
Fc

¼ �F2
c

2

@ð1=kÞ
@A

; ð2Þ

where A is the circular area of contact (A ¼ pa2) and Fc is the critical
pull-off force. For nondissipative systems, Gc is equivalent to the ther-
modynamic work of adhesion (W). Rearranging Equation (2) yields the
critical pull-off stress, rc ¼ Fc=pa2, as

rc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�4W

�
pa3

@ð1=kÞ
@a

� �� �s
: ð3Þ

We now turn our attention to a model system, which consists of an elas-
tomeric rubber block bonded to a flexible baseplate (Figure 1). The elas-
tic block is the surrogate for a soft tissue with finite modulus, whereas
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the baseplate represents the properties of thin bioadhesive layer with
finite flexural rigidity. The baseplate of this composite model system
is brought into contact with a thin elastomeric film bonded to a rigid
substrate. Our objective is to find the relationship between the force
needed to pull this structure from the thin elastomeric film as a func-
tion of the elastic and geometric properties of all the components
involved. Although this model system does not capture all the details
of real foulants (for example, the effects of the side walls are ignored),
it is, nonetheless, a useful simplification of the complex fouling organ-
isms. Studying this model system could be of value in terms of posing
relevant questions for real fouling-release situations.

When the model adhesive is subjected to a tensile force, the whole
elastic body deforms (Figure 2). In principle, the overall deformation
behavior can be described in terms of the coupled differential equa-
tions of deformation of the individual structural members and by a
set of corresponding boundary conditions. Instead of attempting a
complete elastic solution of this kind, we employ a simple approach
in which individual elastic bodies of the system are represented by
mechanical springs and determine the contribution of each component
(elastic film, flexible baseplate and elastic block) separately. Once the
behaviors of the components are understood, we attempt to describe
the behavior of the composite system in a semi-empirical fashion.

FIGURE 1 Schematics of the fouling species adhering to an elastic film: (a)
adhesion of barnacle larva (macroscopic hard foulant) and (b) adhesion of
spore of algae (microscopic soft foulant). (c) The model system.
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Pull-out of a Rigid Cylinder from a Soft Elastic Film

We consider a system, where a smooth-ended rigid cylindrical stud of
radius a is initially in contact with a soft elastic film of thickness h and
modulus E. The latter is strongly bonded to a rigid glass substrate. We
consider two extreme cases: the film thickness is larger than the stud
radius (Case I, Figure 3) and the film is much thinner than the stud
radius (Case II, Figure 4). Figure 5 illustrating our axisymmetric
pull-off force apparatus, is given in the section on Materials and
Methods, which follows the conclusions.

FIGURE 2 Further details of the model system: (a) the contact between a
pseudo-foulant and an elastic film and (b) sketch showing that a vertical
stretch in the cylindrical block leads to bending in the baseplate.

FIGURE 3 (a) Schematic of pull-off of a cylindrical rigid stud from an elastic
half space (Case I). (b) Dependence of the critical pull-off stress on (E=a)1=2 for
a=h << 1. Both the Young’s modulus of the elastic material (E ¼ 0.77 to
9.51Nm�2) and the radius of the smooth-ended glass disk (a ¼ 3.8 to 9.0mm)
were varied. All data collapse on a single straight line going through the origin.
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Case I: Rigid disk on a soft elastic slab (a=h<<1): It was observed
first by Kendall [1] and later by other groups [3, 4, 7, 10–12] that for a
rigid disk being pulled from a soft elastic slab, the crack initiates at
the periphery of the contact and propagates toward the center (edge
crack, Figure 3a). The situation can be analyzed using the overall
energy balance approach of Kendall [1] or by the stress intensity
approach as was done by Maugis [20]. Maugis considered a Boussinesq
[21] stress distribution at the interface of the cylindrical stud and a

FIGURE 4 (a) Schematic of pull-off of a cylindrical rigid stud from a thin elas-
tic film, showing internal crack propagation with the formation of well-defined
interfacial instabilities (Case II). (b) Video micrograph of cavitation bubbles
observed during pull-off. The radius of glass disk a ¼ 3.8mm, film thickness
h ¼ 76 mm, and Young’s modulus of the film E ¼ 2.66Nm�2. (c) Dependence
of the critical pull-off stress on (E=h)1=2 for a=h >> 1. All data collapse on a
single straight line passing through the origin.
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semi-infinite half space:

rðrÞ ¼ F

2paða2 � r2Þ1=2
; r < a: ð4Þ

Here, F is the force applied on the disk and r is the radial distance. As
r approaches a, Equation (4) becomes

rðrÞ ¼ KIffiffiffiffiffiffiffiffi
2px

p ; x ¼ a� r: ð5Þ

The stress thus has an inverse-square-root singularity at the edge

with KI being the stress intensity factor in mode I KI ¼ F=ð4pa3Þ1=2
h i

,

which is related to the strain-energy release rate G as

FIGURE 5 Schematic of the axisymmetric pull-off force apparatus. A cylin-
drical block of PDMS having a thin glass or epoxy baseplate above it is brought
into complete contact with a PDMS coating supported on a glass slide. A two-
axis goniometer stage allowed accurate adjustment of the axial alignment. A
motor connected to a vertical stage could bring the stud in contact with or
detach from the elastic coating. A nanomotion controller system allowed con-
trol of the vertical displacement, and a load cell mounted on the cylindrical
stud allowed measurement of the load using the computer-assisted data-
acquisition system. Contact images at the interface between the stud and
the coating were viewed using an optical microscope equipped with a CCD
video camera and analyzed with motion-tracking software.
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G ¼ K2
I ð1� v2Þ

