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A new cohesive zone model is developed in order to study the mechanisms of adhesive and cohesive
failures of soft rubbery materials. The fracture energy is estimated here using a strategy similar to that
of Lake and Thomas (LT) by considering the dissipation of stored elastic energy followed by the extension
and relaxation of polymer chains. The current model, however, departs from that of LT in that the force
needed to break an interfacial bond does not have a fixed value; instead, it depends on the thermal state
of the system and the rate at which the force is transmitted to the bond. While the force required to rupture
a chain is set by the rules of thermomechanically activated bond dissociation kinetics, extension of a
polymer chain is modeled within both the linear and nonlinear models of chain elasticity. Closed form
asymptotic solutions are obtained for the dependence of crack propagation speed on the energy release
rate, which are valid in two regimes: (I) slow crack velocity or short relaxation time for bond dissociation;
(II) fast crack velocity or long relaxation time for bond dissociation. The rate independent and the zero
temperature limit of this theory correctly reduces to the fracture model of LT. Detailed comparisons are
made with a previous work by Chaudhury et al. which carried out an approximate analysis of the same
problem.

1. Introduction

The fact that the resistance to crack propagation in
many material systems increases with speed1-6 suggests
that some kind of frictional drag operates at or near the
crack tip region. While energy is needed to open a crack
against the intermolecular attractive forces, steady state
fracture is possible only when the rate of energy supply
to a crack is exactly same as the rate of energy dissipation.7
These ideas, embodying the roles of intermolecular
interaction and viscous dissipation in crack growth, were
formalized in the celebrated theories of Gent and Schultz2

as well as those of Andrews and Kinloch.1 According to
these authors, while the primary resistance to crack
growth is provided by the intermolecular forces, its role
is amplified by the viscoelastic processes occurring at and
near the crack tip regions. Prompted by these consider-
ations, Gent et al.9,10 carried out adhesion and tear
experiments with viscoelastic polymers and noted that
their fracture energies (defined as the rate of change of
strain energy per unit extension of crack area) follow the
Williams-Landel-Ferry (WLF) time-temperature su-

perposition principle as do their other rheological proper-
ties. One might anticipate that these experiments, if
performed at very low velocities, would bypass viscoelastic
response in the polymer thereby allowing estimation of
the thermodynamic work of adhesion by extrapolation to
zero velocity. However, the fracture energies obtained at
velocities as low as ∼1 nm/s still show a weak but finite
dependence on crack growth rate with its values being
orders of magnitude larger than the thermodynamic work
of adhesion. While the issue of the fracture energy being
larger than the thermodynamic work of adhesion was
understood by Gent et al.9,10 in the light of a theory
proposed by Lake and Thomas,11 its rate dependence at
very low velocities (∼1 nm/s) had been ignored.

According to Lake and Thomas, the fracture energies
of rubbery solids are always higher than their reversible
thermodynamic counterparts as all the bonds in the crack
bridging polymer chains need to be excited even though
only one bond per chain is broken for a crack to advance.
As most of the energy stored in the chain up to the point
to bond dissociation is dissipated, the interfacial fracture
energy is amplified by the number of bonds per chain.
This issue of the amplification of fracture energy by the
number of bonds per chain is also relevant to the adhesive
situations when a rubbery polymer separates from another
solid substrate. There are however additional details that
need to be considered in the context of how fast a polymer
chain desorbs from a substrate in comparison to the rate
of crack propagation.8 If the polymer chain relaxes very
fast, as is the case with van der Waals interactions, no
amplification of fracture energy results as the polymer
chains suffer negligible extension before disengaging from
the surface. Conversely, significant amplification of
fracture energy would result when the polymer chain
disengages very slowly from the surface. These consid-
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erations were taken into account in a theory proposed by
Chaudhury et al.,7,8 which was inspired by some previous
works of Schallamach,12 Kausch,13 and Evans and Richie.14

Since this theory is central to this work, a summary is
given below.

Let us consider a crack, the apposing surfaces of which
are bridged by polymer chains, that propagates with a
steady-state velocity V. As each of the polymer chains is
stretched with a force F, the activation energy of dis-
sociation is reduced by Fλ for any of the bonds in the chain,
λ being a characteristic activation length. The stretched
polymer chains ahead of the tip of the steadily growing
crack fail according to the rate law8

where Σb is the number of load bearing polymer chains
per unit area, k is the Boltzmann constant, and T is the
absolute temperature. n is the number of monomer units
of a polymer chain between cross-links for cohesive failure
as any of the bonds can fail. For interfacial fracture, n is
equal to unity as the failure is restricted to only one bond
at the interface. The relaxation time of bond dissociation
τ- is

where Ea is the activation energy of bond dissociation and
h is Planck’s constant. According to (1), the number of
load-bearing chains per unit area decreases extremely
rapidly as the force increases. The region where the chains
are stretched and subsequently broken is defined as the
cohesive zone. Inside the cohesive zone, the crack separates
by an amount δ, which is equal to the stretched length of
a polymer chain bridging the crack faces (Figure 1).

The force acting on a chain is assumed to be directly
proportional to the opening displacement of the crack, δ,
which is a function of the horizontal distance x from the
moving crack tip

By considering that the spring constant ks to be inde-
pendent of δ, the net normal traction σ resisting the crack
opening is given by the following expression

Equation 4 provides an approximate model for the cohesive
zone. Since Σb decays rapidly away from the tip of the
crack, the crack can be modeled as semi-infinite, which
is loaded by a remote stress field of the form

KA is the applied stress intensity factor that is related to
the applied energy release rate GA by

Here, E* ) E/(1 - ν2); E and ν being Young’s modulus and
Poisson’s ratio of the elastomer, respectively. For nearly
impressible elastomers, ν ≈ 1/2 so that E* ≈ 4E/3. The
above formalism is also applicable to a crack growing at
the interface of an elastomer and a rigid substrate,
provided that the elastomer is incompressible. In that
case, E* in (6) should be replaced by 2E* since the substrate
has no strain energy.

In this theory, the interface has no unique strength
other than that provided kinetically by the bridging chains.
As the failure of the interface is defined by Σb f 0, the
cohesive zone is formally infinitely long (although its
effective length is actually very small) and occupies the
entire crack face.

Several implicit assumptions in the above model are as
follows:

1. The spring constant ks is constant, i.e., independent
of the extension of the polymer chain.

2. The crack tip is well-defined, that is, the polymer
chains ahead of the moving crack tip can never break.

3. The crack faces open into an infinite planar wedge
with an internal angle of 2 tan-1(R/2), which is assumed
to be a constant (see Figure 2). The problem of determining
the deformation and stress distribution on the crack face
is bypassed by this geometric assumption.8

One consequence of this assumption is that R is left as
an undetermined constant. Specifically, the work done by
the restraining traction per unit crack extension is

It should be noted that (7) is the energy release rate for
crack growth only if the normal stress is bounded there.
If the normal stress is unbounded at the tip, then there
can be an additional contribution to the energy release
rate. For an interfacial crack, this additional energy is
the same as the work (Wad) needed to create two new
surfaces, which for a cohesive crack is twice the surface
energy (γs) of the material. Typically, the energy release
rate for crack growth given by (7) is much larger than Wad.
The difficulty of evaluating (7) is that Σb is not a function
of δ but a function of position. Specifically, (1), combined
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Figure 1. Crack with cohesive zone. The springs bridging the
crack faces have a constant stiffnessks. The stretch of the springs
is denoted by δ(x), where x is the distance from the crack tip.
L is the cohesive zone length.
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Figure 2. The crack opens up to a wedge with an internal
angle 2 tan-1(R/2).
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with (3), can be written as

where the steady-state crack growth condition, D/Dt )
Vd/dx is used. Since δ is an increasing function of x, one
can change the variable x to δ, resulting in