2E
: ð6Þ

where v is the Poisson’s ratio.
Taking the critical strain-energy release rate to be equal to the

work of adhesion, i.e., Gc ¼ W, the critical pull-off force is

Fc ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8pa3WE

ð1� v2Þ

s
: ð7Þ

The critical stress for pull-off can then be expressed as follows:

rc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

8WE

pað1� v2Þ

s
: ð8Þ

Equation (8) can also be derived from the overall stiffness (k) of the
soft elastic slab, which can be obtained by dividing the applied force
F with the extension d [1], i.e.,

k ¼ F

d
¼ 2Ea

ð1� v2Þ : ð9Þ

Substitution of Equation (9) in Equation (3) also leads to Kendall’s
result [Equation (8)], which predicts that the critical pull-off stress
scales as ðE=aÞ1=2.

Equation (8) was verified experimentally by Kendall [1], for the case
of rigid indenters being pulled from soft gelatin blocks, by keeping its
modulus constant but by varying its radius.

We performed an elaborate experiment in which rigid glass discs of
various radii (3.8 to 9.0mm) were pulled from thick (13-mm) poly-
(dimethylsiloxane) (PDMS) elastomeric blocks of various Young’s-
moduli (E ¼ 0.8 to 9.5Nm�2). To prevent nonspecific adhesion, the
surfaces of the glass disks were modified by reacting them with hexa-
decyltrichlorosilanes. The critical force (stress) required to pull the
rigid cylinders off the elastomeric block was measured with an appar-
atus built like a probe tack tester (Figure 5; details are in the Materi-
als and Methods section). When the pull-off stress is plotted against
ðE=aÞ1=2, a straight line is observed, the slope of which yields
W � 47mJm�1 using Equation (8), which compares favorably with
the value of 42–44mJm�2 obtained from the JKR (Johnson, Kendall,
and Roberts) contact mechanics experiments [22] (see Figure 3).
(assuming v � 0.5) We also found that Kendall’s equation [Equation
(8)], derived for a rigid cylinder being pulled from a soft substrate, is
perfectly applicable to the case of a soft PDMS cylinder being pulled
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off a hard substrate. This is in agreement with the recent analysis of
Hui et al. [23], which shows that for an edge crack, both these cases
yield approximately similar results. It is thus more appropriate to
describe the general situation as [13]

rc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
8WE�

pa

r
; ð10Þ

where the composite modulus (E�) is given by 1=E� ¼ ð1� v21Þ=E1 þ
ð1� v22Þ=E2, and the subscripts 1 and 2 represent the substrate and
the cylinder, respectively.

Gent [24] derived a similar equation for the adhesive fracture of a
thick slab of rubber using the energy criterion of the fracture proposed
byRivlin andThomas [25]. According toGent’s presentation of the Rivlin
and Thomas model, the relationship between W and the strain energy
density ðWbÞ for a thick slab of rubber is W ffi pcWb; c being the length
of the debond zone. For an adhesive of elastic modulus E;Wb ffi r2c=2E,
which, in conjunction with the Rivlin–Thomas equation yields.

rc ¼
ffiffiffiffiffiffiffiffiffiffiffi
2WE

pc

r
: ð11Þ

Gent realized that for circular contact, the nonuniform stress state at the
interface needs to be taken into account. When appropriate corrections
are made, the exact form of Equation (10) can be derived using the
Gent–Rivlin–Thomas approach.

Case II: Rigid stud on a thin elastic film (a=h>>1): When the
thickness of the film is smaller than the radius of the cylindrical stud
(a=h>>1), it cannot undergo a sufficient amount of lateral contraction.
Gent [24] derived an expression for the pull-off stress in such constrained
system using the Rivlin and Thomas relationship between work of fracture
and the strain-energy density ðWbÞ, which for a thin slab of rubber
is W ffi hWb;h being the thickness of the rubber slab. Using Wb ffi r2c=2E,
Gent obtained

rc ¼
ffiffiffiffiffiffiffiffiffiffiffi
2WE

h

r
: ð12Þ

Kendall’s [1] version of Equation (12) has the term bulk modulus
instead of elastic modulus. However, the proper way to derive the
expression for the pull-off stress is to take into account the hydrostatic
stress state in the film, which leads to the formation of cavitating bub-
bles (internal crack, Figure 4a) at the interface. Cavitation bubbles of
the types shown in Figure 4b were observed by other authors as well
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[26–29]. However, it has only been established recently [30–33] that
these bubbles arise because of adhesion-induced elastic instability in
the film. These bubbles have well-defined spacing (wavelength k) that
scales linearly with the film thickness [30–33]. The wavelength of this
instability can be obtained by minimizing the total energy of the sys-
tem with respect to a surface perturbation mode of wavelength k. By
ignoring the adhesion energy, which to the first-order approximation
is independent of k, the total energy UT (energy=area) consists of
the elastic strain energy ðUEÞ and the surface energy ðUSÞ:

UT � Eh
@uz

@x

� 	
þ @ux

@z

� 	� �2
þc

@uz

@x

� 	2
; ð13Þ

where ux and uz are the components of the displacement field in the x
and z directions (a local Cartesian coordinate is denoted in the inset of
Figure 4a). Taking the characteristic length scales as k and h along the
x and z axes (x � k and z � h), and considering that the maximum sur-
face displacement in the z direction is on the order of the amplitude of
the perturbation (uz � d), the maximum displacement along the x
direction can be obtained from the incompressibility condition
(@ux=@xþ @uz=@z ¼ 0), i.e., ux � dk=h. Minimizing UT with respect to
k yields k � h½1þ c=ðEhÞ�1=4 [34]. Because the term c=Eh << 1, we have
the result k � h (the exact treatment of the problem, as provided by
Shenoy and Sharma, can be found in References [30] and [32]). Using
this relationship between k and h, the net elastic energy of the thin
film can be written as

UE ¼ UE � ðpa2Þ � Ed2a2

h
: ð14Þ

Substituting Equation (14) into Equation (1) leads to the expression
for the stiffness of the film:

k � a2E

h
: ð15Þ

Equation (15), in conjunction with Equation (3), yields the following
expression for the critical pull-off stress:

rc �
ffiffiffiffiffiffiffiffi
WE

h

r
: ð16Þ

Equation (16) is a simplified version of an expression presented ear-
lier by Webber et al. [10], who used the more exact form of the elastic
energy in the film as provided by Shenoy and Sharma [30, 32, 35, 36].
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Considering only a single Fourier mode of interfacial perturbation,
uzðxÞ ¼ d cosð2px=kÞ, the expression for the elastic energy of the film
becomes [36]:

UE ¼ A�pEd2

3h

ð2ph=kÞ½1þ coshð4ph=kÞ þ 2ð2ph=kÞ2�
2½sinhð4ph=kÞ � 4ph=k� ; ð17Þ

where A� is the actual area of contact. For an incompressible film of
low surface energy, it is shown [30–32] that the total energy is mini-
mized when the wavenumber at the perturbed configuration scales
as 2ph=k ¼ 2:12; i.e., k � 3h. Because our case closely meets these con-
ditions (v � 0:5, c=Eh << 1), the expression for the elastic energy of the
film can be simplified by inserting 2ph=k ¼ 2:12 in Equation (17), i.e.,

UE ¼ 1:63
A�Ed2

h
: ð18Þ

The simulations of Sarkar et al. [35, 36] show that the fractional con-
tact area (A�=pa2) remains constant at � 0:5 (for details, see Reference
35); i.e., A� ffi pa2=2. The theoretical expression for the stiffness of the
thin elastic film is then determined by substituting Equation (18) into
Equation (1):

k ¼ 5:12
a2E

h
: ð19Þ

Now we obtain the resultant pull-off force as

rc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3:3WE

h

r
: ð20Þ

We performed pull-off force measurements with cylindrical rigid studs
of different radius (3.8–9mm) from PDMS films of thicknesses ranging
from 50 to 900 mm and Young’s moduli ranging from 0.8 to 9.5Nm�2.
For these thin films, instabilities appeared at the interface much like
those reported in References 10, 31, and 33. The pull-off stress varied
linearly with ðE=hÞ1=2 (see Figure 4c), from the slope of which W is
estimated to be 47mJ m�2 using Equation (20), which is in good agree-
ment with the values (42–44mJm�2) obtained from JKR contact-
mechanics studies [22].

There is another interesting perspective to consider. Debonding of
elastic films occurs via growth of cavities that are laterally separated
by 3h. With further increase in the force, these periodic wavy patterns
elongate in the normal direction, leading to fully developed instabil-
ities with columnar structures. It has been proposed by Sarkar et al.
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[35] that debonding of a single column proceeds by decreasing the area
of contact with increasing force until a catastrophic ‘‘snap-off’’ of the
bridging column occurs. In other words, the mode of failure of a single
column is that of edge crack propagation, as illustrated in Figure 6.
This situation is similar to the case of a soft cylinder being pulled off
a rigid half space, for which Kendall’s equation [Equation (8)] applies.
Here, we consider a single columnar structure of radius �k=4 as
illustrated in Figure 6b. Taking the effective radius of contact of
the cylindrical stud in Equation (8) to be 3h=4 (assuming k � 3h), we
estimate the pull-off stress to be

rc ffi 2

ffiffiffiffiffiffiffiffi
WE

h

r
: ð21Þ

Equation (21) shows that the critical pull-off stress scales as ðE=hÞ1=2
with a prefactor not too different from that in Equation (20). It is
important to point out that Yang and Li [4] recently derived
the expressions for the pull-off force by considering different types of
slip boundary conditions at interfaces. Among these relations, the
equation [see Equation (22)] that was derived on the assumption that
both the stud=film and the film=substrate interfaces are free of friction
predicts the pull-off stress to be proportional to ðE=hÞ1=2, i.e.,