The chain density can be obtained by integrating (9)
provided that R ≡ dδ/dx can be determined. However,
determining the crack opening requires the solution of all
field equations, not just energy balance. By assuming that
R is a constant,8 (9) was integrated by Chaudhury et al.7,8

without considering the spatial variation of δ.
On the basis of the above assumptions, Chaudhury et

al.7,8 showed that when the dimensionless parameter

the energy release rate for crack growth, G, is given
approximately by

The condition â , 1 corresponds to high crack speed or
long relaxation time. Note that the unknown parameter
R appears in the energy release rate expression. Explicit
expression for the energy release rate was not given in
refs 7 and 8 for â . 1, which corresponds to low crack
speed or short relaxation time. In Appendix 2, we show
that G in this limit is given by

The kinetic expression for the energy release rate as
provided by Chaudhury et al.7,8 is an important step

forward to estimating the interfacial fracture energies of
rubbery solids. However, their treatments are incomplete
and have certain inconsistencies in the strict sense of
fracture mechanics. In this paper, we derive exact equa-
tions that govern the deformation and stress distributions
on the crack faces. This formulation allows us to determine
the relationship between crack growth rate and energy
release rate, as well as the effective size of the cohesive
zone and the crack-opening displacement, which were not
considered in the previous treatment.7,8 To make it simple,
we focus mainly on the interfacial aspects of energy
dissipation. The complete problem of viscoelastic fracture
involving bulk and interfacial dissipation is considerably
more complex, but they are the subjects of future research.

The plan of this paper is as follows: In section 2 we
examine the assumptions of refs 7 and 8 with greater
detail. We show that some of their assumptions are correct
provided that certain modifications are made. On the basis
of these modifications, we reformulate the problem for
the special case of rate independent crack growth in section
3. This case is studied because it leads to the important
result of Lake and Thomas by providing, at the same time,
deeper insights into the rate dependent problem. In section
4, asymptotic results for the rate dependent cases are
derived by modeling the chains as linear springs and,
finally, in section 5, a cohesive zone model with nonlinear
springs is introduced in order to remove some of the
discrepancies in the linear spring model. Discussion and
summary about these models are given in section 6.

Since four different models are studied in this work
(rate independent, Chaudhury et al.7,8 rate dependent
linear spring model, and rate dependent nonlinear spring
model), a table summarizing the key results is presented
in Table 1. The definitions of the key symbols can be found
in Appendix 1.

2. Examination of Assumptions

Assumption 1: ks ) Constant. Atomic force micros-
copy (AFM) has shown that the stiffness of polymer chains
in extension increases with deformation.8,15-18 AFM data
can be fitted well using the persistence chain model19

Table 1. Energy Release Rate for Crack Growth Calculated Using Different Models

energy release rate for crack growth G

model
long relaxation time
or fast crack growth

short relaxation time
or slow crack growth

rate independent
(Lake and Thomas11)

ΣokmaxEa
2

2(kmaxλ)2
+ Wad

Chaudhury et al.7,8 Σoks(kT)2

2(ksλ)2 (ln nkT
RVτ-ksλ)

2
+ Wad

Σoks(RVτ-)2

n2
+ Wad

rate dependent with
linear spring model

Σoks(kT)2

2(ksλ)2 (ln nπE*
4Σoksτ-V)2

+ Wad
Wad(1 +

16Σoksτ-V
nπE* )

rate dependent with
nonlinear spring modela Σow(0.9Lc) +

ΣokmaxLc
2(∆T - 0.9)2

2
+

17.1ΣokoLc
2(∆T - 0.9) + Wad∆T )

0.9 -
ko

kmax
(17.1 + 2A

3λ
ln

nπE*Lc
2

32Gτ-V)
Wad(1 +

16Σokoτ-V
nπE* )

a Note that in the limit of long relaxation time or fast crack growth, the formula for G based on the nonlinear spring model is implicit,
that is, G has to be solved numerically.

DΣb

Dt
) V

dΣb

dx
) -

nΣb

τ -
exp(ksλ

kT
δ) (8)

V
dΣb

dδ
dδ
dx

) -
nΣb

τ-
exp(ksλ

kT
δ) (9)

â ) nkT
RVτ-ksλ

, 1 (10)

G ≈ Σoks(kT)2

2(ksλ)2
(ln â)2 (11)

G ≈ Σoks(kT)2

(ksλ)2â2
+ Wad )

Σoks(RVτ-)2

n2
+ Wad (12)

F ) kT
A [14(1 - δ

Lc
)-2

- 1
4

+ δ
Lc] (13)
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where Lc is the contour length of the chain and A is the
persistence length, Lc ) nA. For small chain extensions

Thus, the spring constant for small deformation is

The work needed to deform the chain from 0 to δ is

Equation 16 shows that the work to break a chain is
infinite unless a cutoff displacement is introduced. This
is not surprising since the persistence chain model breaks
down when δ/Lc > 0.9 at T ≈ 300 K. At room temperature,
the energy stored in the chain at this point (i.e., δ/Lc ≈
0.9) is very small. For example, in experiments,7 the
persistence length of poly(dimethylsiloxane) (PDMS) is
about 0.3 nm. Taking n ) 150, i.e., Lc ) 45 nm, and T )
300 K, we find ko ≈ 5 × 10-4 N/m and w ≈ 4 × 10-18 J at
δ/Lc ) 0.9. In contrast, the energy just before chain failure
occurs is roughly nU ≈ 10-16 J, where U ≈ 400 kJ/mol is
the energy to break a carbon-carbon bond. This is about
2 orders of magnitude greater than w. The energy needed
to fail a unit area of surface is roughly ΣonU, where Σo ≈
1018/m2 is the initial number of load-bearing chains per
unit area. Therefore, the entropic contribution to the
fracture energy is insignificant in comparison with the
enthalpic contribution. In light of the fact that the exact
functional form of the force versus displacement relation
is not known in the entire range of δ, we define an average
stiffness by

This average stiffness is consistent with the approach of
Chaudhury et al.7,8 For a PDMS chain with 150 units,
ks ) 0.1 N/m, which is about 3 orders of magnitudes greater
than ko. Thus, the constant spring stiffness assumption
will underestimate the stretch of the chains inside the
cohesive zone. On the other hand, G will be off by 3 orders
of magnitude if the lower stiffness is used. Finally, we
note that ks is inversely proportional to n, thus decreasing
the degree of polymerization of the chain will increase the
chain stiffness.

In Chaudhury et al.,7,8 the spring constant and the
relaxation time of bond dissociation are treated as fitting
parameters to interpret data. Specifically, ks and τ- are
determined by fitting (11) with R ) 1 on two sets of
experiments on model systems. The first involves covalent
bonding of a PDMS to glass via a coupling agent. The
second case involves the hydrogen bonding interaction
between plasma-oxidized PDMS and thin films of PDMS
grafted onto a silicone wafer. According to Chaudhury et
al.,7,8 τ- ) 1013 s provides a good fit. Re-examining their

data in Figure 8,8 we found that ks ) 0.12 N/m and
τ- ) 3 × 1012 s provide a good fit to the data. Note that
ks ) 0.12 N/m is consistent with that determined by (17).