rc ¼
F

pa2
¼ 1:64

ffiffiffiffiffiffiffiffi
WE

h

r
: ð22Þ

FIGURE 6 Illustration of the pathway of debonding for initially confined
geometry, i.e., for a=h >> 1: (a) Initial instability patterns with k ’ 3h. (b)
Debonding in the form of columnar structures within the contact area. Here acol
represents the contact radius of a single column. At this stage, acol can be
assumed to be a quarter of the wavelength of instabilities because A�=A ’ 0:5.
(c) An unconfined state. As columns stretch, stress concentrations occur at the
edge of the columns, leading to the decrease in the contact area (peeling mode).
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Conversely, if slippage occurs only at the stud=film interface, and not
at the film=substrate interface, the pull-off force varies inversely as
h3=2. We have not fully explored the implications of these predictions
in the context of our model studies. However, it is important to note
that the Yang and Li [4] did not consider elastic instability at the
interface. It will be interesting to explore experimental systems in
which separation does not proceed via instability but by slippage of
the type envisaged by Yang and Li.

A Special Case of Two Confined Films

There is yet another interesting scenario to consider. It appears
(G. W. Swain, personal communication) that certain biofoulants, e.g.,
barnacles, could have a thin rubbery region underneath the harder
adhesive baseplate. The failure mechanism of such a composite base-
plate from a thick elastomer can still be described by Equation (8),
because the latter is more compliant than its composite counterpart.
However, when the adhesive is in contact with a thin elastomer, the
situation changes as the compliance of the entire system and the
resulting instability depend on the modulus and thickness of the rub-
bery adhesive as well as those of the elastomeric film (Figure 7). The
general treatment of the instability at the interface of two confined
films has been carried out previously by Sarkar et al. [37].

Here we analyze the situation using a simple energy-balance
approach. Ignoring the contributions of the surface and adhesion ener-
gies, the total elastic energy in film 1 and 2 for an interfacial pertur-
bation [see Equation (13)] of wavelength k can be written as

UT � E1h1d
2
1

1

k
þ k

h2
1

� 	2
þE2h2d

2
2

1

k
þ k

h2
2

� 	2
; ð23Þ

FIGURE 7 Instability at the interface of two confined films depends on the
modulus and thickness of both the films.
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where d1 and d2 are the amplitudes of the perturbations in the films 1
and 2, respectively. To determine the wavelength of interfacial pertur-
bations, UT has to be minimized with respect to k. However, before
such minimization is attempted, we need to find a relationship
between d1 and d2, which can be accomplished by balancing the hydro-
static stresses in the films. Under the lubrication approximation [33],

P0 þ
E1d1k

2

h3
1

exp
2pxi
k

� 	
¼ P0 þ

E2d2k
2

h3
2

exp
2pxi
k

� 	
or

E1d1
h3
1

� E2d2
h3
2

;

ð24Þ

where P0 is the average hydrostatic stress in the films. With the
assumption that the wavelength of instability is significantly larger
than the thicknesses of both the films, we minimize UT with the help
of Equations (23) and (24) to yield

k � E1h
7
2 þ E2h

7
1

E1h
3
2 þ E2h

3
1

� 	1=2
: ð25Þ

Substitution of Equations (23)–(25) in Equation (3) yields the
expression for the pull-off stress as follows:

rc�
WE1E2ðE1h

7
2 þ E2h

7
1Þ

1=2

ðE1h3
2 þ E2h3

1Þ
3=2

 !1=2
: ð26Þ

Note that Equation (26) reduces to Equation (16) for E1 ¼ E2 and
h1 ¼ h2. In other words, the expression for the pull-off force for two
fully confined thin films of identical modulus and thickness is the same
as that of one film from a rigid support. For other situations, the pull-
off force depends on both the modulus and thickness in a nonlinear
way. A detailed account of these studies wil be published elsewhere.

Effective Stiffness for a Pseudo-foulant on an Elastic Film

We now consider the effect of stiffness of the pseudo-foulant, which is
in contact with a thin elastic film (Figure 8). When the elastic block
bonded to the flexible baseplate is stretched in the normal direction,
the latter may undergo bending (as illustrated in Figure 2b) due to
nonuniform stress distribution at the interface. In the extreme limits
of either the baseplate being infinitely rigid or the elastic block being
of infinite modulus, bending in the baseplate would be negligible.
However, for a thin baseplate and a deformable elastic block, a
Boussinesq-type [21] nonuniform stress at the interface can cause
bending in the baseplate.
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The force (P, per unit length) acting on the edge of the bent plate
can be estimated by estimating the effective moment of the force due
to distributed Boussinesq stress as

Pð2paÞa ffi 2p
Z a

0

rðrÞr2 dr: ð27Þ

Using the expression for rðrÞ as in Equation (4), we find P � F=a. This
force can be equatedwith that arising from the profile of the bent plate as

P ¼ D
@3uz

@x3
; ð28Þ

where uz is the component of the displacement field in the z direction
(Figure 8), andD is the bending stiffness (or flexural rigidity) of the base-
plate [38]

D ¼ E2h
3
2

12ð1� v22Þ
ð29Þ

The bending of the baseplate is, however, strongly coupled to the defor-
mation of the thin elastic film below it. This elastic coupling determines
the length over which stress decays from the edge of the contact towards
the center. For a plate in contactwith a thin confined film, this distance is
given by the following expression [39, 40]:

n � Dh3
1

E1

� 	1=6
ð30Þ

FIGURE 8 Schematic of pull-off of a flexible pseudo-foulant from an elastic
film. Adhesion of the flexible baseplate on the elastic film is treated as a beam
on elastic foundation model because of the bending effect.
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By taking uz � d2 and x � n, Equation (28) can thus be analyzed at the
scaling level as, P � F=a � Dd2=n