Finally, the critical extension ratio where the persis-
tence chain model breaks down is a function of absolute
temperature. The critical stretch should vanish as the
temperature approaches absolute zero. In this regime,
entropic effects can be neglected and the chain stiffness
can be taken as a constant, which we will denote by kmax.
Note kmax > ks > ko.

Assumption 2: Definition of Crack Tip. Since the
exponential function is always positive, (1) implies that
chains will eventually break, no matter what the stress
level is. In Chaudhury et al.,7,8 the crack is modeled as
semi-infinite, with its tip at the origin, i.e., δ(x)0) ) 0.
This assumption leads to the following paradox: Since
the normal stress directly ahead of the crack tip cannot
be identically zero, chains outside the cohesive zone can
be stretched and hence must break according to (1).
Therefore, δ > 0 for all x < 0, which contradicts the
assumption that the crack tip is located at x ) 0. In other
words, unless there is a critical force below which no
polymer chains can break, the crack tip cannot be properly
defined.

One way of resolving this paradox is to note that the
creation of new surfaces occurs against the attractive van
der Waals forces. There is a maximum stress20 associated
with these forces, below which the surfaces cannot
separate so that chain bridging cannot occur. Since the
effect of these dispersive forces is not taken into account
by the cohesive zone model, there exists a very small region
about the crack tip where (1-4) fail. This means that the
normal stress σ as the crack tip is approached from
x < 0 will have a square root singularity of the form

where KL is the local stress intensity factor. Crack growth
occurs when the local energy release rate equals the work
of adhesion, Wad, i.e.

It is possible to eliminate this singularity by including
van der Waals interactions into the cohesive law, as will
be shown below for the rate independent limit.

Assumption 3: Constant dδ/dx ) r. The assumption
dδ/dx ) R violates a well-known result of Barenblatt,21

who showed that the crack profile behind the crack tip
must have the following forms (see Figure 3)

where κ ) (16/3πE*)∫0
∞(dσ/dx)(dx/x1/2). For case I, the

normal stress is discontinuous at the crack tip and has a
singularity of the form given by (18). For case II, the normal

(15) Senden, T. J.; di Meglio, J. M.; Auroy, P. Eur. Phys. J. B 1998,
3, 211.

(16) Reif, M.; Oesterhelt, F.; Heymann, B.; Gaub, H. E. Science 1997,
275, 1295.

(17) Ortiz, C.; Hadziioannou, G. Macromolecules 1999, 32, 780.
(18) Bemis, J. E.; Akhremitchev, B. B.; Walker, G. C. Langmuir 1999,

15, 2799.
(19) Marko, J. F.; Siggia, E. D. Macromolecules 1995, 28, 8759.

(20) Israelachvili, J. Intermolecular and Surface Forces, 2nd ed.;
Academic Press: San Diego, CA, 1991.

(21) Barenblatt, G. I. In Advances in Applied Mechanics; Academic
Press: New York, 1962; Vol. VII, pp 55-129.

F ≈ 3kTδ
2ALc

, δ/Lc , 1 (14)

ko ) 3kT/2ALc (15)

w )
koδ

2

2 [23 + 1
3( δ

Lc
)-2(1 - δ

Lc
)-1

- 1
3( δ

Lc
)-1

- 1
3( δ

Lc
) - 2]
(16)

ks ≡ 2nU/Lc
2 ≈ 2U/nA2 (17)

σ )
KL

(-2πx)1/2
, x f 0- (18)

KL
2/E* ) Wad (19)

case I:

δ ) 8KLx1/2/(2π)1/2E* x f 0+ (20)

case II:

δ ) κx3/2 x f 0+ (21)
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stress is bounded and continuous at the crack tip. Case
II is possible only for cohesive zone models that allow a
positive cohesive stress at the crack tip. It has been shown22

that a zero cohesive stress at the crack tip will lead to
material interpenetration behind the crack tip. This is
the case for cohesive zone models of the form σ ) Σbksδ
since δ ) 0 at the crack tip. Later we will show that it is
possible to modify the cohesive zone model to obtain a
continuous stress distribution by taking into account van
der Waals or dispersive interactions.

3. Rate Independent Limit: Model of Lake and
Thomas

It is instructive to consider the rate independent limit
of (1), which reduces to the Lake and Thomas (LT) model.11

A simple way to achieve this limit is to consider the regime
of very low temperature. According to (1) and (2), the bond
breaking rate at zero temperature is zero unless -Ea )
Fλ. Thus, one can define a “chain breaking force” as

The corresponding critical extenstion δmax is

where kmax is the chain stiffness at very low temperature.
In this case, entropic effects can be neglected entirely.
The cohesive zone has finite length L since all chains are
broken at δ ) δmax ≈ Lc. Since no chains are broken inside
the cohesive zone, where δ < δmax, Σb becomes the areal
density (Σo) of the load-bearing chains at zero temperature.
The energetics in this case is simple; since Σo is a constant,
eq 7 can be integrated. The work done by the cohesive
stress per unit crack extension is

An interesting result not pointed out by Chaudhury et
al.7,8 is that (11) implies (24) for kT/Ea , 1; furthermore,
this result is independent of the undetermined constant
R. To show this, note that kT/Ea , 1 implies that

Substitution of (25) in (11) and setting kT/Ea f 0 imply

Note that G given by (26) is consistent with the LT theory
provided that ks defined by (17) is close to kmax. In other
words, ks should not be treated as a fitting parameter in
order to be consistent with the LT theory.

As mentioned earlier, the total energy release rate is
given by

since the stress has a square root singularity governed by
(18) at the crack tip. The additional energy release rate
KL

2/E* can be identified with the work of adhesion, Wad,
so that the total energy release rate is the sum of the
work of adhesion and the energy required to stretch and
break the polymer chains. The LT theory suggested
that kmaxδmax

2/2 ≈ nU, which is significantly larger than
Wad/Σo.

In Chaudhury et al.,7,8 neither the crack profile nor the
cohesive zone length is determined. To determine these
quantities, it is necessary to couple the deformation of the
cohesive zone to the deformation of the elastic material
outside. The problem is essentially that of a crack bridged
by springs and has been investigated elsewhere.23,24

Detailed formulation and results can be found in Appendix
3. The cohesive zone length L is found to be well
approximated by

Substitution of (27) into (28) gives

Thus, the length of the cohesive zone in the rate
independent limit is directly proportional to the elastic
modulus.

As discussed above, the undesirable feature of the above
model, that the crack tip stress is unbounded, can be
removed by including dispersive interaction in the cohesive
zone model. Thus, the cohesive zone model σ ) Σokmaxδ
can be replaced by

(22) Fager, L. O.; Bassani, J. L.; Hui, C.-Y.; Xu, D.-B. Int. J. Fract.
1991, 52, 119.

(23) Rose, J. Mech. Phys. Solids 1987, 35, 383.
(24) Budiansky, B.; Amazigo, J. C.; Evans, A. G. J. Mech. Phys. Solids

1988, 36, 167.

Figure 3. Two possible crack opening profiles. The top profile
implies that there is energy flow to the crack tip, whereas there
is no energy flow to the crack tip for the bottom profile.

Fmax ) Ea/λ (22)

δmax ) Fmax/kmax (23)

∫o

δmax Σokmaxδ dδ )
Σokmaxδmax

2

2
(24)

ln â ) ln[ n(kT)2

RVhksλ
exp(-

Ea

kT)] ≈ -
Ea

kT(1 - 2kT
Ea

ln kT
Ea

)
as kT

Ea
f 0 (25)

G f
Σoks(kT)2

2(ksλ)2 [Ea

kT(1 - 2kT
Ea

ln kT
Ea

)]2

)

ΣoksEa
2

2(ksλ)2
)

Σoksδmax
2

2
(26)

G )
KL

2

E*
+

Σokmaxδmax
2

2
(27)

L ≈ E*
4πΣ 0kmax

G
Wad

(28)

L ≈ E*
4πΣ0kmax

(1 +
Σokmaxδmax

2

2Wad
) ≈ E*δmax

2

8πWad
(29)

σ ) Σokmaxδ + σvdw (30)
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where σvdw ) σc exp(-δ/δc) is the additional traction due
to dispersive force. The material constant σc is the
maximum stress that can be sustained by the interface,
and δc is a characteristic decay distance. This model
ensures the stress at the crack tip is bounded and positive
so that material interpenetration cannot occur there. The
energy release rate for fracture in this case is

where we have assumed that δmax . δc so that the region
where the van der Waals forces act is small compared
with the region of chain bridging. Comparing (31) with
(27), we note that the energy release rates of both cases
are identical provided that σcδc ) Wad. It should be noted
that the choice of σvdw ) σc exp(-δ/δc) is selected for
mathematical convenience since it is well-known that the
dispersion forces between van der Waals solids decay much
slower than what an exponential function represents.
However, it has been well-known that the solutions of
fracture problems are insensitive to the form of the
interaction potentials provided that the maximum stress
and the work of adhesion are chosen to be approximately
the same for these potentials.

The crack opening profile and the cohesive zone length
associated with this modified cohesive zone model can be
obtained by solving (A7) and (A8) in Appendix 3 with σ
given by (30). Since the stresses are bounded, the condition
KL ) 0 has to be imposed in (A8) for this modified cohesive
zone model. Our numerical results show that the cohesive
zone lengths for both models are practically the same as
long as KL/KA , 1 in the problem without dispersive
interactions and δmax . δc. Similarly, the crack opening
profiles for both models are identical except near the crack
tip. This is to be expected, since the crack opening
displacement in the absence of singularity is given by (21)
instead of (20).

4. Formulation of the Rate Dependent Problem
in an Elastic Material

The formulation of the rate dependent problem is
essentially the same as that of the rate independent
problem that is given in Appendix 3. In the rate dependent
case, there is no definite δ above which all chains break;
that is, there is always the possibility that some chains
remain intact. Therefore, the cohesive zone length in the
rate dependent case is infinite. In addition, since the
density of chains Σb in the rate dependent case depends
on the deformation, the cohesive stress σ ) Σbksδ depends
not only on δ but also onΣb. With these modifications, the
governing equations are

where KL ) (E*Wad)1/2. The density of load-bearing chains
is determined using (8), i.e.

To expedite the analysis, we introduce the following
normalized variables:

Distances from the crack tip are measured in units of
πE*/4Σoks, which is the stretch of a chain subjected to a
force πE*/4Σo. The opening displacement is normalized
byKA/(E*Σoks/2)1/2, which is the opening of a traction free
crack at a distance πE*/16Σoks from the crack tip. Σ̂b is the
normalized chain density and is less than or equal to 1.
With this normalization, (32-34) become

where b, c, and f are dimensionless parameters defined
by

The dimensionless parameter b-1 can be interpreted as
the normalized crack speed and f -2 is the normalized
energy release rate for crack growth. For a given material,
the dimensionless constant ω is fixed, whereas c is
proportional to the normalized energy release rate f -1.
Equations 36-38 imply that for a given material, the
normalized crack speed is completely determined by the
normalized energy release rate. Mathematically, we have

where h is a dimensionless function to be determined by
the solution of (36-38). Integrating (38) and using the
boundary condition Σ̂b(0) ) Σb(0)/Σo ) 1 gives

dΣb

dx
) -

nΣb

τ-V
exp(ksλ

kT
δ) (34)

ê ≡ 4Σoks

πE*
x′

η ≡ 4Σoks

πE*
x

δ̂ ≡ (E*Σoks/2)1/2δ
KA

Σ̂b ≡ Σb/Σo (35)

f ) 1 - ∫0

∞ Σ̂b(ê) δ̂(ê) dê

ê1/2
(36)

δ̂(η) ) 2η1/2 - ∫0

∞
Σ̂b(ê) δ̂(ê) ln |η1/2 + ê1/2

η1/2 - ê1/2| dê (37)

dΣ̂b

dη
) -bΣ̂b exp(cδ̂) (38)

b ≡ nπE*
4Σoksτ-V

c ≡ ω/f

ω ≡ ksλ(2Wad/Σoks)
1/2

kT

f ≡ (Wad/G)1/2 (39)

f -2 ) G/Wad ) h(b,ω) (40)

Σ̂b(ê) ) exp[-b ∫0

ê
exp[cδ̂(s)] ds] (41)

G ) ∫0

δmax (Σokmaxδ + σvdw) dδ )

Σokmaxδmax
2

2
+ σcδc (31)

KL ) KA - (2π)1/2
ks ∫0

∞ Σb(x) δ(x) dx

x1/2
(32)

δ(x) )
8KA

(2π)1/2E*
x1/2 -

4ks

πE* ∫0

∞
Σbδ(x′) ln |x1/2 + x′1/2

x1/2 - x′1/2| dx′ (33)
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Substitution of (41) into (37) results in

The normalized crack opening profile is determined by
solving (42) subjected to the constraint (36).

It is instructive to estimate the order of magnitudes of
the parameters b and c as well as the length πE*/4Σoks
used to scale the distance from the crack tip. At room
temperature (T ) 300 K), ks ) 0.1 N/m. Following
Chaudhury et al.,7,8 we assume n ) 150, λ ) 10-10 m,
Σo ) 2.5 × 1018 m-2, E* ) 1 MPa, 10-6 s e τ- e 1013 s, and
10-10 m/s e V e 1 m/s, we find E*/Σoks ≈ 10-11 m. Thus
η ) 1 corresponds to 0.1 Å from the crack tip. Also

A lower bound for b at room temperature is obtained by
substituting the longest relaxation time τ- ) 1013 s and
the highest crack speed V ) 1 m/s in (43). This lower
bound is found to be 10-22. An upper bound for b is obtained
by choosing the shortest relaxation time τ- ) 10-6 s and
the slowest crack rate V ) 10-10 m/s; in this case, b ≈ 107.
Thus, 10-22 e b e 107 and c ≈ 10G1/2. Since1 < G < 100
J/m2, 1 < c < 100.

As experiments7,8 are carried out in the regime where
b e10-10, numerically solving the nonlinear integral
eq 42 is practically impossible. In the following, we present
asymptotic solutions in this regime. This asymptotic
solution is based on the energy conservation integral of
Rice,25 which states that

Thus, G can be evaluated if Σ̂b is known. In general, Σ̂b can
only be determined by solving the integral eq 42. However,
for b , 1, this difficulty can be avoided by noting that (38)
can be rewritten as d ln Σ̂b/dη ) -b exp(cδ̂). Since the
logarithmic function varies very slowly, practically all the
chains are broken when b exp(cδ̂) > 1. Using the definition
of c and δ̂, we note

where C ) (ksλLc/kT) and ∆ ) δ/Lc. At room temperature,
λLc/kT ≈ 103 so that C ≈ 103ks.