3. Next, assuming that the crack initi-
ates at the edge of contact, we consider the elastic strain-energy release
rate due to the bending of a plate [41]:

U2 ¼ D
@2uz

@x2

 !2
: ð31Þ

EquatingU2 toW, the work of adhesion, we findW � Dd22=n
4. Now, com-

bining these expressions for P, W, and n, we get

F

a

� 	2

� WD2=3E
1=3
1

h1
: ð32Þ

In terms of the remote stress, Equation (32) becomes

rc ¼ c
WD2=3E

1=3
1

h1a2

" #1=2
; ð33Þ

where c is a numerical prefactor to be determined experimentally.
Although the effect of the baseplate on the adhesive pull-off force cannot
be studied independently of the elastomeric block above it, Equation (33)
shows that its size and rigidity should have profound effects on the
measured forces.

The model system consists of a thick elastomeric rubber cylinder
(thickness 5mm and Young’s modulus �1.5MPa) bonded to thin flex-
ible plates of either glass or epoxy of flexural rigidity ranging from 0 to
5.5Nm. The force needed to pull these cylinders from thin PDMS films
were measured with a home-built device (see the section on Materials
and Methods for details). To achieve the condition a=h1 >> 1, we used
the contact radius of the cylinder in the range of 3.8–9mm and the
thickness of the PDMS film in the range of 50–900 mm.

Figures 9 and 10 summarize the pull-off stresses as a function of the
thickness and modulus of the PDMS film as well as the rigidity of the
base plate. For an effectively rigid baseplate (D ¼ 5.5Nm), the pull-off
stress decreases with the film thickness but increases with the modu-
lus as predicted by Equation (20). These data can be combined to show
that the pull-off stress varies as (E=h1)

1=2, which has been discussed in
an earlier section (see Figure 4). Conversely, in the absence of the
baseplate (D ¼ 0), the pull-off stress does not depend on the film thick-
ness (see also Figure 3). When D is in between these extremes, the
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pull-off stress moderately depends on both the thickness and modulus
of the PDMS films.

Total Critical Pull-Off Stress

In the absence of a rigorous theoretical framework, we perceive the
behavior of our model system with an equivalent mechanical
approach, in which individual elastic bodies of the system are repre-
sented by mechanical springs. In such a case, we may consider that
the elastic deformation of each component (elastic film, flexible base-
plate, and elastic block) contributes to the composite (or total) stiffness
of the system. The total stiffness of the system (s) is due to two springs
in series: one is that of the elastic film (s1) and the other (seff) is due to
the baseplate coupled to the elastic block. As such, the stiffness of the
coupled system can be expressed using a harmonic equation.

In the pseudo-foulant, the baseplate and elastic block are strongly
bonded to each other, the effective stiffness of which depends on vari-
ous factors. In the limit that the baseplate is infinitely rigid, the stress
distribution will be Boussinesq as it is at the elastic block=baseplate

FIGURE 9 Experimental pull-off stresses (rc) for various flexural rigidities
(D) and the thickness (h1) of the PDMS film with E1 ¼ 2.7MPa: D ¼ 5.47Nm
(�), D ¼ 5.00� 10�1Nm (.), D ¼ 3.70� 10�3Nm (4), D ¼ 8.34� 10�4Nm (~),
D ¼ 3.04� 10�7Nm (&), and D ¼ 0Nm (&). The dashed lines represent two
extreme limits and the solid lines are predictions based on Equation (34).
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interface. However, this stress profile cannot be felt by the baseplate=
film interface. This problem then is closer to a rigid block being pulled
off a soft substrate, in which case the interfacial stress profile is
determined by the mechanical properties and the thickness of the sub-
strate. When the baseplate is soft, a Boussinesq-like stress profile
should develop at the plate=film interface. This problem, then, is closer
to a soft cylindrical block being pulled off a rigid or a soft substrate. As
described for a rigid baseplate, the effect of the stiffness of the elastic
block indeed becomes negligible, whereas it becomes prominent when
the baseplate is very soft. These observations canbe treated empirically
by taking the effective stiffness of the elastomeric block bonded to a
baseplate as the arithmetic sum of the stiffnesses of the individual com-
ponents, i:e:; seff ¼ S2ðflexible baseplateÞ þ S3ðelastic blockÞ. Because
we have considered the behavior of the individual elements, we combine
their joint behavior by combining Equations (8), (20), and (33) by defin-
ing the adhesive stiffness of each element as r2c=W. Thus, the adhesive
stiffnesses for the elements described in Equations (20), (33), and (8)
are s1 ¼ 3.3E1=h1, s2 ¼ c2D2=3E

1=3
1 =h1a

2, and s3 ¼ 3:4E3=a, respect-
ively. These elements are combined as ð1=sÞ ¼ ð1=s1Þ þ ½1=ðs2 þ s3Þ� to