Figure 4 plots b exp(C∆) versus the stretch ratio
∆ ) δ/Lc for several values of b with C ) 102. Notice that
for small b, the transition from d ln Σ̂b/dη , 1 to
d ln Σ̂b/dη . 1 is extremely sharp. This means that a good
approximation is to assume

where ∆T is a normalized critical opening displacement
determined by the condition b exp(C∆) ) 1, i.e.

Substituting (46) in (44), a good approximation to the
energy release rate is

Equation 48 is similar to the expression derived by
Chaudhury et al.7,8 (see eq 11), i.e.

However, the new expression (48) does not contain the
undetermined parameter R as in (49). Indeed, the two
energy release rate expressions are identical if kT/Rλ in
(49) is replaced by πE*/4Σo.

There is, however, an inconsistency associated with the
assumption of constant spring stiffness. The ∆T values
corresponding to different values of the normalized velocity
b-1 for ks ) 0.1 N/m are shown in Figure 5. We note that,
even for the smallest b ) 10-22, all the chains would have
been broken by the time ∆ ) δ/Lc ≈ 0.5. In reality, since
∆T < 0.9, the load-bearing chains are not close to being
fully stretched, therefore, the actual energy stored in the
chains should be given by Σ0w instead of (48), where w is
defined as (16). In other words, both the expressions (48)
and (11) overestimate the energy release rate! Of course,
one can choose a smaller ks (e.g., ks < 0.01 N/m) so that
C is smaller. This gives ∆T > 0.9; however, the energy
release rate is underestimated since ks is smaller than
that given by (17).

The fact that the chain density drops abruptly from Σo
to 0 for b , 1 implies that there is a one-to-one corres-
pondence between the rate independent LT solution and
the present one. Indeed, the two problems are identical
as long as the cohesive zone length in the LT problem is
considered to be a function of the crack speed. Indeed,
(48) implies that(25) Rice, J. R. Appl. Mech. Trans. ASME 1968, 90, 379.

δ̂(η) ) [2η1/2 -

∫0

∞
exp[-b ∫0

ê
exp[cδ̂(s)] ds]δ̂(ê) ln |η1/2 + ê1/2

η1/2 - ê1/2| dê]
(42)

b ≈ 10-9

τ-V
(43)

G ) Σoks ∫0

∞
Σ̂bδ dδ + Wad (44)

cδ̂ )
ksλLc

kT
(δ/Lc) ) C∆ (45)

Σ̂b ) 1 ∆ < ∆T

Σ̂b ) 0 ∆ > ∆T (46)

Figure 4. Dependence of rate of chain breakage on the stretch
ratio for different b values. b-1 ) 4Σoksτ-V/nπE* is the
normalized velocity of crack propagation. C ) ksλLc/kT, ∆ )
δ/Lc is the normalized crack opening displacement. ∆T (see (47))
corresponding to different b values is indicated.

∆T )
ln(1/b)

C
(47)

G ) ΣoksLc
2 ∫0

∆T ∆d∆ + Wad )

Σoks(kT)2

2(ksλ)2 (ln nπE*
4Σoksτ-V)2

+ Wad (48)

G )
Σoks(kT)2

2(ksλ)2 (ln nkT
RVτ-ksλ)2

(49)
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The length of the cohesive zone can be estimated using
(28), i.e.

The regime which corresponds to very slow crack growth
rate or short relaxation time is characterized by the
condition b . 1. For large normalized crack velocity, b,
the relation between crack growth rate and applied stress
intensity factor or energy release rate can be determined
using (36). Using (41), (36) becomes

Watson’s Lemma26 states that the asymptotic behavior of
the integral in (52) for b . 1 is dictated by the behavior
of δ̂(ê) as ê f 0. The behavior δ̂(ê) as ê f 0 is given by (20).
Applying Watson’s Lemma, (52) becomes

Substitute f ) (Wad/G)1/2 in (53) and noting that b . 1, we
have

Since b ∝ V -1, G is a linear function of the crack speed.
As the crack growth rate goes to zero, the energy release
rate approaches the intrinsic work of adhesion. It is
instructive to compare our result with the prediction of
eq 12. Equation 12 predicts that G should increase with
the square of the crack growth rate, whereas (54) implies
that G should increase linearly with the velocity. This
discrepancy is due to the fact that, in the short relaxation
time or slow crack growth regime, chains are broken

everywhere except those closed to the crack tip. Thus, the
solution in this regime is very sensitive to the crack tip
profile. As mentioned in the Introduction, the crack profile
(i.e., a plane wedge) assumed by Chaudhury et al.7,8 is
incorrect. This oversight leads to a different prediction of
G versus V. However, it should be noted that it is very
difficult to perform experiments that satisfy the condition
(G - Wad)/Wad , 1.

The length of the cohesive zone L can be estimated by
noting that the strong decay of the exponential function
implies that most of the contribution to Σ̂b in (41) occurs
in the region ê e 1/b or x e πE*/4bΣoks. Indeed, a good
approximation for Σ̂b in the limit of b . 1 is exp(-bê) for
sufficiently small ê. Therefore, if we assume that the
interface fails when Σ̂b ) 0.01, the approximate length of
the effective cohesive zone becomes

for very slow crack speed or small relaxation time.

5. Nonlinear Spring Model
The inconsistency appearing in the linear spring model

shows a need for the usage of a nonlinear spring model,
which describes the stretching of the polymer chain from
its initial state to final failure. Since there is no closed
form analytic model for the spring stiffness, we assume
that the spring force is a function only of the stretch ∆ ≡
δ/Lc and the absolute temperature

To be specific, we assume the following functional form
for the spring force: For ∆ e0.9, F is given by the
persistence chain model (13), and for ∆ g0.9, F is a linear
function of ∆, i.e.

where kmax is the maximum spring stiffness that can be
several orders of magnitude higher than k0. For example,
if kmax ) 1 N/m, then k̂max ≡ kmax/k0 ) 2000. Note also that
we implicitly assume that T ≈ 300 K since the critical
stretch ratio where the persistence chain model breaks
down is 0.9.

The governing equations in this case are

For nonlinear stiffness, Lc is an additional length scale.
Let us introduce the normalized variables

(26) Carrier, G. F.; Krook, M.; Pearson, C. E. Functions of a Complex
Variable, Theory and Technique; McGraw-Hill: New York, 1966.

Figure 5. Normalized critical opening displacement ∆T vs
normalized velocity b. Even for the smallest b ) 10-22, all the
chains would have been broken when ∆ ) δ/Lc ≈ 0.5.

G/Wad )
Σoks(kT)2

2(ksλ)2Wad
(ln nπE*

4Σoksτ-V)2
+

1 ≈ Σoks(kT)2

2(ksλ)2Wad
(ln nπE*

4Σoksτ-V)2
(50)

L ≈ E*(kT)2

8π(ksλ)2Wad
(ln nπE*

4Σoksτ-V)2
(51)

f ) 1 - ∫0

∞
exp[-b ∫0

ê
exp[cδ̂(s)] ds]

δ̂(ê)

ê1/2
dê (52)

f ≈ 1 - 2f ∫0

∞
exp(-bê) dê ) 1 - 2f

b
(53)

G ≈ Wad(1 + 4b-1) (54)

L ) 2πE*
4Σoksb

ln(10) ≈ 3.6 E*
Σoksb

(55)

F ) F̃(∆,T) (56)

F ) k0Lc(1 - ∆) - 2[1 - 3
2

∆ + 2
3

∆2]∆
∆ e 0.9

F ) kmaxLc(∆ - 0.9) + F(∆)0.9)
(57)

∆ g 0.9

KL ) KA - (2π)1/2 ∫0

∞ Σb(x) F(x) dx

x1/2
(58)

δ(x) )
8KA

(2π)1/2E*
x1/2 -

4
πE* ∫0

∞
Σb(x′) F(x′) ln |x1/2 + x′1/2

x1/2 - x′1/2| dx′ (59)

dΣb

dx
) -

nΣb

τ-V
exp(Fλ

kT) (60)
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where ê and η are normalized distances from the crack
tip, F̂ is the normalized force on a chain, and F is a
normalized velocity. The dimensionless parameter γ is a
measure of the effect of the spring force on the local stress
intensity factor. This normalization allows us to reduce
eqs 58-60 to

where f ) (Wad/G)1/2. Theoretically, for a given f, one can
determine ∆ and the normalized crack velocity F by solving
(62)-(64).

Let us estimate the order of magnitude of the normalized
crack velocity F. Using τ- ) 1013 s, Lc ) 45 nm, and n )
150, we found F ) (3 × 10-21/GV). Note that kmax ) 1 N/m
is an upper bound for the spring stiffness for a chain of
length n ) 150.8 Since 1 J/m2 < G < 102 J/m2, and
experiments which involve covalent interactions are
carried out with velocities between 10-7 and 10-10 m/s,
10-16 < F < 10-11. Furthermore, 10-3 e γ e 1.

Since the experiments on covalent interactions are
carried out in the regime of F , 1, we focus our analysis
in this regime. Similar to our previous analysis, Σ̂b(ê) ≈
1 as long as F exp F̂ , 1. According to (57) and (15)

where q ) 3λ/2A. Taking λ ≈ 10-10 m and A ≈ 3 × 10-10

m, q is found to be about 1/2. The strong decay of the
exponential function and the rapid increase of the stiffness
near ∆ ≈ 1 imply that the transition from Σ̂b ) 1 to
Σ̂b(ê) ) 0 is very sharp. This transition occurs at ∆ )
∆T defined by

Thus, Σ̂b ) 1 for ∆ < ∆T and Σ̂b ) 0 for ∆ > ∆T. The sharpness
of this transition is illustrated by considering the case of
k̂max ) 2000, which is an upper bound for k̂max. At ∆ ) 0.9,

F̂ ) 17.1q ) 8.6, exp F̂ ) 5.4 × 103. This means that for
F < 2 × 10-4, it is possible for ∆T to exceed 0.9, a necessary
condition for increasing the interfacial energy release rate.
The increase in energy release rate is very sensitive on
k̂max. This is because F̂ increases from 17.1q to F̂ )
17.1q + 0.1qk̂max in the interval 0.9 e ∆ e 1. For kmax )
1 N/m or k̂max ) 2000, exp F̂ increases from 5.4 × 103 at
∆ ) 0.9 to 1.4 × 1047 at ∆ ) 1! For kmax ) 0.1 N/m or
k̂max ) 200, exp F̂ increases from 5 × 103 to 1.1 × 108. In
the first case (i.e., kmax ) 1 N/m), even for the smallest
F ) 10-16, F exp F̂ ) 1031! Thus practically all chains fail
before ∆ reaches 1. For the second case (i.e., kmax ) 0.1
N/m), most chains are intact until ∆ ) 1.2. It is important
to note that, with the constant stiffness assumption, ∆T
(∼0.5) for the second case is much less than 0.9. In other
words, the energy stored in a chain before it fails is
completely entropic and the energy release rate should be
given by Σ0w (see (16)) instead of (11) or (48). The nonlinear
spring model removes this difficulty.

The energy release rate to propagate a crack at the
speed V is

By contrast, the energy release rate in the rate indepen-
dent limit (i.e., LT model) is

where ∆f ≡ δmax/Lc with δmax defined in (23). Indeed, the
argument above implies that for typical velocities and
material parameters, the energy release rate is much lower
than GLT, which is consistent with the experimental data.8
To see this, let us use the expression of ∆T as in eqs 65
and 66; thus

for ∆T > 0.9. At room temperature, the maximum value
of the right-hand side of (69) is about -2 ln(10-16) ≈ 74.
For k̂max ) 2000, ∆T must be less than 1. This means that
the energy release rate cannot exceed the LT model. Thus,
for all practical purposes, GLT is an upper bound for G.
For sufficiently small F so that ∆T > 0.9

where ∆T is determined by (69). The first term is the stored
entropic energy Σ0w (see (16)). The last term is typically
on the order of 60 mJ for van der Waals solids and can
be neglected in comparison with the rest. For∆T < 0.9,
(70) should be replaced by

Figure 6 plots G1/2 vs log10 V for the case of interfacial
toughness being governed by the covalent bonds. The
experimental data (square symbols), as obtained from
Chaudhury et al.,7,8 are fitted with eqs 48, 49, and 70. The
fit using (48) is obtained using ks ) 0.117 N/m,τ- )
2.1 × 1012 s and λ ) 0.12 nm. The fit using (49) is obtained
using ks ) 0.123 N/m, τ- ) 3 × 1012 s, R ) 1, and λ ) 0.1

ê ) 32G
πE*Lc

2
x′

η ) 32G
πE*Lc

2
x

γ )
ΣokTLc

8Gλ

F )
nπE*Lc

2

32Gτ-V

F̂ ) Fλ/kT

Σ̂b ) Σb/Σ0 (61)

f ) 1 - 2γ ∫0

∞ Σ̂b(ê) F̂(∆(ê)) dê

ê1/2
(62)

∆(η) ) η1/2 - γ ∫0

∞
Σ̂b(ê) F̂(ê) ln |η1/2 + ê1/2

η1/2 - ê1/2| dê

(63)

Σ̂b(η) ) exp(-F ∫0

η
exp(F̂(∆(ê))) dê) (64)

F̂ ) q(1 - ∆)-2[1 - 3
2

∆ + 2
3

∆2]∆
∆ e 0.9

F̂ ) qk̂max(∆ - 0.9) + 17.1q
(65)

∆ g 0.9

F exp F̂ ) 1 (66)

G ≈ ΣokoLc
2

q ∫0

∆T F̂(∆) d∆ + Wad (67)

GLT )
ΣokoLc

2

q ∫0

∆f F̂(∆) d∆ + Wad ) ΣonU + Wad (68)

k̂max(∆T - 0.9) + 17.1 ) -q-1 ln F (69)

G ≈ ΣokoLc
2

q ∫0

0.9
F̂ d∆ +

ΣokmaxLc
2(∆T - 0.9)2

2
+

17.1ΣokoLc
2(∆T - 0.9) + Wad (70)

G ≈ ΣokoLc
2

q ∫0

∆T F̂ d∆ + Wad (71)
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nm, whereas the fit using (70) is obtained using kmax ) 0.1
N/m, τ- ) 3 × 109 s, and q ) 0.56. In contrast to (48) and
(49), many choices of (kmax, λ, τ-) can be found to fit the
data well using (70).