FIGURE 10 Experimental pull-off stresses (rc) for various flexural rigidities
(D) as a function of the elastic modulus of the film (E1) with h1 ¼ 350 mm:
D ¼ 5.47Nm (�), D ¼ 3.70� 10�3Nm (4), D ¼ 8.34� 10�4Nm (~), and
D ¼ 0Nm (&). The dashed lines represent two extreme limits and the solid
lines are predictions based on Equation (34).
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yield the net adhesive stiffness when all the elements are active [see
Equations (34) and (35)]:

W

r2c
¼ 1

ð3:3E1=h1Þ
þ 1

ðc2D2=3E
1=3
1 =h1a2Þ þ ð3:4E3=aÞ

" #
for a=h1 >> 1

ð34Þ

W

r2c
¼ 1

ð3:4E1=aÞ
þ 1

ðc2D2=3E
1=3
1 =h1a2Þ þ ð3:4E3=aÞ

" #
for a=h1 << 1:

ð35Þ

Note that all the limiting cases [i.e., Equations (8), (10), (20), and (33)]
can be obtained from this equation quite readily. For example, when the
baseplate is infinitely rigid (i.e., D ! 0), the equation for the pull-off
stress is simplified to either Equation (20) or Equation (8). As the base-
plate becomes very compliant (i.e., D ! 1), the stiffness of the elastic
film and=or that of the elastic block determine the system stiffness.

Next, we investigate if Equations (34) and (35) can be used to sum-
marize all the pull-off force data in one master plot by fitting the one
adjustable parameter c. To achieve this objective, we employed 84 sets
of pull-off force data corresponding to twelve different film thicknesses
(h1), five different film moduli (E1), five different baseplate radii (a),
and six different rigidities of the baseplate (D), including the data
shown in Figures 9 and 10. Using the method of least squares, the
unknown prefactor c in Equations (34) and (35) is found to be 13.7 with
a correlation coefficient of 0.97. Using this value of c, the pull-off stres-
ses as predicted by Equations (34) and (35) are compared with the
measured values (Figure 11).

Although the correlation reported in Figure 11 is excellent, the
large numerical value of c (13.7) needed in Equations (34) and (35)
is considerably larger than the value (�3) expected if all the numerical
prefactors were retained in the derivation of Equations (34) and (35).
The discrepancy therefore raises the concern that some important
mechanisms of debonding might not have been properly understood,
even though Equations (34) and (35) seem to be consistent with the
experimental data in terms of the materials and geometric properties
of the system. The obvious point that comes to our mind is the assump-
tion that the crack opens from the edge and that this opening is
fracture-toughness controlled. Experimentally, we know that this is
not necessarily the case, because in most of the instances the crack
nucleates by cavitaion at the interface. These factors lead to several
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complications associated with the analysis of the problem. First,
complication results from insufficient knowledge of the hydrostatic
state of the film; second, it is not quite clear whether the process of
crack initiation is controlled by work of adhesion or by the cohesive
stress. Proper analysis of this problem would require rigorous solutions
of the elastic field equations with the unfortunate loss of the simplicity
of the method presented here. Although such a rigorous analysis would
be warranted for a complete understanding of the problem, the success
achieved here in being able to present all the pull-off stress data under
one master equation leads us to believe that this protocol would be of
value in estimating the removal forces of complex fouling organisms.

There could yet be other important applications of the methodolo-
gies developed here. Recently, a significant amount of research is
being directed to trying to mimic the adhesive pads of animal and
insects, because much can be learned from the way they optimize
adhesion based on elastic and geometric properties [34, 42–50]. The
adhesive pads of many of these species are endowed with fine fibril-
lar structures [42, 45], which can adhere to a surface by van der
Waals force alone. There are reasons to believe that the high
adhesive properties of these adhesive pads result from the collective
behaviors of the individual fibrils. Consider a flat-ended fiber of

FIGURE 11 The master curve describing the correlation between the pre-
dicted [Equations (34) and (35)] and measured pull-off stresses.
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length L, radius a, and elastic modulus E1 in contact with a flat sur-
face. When such a fiber is pulled a surface, it detaches when the
detachment stress reaches the value given by Equation (10), i.e.,
r �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
WE1=a

p
. However, the fiber stores some extra elastic energy,

which is not recovered when it detaches from the substrate. This
energy dissipation per unit area is r2L=E1 ¼ WðL=aÞ. Thus, as the
effective fracture energy is enhanced by the aspect ratio of the fibril
L=a, it makes sense to synthesize artificial adhesives with long
aspect ratio [23, 34, 48, 50]. There is, however, a severe practical
limitation to this approach. Long fibrils collapse laterally by
adhesion-induced buckling [48]. A possible way to overcome this
problem is to avoid very long fibrils, but modifying its tip with a thin
rigid baseplate followed by coating it with a soft polymer (of thick-
ness h and modulus E2). If the baseplate is effectively rigid, the
detachment stress would be given by Equation (20), i.e.,
r �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
WE2=h

p
, and the energy dissipation per unit area would be

r2L=E1 ¼ WðE2=E1ÞðL=hÞ. Taking E1 ¼ E2, the energy dissipation is
WðL=hÞ. The new aspect ratio is now L=h, which can be made as
large as needed by decreasing h without having to use long fibrils
(i.e., high L=a), we may ask how thick the baseplate has to be so that
it behaves effectively rigidly. The answer to this question can be
obtained by setting c2D2=3E

1=3
2 =ha2 > 3:4E1=a [Equations (8) and

(33)], which translates to a lower value of D � 0:0025E1ðhaÞ3=2. Tak-
ing E1 to be about 1MPa, h � 1mm and a � 10mm, this lower value of
D is estimated to be only about 10�14Nm. In other words, very flex-
ible baseplates in a macroscopic sense would behave like a rigid plate
at this scale.