As can be seen from Figure 6, all three equations (48),
(49), and (70) can be used to fit the data well. Physically,
(49) contains an unknown parameter R which cannot be
a constant. Both (48) and (49) underestimate the critical
stretch required to propagate a crack, while (70) removes
the discrepancy. However, (70) is much more complicated
than (48), since ∆T involves G and thus (70) is an implicit
expression of G. The reason the linear model (48) agrees
well with the nonlinear model (70) even though ks and ko
are very different is due to the fact that most of the energy
stored in a chain is accumulated when the chain is close
to being fully stretched. The spring constant in this regime
is much closer to ks. Since in practice it is difficult to
measure the crack opening displacement, (48) can be used
instead of (70) as long as the spring constantks is consistent
with (17). In view of the above analysis, it is a bit surprising
that the energy release rate obtained from (49) does not
vary too much from those obtained from the more exact
analysis. This is somewhat a fortuitous situation arising
from the fact that as R in (49) appears within a logarithmic
expression. The situation is however very different with
short relaxation time or slow crack growth, i.e., when the
fracture energy varies linearly with crack velocity.

Finally, we comment on the regime of short relaxation
time that is characterized by F . 1. Substituting (64) into
(62) gives

As in the previous case, the asymptotic behavior of the
integral in (72) is dictated by the behavior of F̂ as ∆ f 0,
as is given by (20)-(21). The calculations are essentially
the same as before, and the result is still given by (54),
provided that ks in b is replaced by ko. This is not surprising,
since the chains at the tip are barely stretched. Indeed,
the use of ks overestimates the stiffness of these chains
by about 3 orders of magnitude.

6. Discussions and Summary
Our analysis shows that when b . 1 (short relaxation

time or slow crack growth), the energy release rate
increases linearly with crack speed and scales with the
work of adhesion, i.e.

In this regime, the resistance to crack growth is mainly
due to dispersive forces. Equations of the form

have been proposed by Gent and Schultz2 as well as
Andrews and Kinloch1 to interpret interface crack growth
data. Maugis and Barquins4 studied the adhesion between
a rigid indenter and a thick, nearly incompressible
polyurethane elastomer. The relation between G and V
obtained by them has the following form

where Wad ≈ 0.08 J/m2 and V* ) 22 nm/s. The second
terms in both (74) and (75) are usually attributed to
viscoelastic losses, whereas in our case the energy loss is
due to rate dependent chain scission.

For long relaxation time (b , 1), we have shown that
all three expressions (48), (49), and (70) can be used to fit
experimental data. In addition, the spring stiffness and
the activation length used to fit data do not vary much
from one expression to another. However, (49) contains
a parameter R which cannot possibly be a constant. Since
(49) can be written in the form G1/2 ) A ln V + B, R has
no effect on the slope of the resulting line in a log plot. The
value of R, however, affects the intercept which is used to
determine the relaxation time. Our analysis shows that
kT/Rλ in (49) should be replaced by πE*/4Σo. Therefore,
within the limitation of the constant spring stiffness
assumption, (48) should be used instead of (49). It is
demonstrated that both expressions underestimate the
critical stretch required to propagate a crack. Equation
70, which is obtained using a nonlinear theory, does not
suffer from this limitation. At very low temperatures, the
rate dependent theory approaches the LT model (27).

In the regime of long relaxation time, the energy release
rates do not scale with the work of adhesion. Indeed, the
energy release rate is approximately independent of Wad.
It is often thought that relation of the form given by (74)
is universal. Our result provides an exception to this rule.

Finally, we comment on the size of the cohesive zone.
Consider first the rate independent limit where the
cohesive zone length is given by (28). Using ks ) 0.1 N/m,
Σo ) 1018 m-2, E* ) 1 MPa, G ) 102 J/m2, and Wad )
60 mJ/m2, L is found to be 1.3 nm. The size of the cohesive
zone in the rate dependent case, which can be estimated
using (51), is even smaller than 1.3 nm since the corres-
ponding energy release rate is smaller than the rate
independent case. Thus, the characteristic length scale of
theenergydissipationzonesurroundingthecracktip turns
out to be on the order of 1 nm.

That dissipation occurs in such an extremely small
region cannot be attributed entirely to the fact that the
material is elastic. For example, Gent and Lai3 reported
peel data on thin sheets of elastomers which are adhered
together by C-C or S-S interfacial bonds. Even though
these elastomers are viscoelastic, the effective size of the
dissipative zone was estimated to be on the order of
0.1-10 Å3. The size of these dissipative zones was also
computed by Rahul Kumar et al.27 using a finite element
model. In these computation models, local failure of the

(27) Rahul Kumar, P.; Jagota, A.; Bennison, S. J.; Saigal, S.;
Muralidhar, S. Acta Mater. 1999, 47, 4164.

Figure 6. Comparison of three predictions of the energy release
rate with experimental data.
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exp(F̂(∆(ê))) dê)F̂(∆(ê)) dê

ê1/2

(72)
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16Σokoτ-V
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interface is modeled using a rate independent cohesive
zone model. The size of the viscous dissipation zone was
again found to be on the order of 10-11 m for peel velocities
that showed significant increase in fracture toughness.

A possible explanation of this paradox was offered by
a recent work of Hui et al.28 They pointed out that in soft
materials where the modulus is much less than the stress
required to break bonds, the crack blunts before it can
propagate. The blunted zone provides an additional length
scale that is absent in a theory based on small strains.
Within the blunted zone the material is highly stretched
and therefore other dissipative mechanisms can take place
(e.g., cavitation) which cause further increases in the
energy release rate. Clearly such deformation mechanisms
are not considered in our model.

There are obvious limitations to our model. To simplify
the mathematics, small strain theory is used throughout
the analysis. However, it should be noted that the theory
of Johnson, Kendall, and Roberts (JKR), which is also
based on small strains, has been very successful in
quantifying the contact mechanics of soft materials.29

Therefore, although the details of deformation near the
crack tip may not be captured by the small strain theory,
the relationship between the crack growth rate and the
energy release rate is much less affected by the small
strain approximation. As pointed out by Chaudhury et
al.,7,8 the transition state theory of Tobolsky and Eyrings30

was based on the assumption that the transition state
and the ground state are in thermal equilibrium, which
is incorrect. The correct formulation was given by
Kramers31 who showed that bonds at ground energy state
cross the energy barrier by a diffusion process either in
the spatial or in the energy coordinate. In addition, the
assumption of a transition state having a fixed transition
length λ is also flawed. As demonstrated by Kausch13 and
Evans,14 the transition state is modified by the force so
that λ cannot be regarded as a constant. As pointed out
by Chaudhury et al.,7,8 these are the reasons why the
activation energy Ea which corresponds to a relaxation
time of 3×1012 s is about 151 kJ/mol, which is considerably
smaller than the dissociation energy (454 kJ/mol) of a
siloxane bond. Therefore, both the transition length λ and
Ea must be treated as adjustable parameters in our model.
Finally, we have not considered the effect of bulk visco-
elastic deformation, which is a very important source of
energy dissipation in polymeric materials. In general,
there are two relaxation time scales, one is of the interface
and the other is of the bulk. To simplify our analysis, we
chose to study an elastomeric system so that the bulk
dissipation could be avoided. It is possible that the
interfacial and bulk relaxation processes are similar in
some cases, in which WLF transform could work. This
may be the case with some of the results published by
Gent,9,10 where the energy release rate follows the WLF
superposition principle. There are, however, indications
that one relaxation time may not adequately describe some
of the situations32 and that if the interface relaxes too
fast, bulk viscoelastic deformation may not amplify
interfacial fracture energy.8 All these subtleties deserve
careful analysis, which is the subject of our future studies.
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Appendix 1. Symbols