It should also be pointed out that the relationship between the pull-
off stress and the modulus of the elastomer, as embodied in Equations
(10) and (16), is strictly applicable for cases where the work of
adhesion is independent of molecular weight. In the particular cases
reported in this article, W is independent of molecular weight because
the main interaction is via dispersion forces. However, if the polymer
chains interact with the counter surface via nondispersion forces, W
can be a strong function of molecular weight (M) [51–56]. In the litera-
ture, W has been reported to depend on M as W � Ma with a ranging
from 1=2 to 1. As the modulus varies inversely with the molecular
weight, W is expected to vary with E as W � E�1=2 or W � E�1. In
these situations, the pull-off stress may have a weak dependence on
modulus, i.e., r � E1=4, or may not depend on modulus at all. There
are also possibilities for viscoelastic relaxations either in the bulk [6,
7] or at the interface [55, 56], which would have additional effects on
the relationship between the pull-off stress and molecular weight.
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III. CONCLUDING REMARKS

The experimental results reported here illustrate the roles of mechan-
ical and geometric properties of both the adherents and adhesives in
their detachment forces. The basic results of this work confirm the
previous findings of Kendall [1] and other authors [3, 4, 10]. The main
result of this work is to introduce a thin adhesive baseplate under a
soft stud and to demonstrate the transition from the unconfined (soft)
to confined (hard) adhesion by manipulating its flexural rigidity. It is
hoped that these results will be of value in understanding the adhesive
behavior of fouling organisms to polymer-coated ship hulls, because
these organisms exhibit adhesive baseplates of various rigidities.
The classification of fouling behavior, which is normally done with
such terminologies as ‘‘soft’’ and ‘‘hard’’ either because of the variation
of species or different stages of maturation, may now be done more
quantitatively by taking into consideration the size of the species
and the material properties of the whole system.

Materials and Methods

Preparation of elastic coatings of PDMS bonded to rigid
substrates: Elastomeric films and slabs were made of poly-
(dimethylsiloxane) using the following procedure. Glass microscope
slides (25� 75� 1mm, Fisher Scientific, Pittsburgh, PA, USA) were
cleaned by immersion in hot piranha solution (70% H2SO4þ 30% of
a 50% solution of H2O2) for 30min, and then thoroughly rinsed
with purified water and dried under pure nitrogen flow. They were
further subjected to oxygen plasma treatment in a plasma cleaner
(model PDC-32G, 100W, Harrick Plasma, Ithaca, NY, USA) at a
pressure of 0.2 Torr for 45 s at low power setting. One set of these
glass slides was used as rigid substrates. The other set was coated
with a self-assembled monolayer (SAM) of hexadecyltrichlorosilane
(United Chemicals Technologies Inc., Bristol, PA) using a method
described elsewhere [22]. The ingredients for preparing PDMS
elastomers (obtained as gifts from Dow Corning Corp., Midland,
MI) consisted of four parts, vinyl-terminated PDMS oligomers
(H2C=CH(Si(CH3)2O)nSi(CH3)2CH=CH2) of different molecular
weights, the platinum catalyst (Syloff 4000), the maleate inhibitor
(Syloff 7694), and the methylhydrogen siloxane cross-linker (Syloff
7678: (H3C)3O�(SiHCH3O)p(Si(CH3)2O)qSi(CH3)3, Mn and Mw ¼ 3.5
and 7.5 kg=mol, respectively) [13, 22]. The use of oligomers of differ-
ent molecular weights provided coatings of different Young’s moduli
(0.77–9.51Nm�2). These ingredients were mixed thoroughly and
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degassed for 30min in a vacuum. The PDMS specimens bonded to
the glass substrate were prepared by first pouring the homogeneous
mixture on the cleaned and plasma-oxidized glass slide and then
covering it by the glass slide treated with the SAM (serving as the
easy-release material). Spacers of various thicknesses were inserted
between the two glass slides to achieve uniform and controlled coat-
ing thickness. After the mixtures were cured at 120�C for 50min in
a preheated convection oven, the glass slide with the SAM coating
was carefully peeled off, leaving only a flat coating on the glass sub-
strate. Further details of the preparation the PDMS coatings are
described elsewhere [13, 30, 33].

Preparation of cylindrical blocks of PDMS bonded to rigid
aluminum substrates: The cylindrical blocks of silicone elastomers
(thickness 5mm) were prepared using a 10:1 mixture of PDMS prepo-
lymer and curing agent (Sylgard 184, Dow Corning Corp., Midland,
MI). A mixture of these two solutions was degassed for 30min in a vac-
uum, poured onto a flat-bottomed polystyrene Petri dish, and cured in
an oven at 65�C for 2h. Then, a slab of a cross-linked silicone elasto-
mer was carefully removed from the Petri dish, from which cylindrical
blocks (radius 3.8–9mm) were cut out with sharp cylindrical steel
punches. The cylindrical block was placed on the end of a flat circular
aluminum disk, the other end of which contained a screw to fasten it to
a load cell. To secure good bonding between the PDMS and aluminum,
both were plasma-oxidized using the Harrick plasma cleaner. After
gently pressing them together, they were stored under atmospheric
condition for at least 1 day before use.

Rigid glass disks and preparation of thin flexible epoxy base-
plates: Baseplates used in these experiments were thin plates made
of either glass or epoxy. Borosilicate glass disks (thickness 1.1mm,
Swift Glass Company Inc., Elmira, NY, USA) of different radius (3.8–
9mm) were chosen as rigid studs, the flexible rigidity of which was
5.47Nm. The epoxy system used was composed of three components,
Epon 828 base resin with an epoxide equivalent weight 187.5 (Resol-
ution Performance Products, Houston, TX, USA), Jeffamine1 T-403
epoxy curing agent (Huntsman Corp., Salt Lake City, UT, USA), and
Accelerator 399 (Huntsman Corp., Salt Lake City, UT, USA). The base
resin, curing agent, and accelerator were mixed thoroughly with the
mass ratio of 100:42:5 followed by degassing via centrifugation
(8000 rpm for 6min). Baseplates were fabricated by casting themixture
between two hydrophobic glass slides, which had previously been
coated with hydrocarbon SAM. The epoxy baseplates with different
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thicknesses (1180, 230, 140, and 10 mm) were controlled with spacers of
different heights that were placed between the two slides. The epoxy
mixture was cured at 80�C for 2 h and then at 125�C for 3h. This process
produced the cured epoxy that yielded an elastic modulus 3.12GPa.
After complete cure of the epoxy, the flat sheets of epoxy were carefully
detached from the two hydrophobic glass slides and were cut into circu-
lar shapes (radius 3.8–9mm). The resulting flexural rigidities of the
epoxy baseplate (5.00� 10�1, 3.70� 10�3, 8.34� 10�4, and 3.04�
10�7Nm) were estimated using Equation (29) with a Poisson’s ratio
of 0.38 for the cured epoxy resin.

Preparation of model foulants: Model foulants (consisting of a cyl-
indrical elastomeric block bonded to a baseplate of either glass or
epoxy) were prepared using the following procedure. The glass disks
were first cleaned by immersion in hot piranha solution for 30min.
Then, the glass disks, epoxy baseplates, and cylindrical PDMS blocks
were rinsed thoroughly in distilled, deionized water and blow dried in
nitrogen gas. Both the glass disks and epoxy baseplates were bonded
to the cylindrical blocks by first plasma oxidizing only the bonding sur-
faces and then contacting them with gentle pressure. They were
allowed to stand overnight until good bonding between them was
achieved. The glass disk was then coated with a hydrocarbon SAM.
The contact angle of water on the SAM covered glass surface was
about 110�.

Axisymmetric pull-off apparatus: Figure 5 shows the schematic
of our home-built apparatus used to measure the forces to pull off
a flat-ended cylindrical stud (i.e., model foulant) from a soft elastic
coating that was deposited on a rigid glass substrate. This apparatus
allows precise measurements of the force and displacement and
enables simultaneous observation of the interface during the pull-
off process. This instrument was built in the image of that used by
Creton et al. [6, 7] in their probe tack studies. The PDMS-coated
glass slides were strongly attached to a rigid steel plate with a com-
mercial double-stick tape. The steel plate had a cylindrical hole at
the center, which enabled optical viewing of the interface through
the transparent glass substrate. The cylindrical stud bonded to a
rigid aluminum plate was mounted through a load cell (model
L2338, Futek Advanced Sensor Technology, Inc., Irvine, CA, USA)
onto a two-axis goniometer stage (Melles Griot Photonics Compo-
nents, Carlsbad, CA, USA). Careful alignment of the sample on the
coating was critical to the measurements of pull-off forces. To achieve
accurate axial alignment between the cylindrical stud and the elastic
coating, two axis goniometer stages were utilized to adjust alignment
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via a precision bubble level, which was placed on the top of the speci-
men. The cylindrical stud could be moved upward or downward with
a nanomotion controller system attached to a vertical translation
stage (Melles Griot Photonics Components, Carlsbad, CA, USA). Con-
tact images could be viewed using an optical microscope (Nikon,
model SMZ-2T, Mager Scientific, Dexter, MI, USA) equipped with
a CCD video camera (Sony, model XC-75, Optical Apparatus Co.,
Ardmore, PA, USA). After the complete alignment, the cylindrical
stud was moved toward the coating until it made complete contact.
The measurements of adhesion (normal pull-off) forces were conduc-
ted as follows. The contact between the stud and the elastic coating
was maintained for 30min before the stud was pulled off. The con-
tacting stud was retracted from the coating at a constant displace-
ment rate of 1.5 mm=s using a nanomotion controller system.
During the debonding process, the load cell allowed the simultaneous
acquisition of voltage data, which were converted to force data using
a computer-assisted data-acquisition system (model PCI-DAS6035,
Measurement Computing Corp., Middleboro, MA, USA) via Lab
VIEW software. The maximum pull-off force was transformed into
a critical stress by dividing the force by the initial contact area.
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