Σb number of load-bearing polymer chains per unit
area

Σo number of load-bearing polymer chains per unit
area at zero temperature

F force on a typical chain
ks average spring constant
ko spring constant for small deformation
kmax average spring constant at low temperature
n number of units of a polymer chain
λ activation length of bonds
A persistence length
Lc contour length of the chain, Lc ) nA
k Boltzmann constant, k ) 1.38 × 10-23 J/K
h Planck’s constant, h ) 6.63 × 10-34 J‚s
T absolute temperature
τ- relaxation time of bond dissociation
Ea activation energy of bond dissociation
E Young’s modulus of the elastomer
ν Poisson’s ratio of the elastomer ≈1/2
L cohesive zone length
δ(x) opening displacement in the cohesive zone as a

function of distance (x) from the crack tip
V steady-state crack velocity
KA applied stress intensity factor
KL local stress intensity factor
G energy release rate required for crack growth
Wad work of adhesion.
w(δ) work needed to stretch a chain from its relaxed

state to δ

Appendix 2

Asymptotic Behavior of the Energy Release Rate
of Chaudhury et al.7,8 When â . 1. Since dδ/dx ) R,
Σb can be obtained by integrating (9), which results in
eq A1, i.e.

where we have imposed the condition Σb ) Σo at δ ) 0. The
energy release rate G is obtained by substituting (A1)
into (7), i.e.

Introduce the new variable u ) exp((ksλ/kT)δ) or δ )
(kT/ksλ) ln u, (A2) becomes

(28) Hui, C.-Y.; Jagota, A.; Bennison, S. J.; Londono, J. D. Proc. R.
Soc. London, Ser. A 2003, 459, 1489.

(29) Johnson, K. L., Kendall, K., Roberts, A. D., Proc. R. Soc. London,
Ser. A 1971, 324, 301.

(30) Tobolsky, A, Powell, R. E., Eyring, H. In Chemistry of Large
Molecules; Burk, R. E., Grummitt, O., Eds.; Interscience Publishers:
New York, 1943.

(31) Kramers, H. A. Physica 1940, VII (4), 284.
(32) Thanawala, S. K.; Chaudhury, M. K. Langmuir 2000, 16, 1256.

Σb ) Σo exp[-â(exp(ksλ
kT

δ) - 1)] (A1)

G ) Σoks ∫0

∞
δ exp[-â(exp(ksλ

kT
δ) - 1)] dδ (A2)

Σoks(kT)2

2(ksλ)2
eâ ∫1

∞
exp(-âu) d(ln u)2 (A3)
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With the change of variable v ) u - 1, (A3) can be rewritten
as

The asymptotic behavior of the integral ∫0
∞[ln(1 + v)]2

exp(-âv) dv for â . 1 can be obtained using Watson’s
Lemma,26 i.e.

Combining (A4) and (A5) yields G ≈ Σoks(kT)2/(ksλ)2â2.

Appendix 3

Crack Profile and Length of Cohesive Zone in the
Limit of Lake and Thomas. The displacement δs due
to the restraining spring traction σ acting on the crack
face is

The total crack opening displacement δ(x) is the sum of
the opening displacement due to the remote applied KA
field (5) and the closing displacement due to the restraining
spring force (A6), i.e.

where L is the cohesive zone length. As shown by
Barenblatt,21 the stress at the crack tip has a square root
singularity given by (18), where

In the rate independent limit, σ ) Σokmaxδ inside the
cohesive zone. Equation A7 becomes

Now we normalize the distance from the crack tip using
the cohesive zone length. The opening displacement is
normalized by 8KAL1/2/(2π)1/2E*, which is essentially the
opening of a traction free crack at a distance L behind the
crack tip. The normalized variables are

Using (A10), (A9) becomes

where ø is the normalized cohesive zone length defined
by

In normalized form, (A8) is

where f ≡ KL/KA ) (Wad/G)1/2. Ideally, the crack opening
profile and the cohesive zone length should be obtained
by numerically solving the linear integral equation (A11)
in conjunction with (A13) and the fracture condition
δ(L) ) δmax. In this case, ø and f are treated as unknowns.
In practice, it is much easier to solve the integral equation
(A11) with a known value of ø which allows f and δhmax )
[(2π)1/2E*δmax/8KAL1/2] to be determined. The dependence
of the normalized cohesive zone length ø on f is shown in
Figure 7. For most elastomers, 10 e f -2 < 104, so that
f , 1. For small f, an asymptotic result due to Rose23

can be used to determine the cohesive zone length. The
result is

G )
Σoks(kT)2â

2(ksλ)2 ∫0

∞
[ln(1 + v)]2 exp(-âv) dv (A4)

∫0

∞
[ln(1 + v)]2 exp(-âv) dv ≈ 2

â3
(A5)

â . 1

δs(x) ) - 4
πE* ∫0

∞
σ(x′) ln |x1/2 + x′1/2

x1/2 - x′1/2| dx′ (A6)

δ(x) )
8KA

2π1/2E*
x1/2 - 4

πE* ∫0

L
σ(x′) ln |x1/2 + x′1/2

x1/2 - x′1/2| dx′

(A7)

KL ) KA - (2π)1/2 ∫0

L σ(x′) dx′
x′1/2

(A8)

δ )
8KAx1/2

(2π)1/2E*
-

4Σokmax

πE* ∫0

L
δ(x′) ln |x1/2 + x′1/2

x1/2 + x′1/2| dx′

(A9)

δh )
(2π)1/2E*δ

8KAL1/2
, X ) x/L (A10)

δh ) X1/2 - ø ∫0

1
δh(X′) ln |X1/2 + X′1/2

X1/2 - X′1/2| dX′ (A11)

Figure 7. Relation between G/Wad and the normalized cohesive
zone length ø. Circles (lower curve) represent numerical
solutions. The upper curve is the approximate solution given
by (A14).

Figure8. Normalized crack opening profiles versus normalized
distance behind crack tip for different øδhmax.

ø )
4ΣokmaxL

πE*
(A12)

f ) 1 - 2ø ∫0

1 δh(X′) dX′
X′1/2

(A13)
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Equation A14, which provides a good approximation for
L, is also plotted in Figure 7. The relative error of our
numerical results and Rose’s approximation is within 10%.
Finally, we note that eqs 27 and A14 imply that

In other words, f, ø, and δhmax are related. This relationship
is verified by our numerical results.

Plots of normalized crack opening displacements øδh
versus distance behind the crack tip are shown in Figure
8. Here, the normalized crack opening øδh is used instead
of δh since

is a crack opening displacement normalized by a dis-
placement that depends only on material parameters.

The results in Figure 8 show that the crack opening
profile is sensitive to øδhmax. As øδhmax increases, the region
where significant chain stretching occurs is concentrated
to the edge of the cohesive zone away from the crack tip.
According to (A16), for fixed δmax and kmax, øδhmax depends
only on (Σo/Wad)1/2. This means that large areal chain
density and small work of adhesion cause the stretching
of chains to be concentrated at the cohesive zone edge.

LA0356607

L ≈ E*
4πΣ0kmax

G
Wad

(A14)

f -2 ) 1 + 4π2(øδhmax)
2 (A15)

øδh ) δ
2π(Σokmax

2Wad
)1/2

(A16)
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