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Adhesion-induced instability has been observed at the interface of a flexible plate and a thin elastic film
bonded to a rigid substrate. The surface of the confined film develops undulations almost instantaneously,
and instability patterns appear in the form of fingers or bubbles at the interface. The characteristic
wavelengths of these instabilities remain independent of all material and geometrical properties of the
system except the thickness of the film. These observations contrast sharply with the Saffman-Taylor-
type phenomenon in which the length scale of the instability patterns depends on the viscous and surface
tension forces in addition to the thickness of the liquid film. The analogy between the phenomenon reported
here and the Rayleigh-Kelvin instability with curved liquid menisci is more pronounced, as, in both cases,
surface force triggers the instability while not determining its wavelength. The instability also throws light
on cavitation phenomena in confined adhesive layers.

Introduction

Hydrodynamic-force-driven nonequilibrium systems
give rise to many different instability patterns ranging
from simple fingerlike1-3 to highly exotic dendritic4-6

structures. The simplest of these various pattern-forming
systems is a Hele-Shaw cell, where a low-viscosity fluid
displaces a high-viscosity one between two parallel plates,
leading to a fingering instability in the moving interface.
This phenomenon is known as the Saffman-Taylor
instability,1 where the characteristic wavelength (λ) of
the fingering pattern is determined by the balance of two
counteracting forces: the negative pressure gradient and
the Laplace pressure. λ increases linearly with the
thickness of the confined space and inversely with the
capillary number as λ ∼ h/xCa. A rather intriguing
result is obtained with two immiscible liquids with a very
high viscosity ratio5 (102-104) or in plug-flow conditions
with two miscible fluids7,8 in a Hele-Shaw cell. Here,
although the negative hydrostatic pressure gradient
triggers the instability, the interfacial tension is too low
to provide any kind of stability to the system. The stability7

in this case is provided by viscous dissipation between the
fingers. As a result, the wavelength of the instability
simply varies linearly with the thickness of the confined
film as λ ) 4.0h, the result being independent of the velocity
and other material properties of the system.

Whereas simple viscous systems are now fairly well
understood, difficulty arises in understanding the phe-
nomena in viscoelastic systems because of their simul-
taneous elastic and viscous characters. A common ap-
proach toward understanding viscoelastic pattern for-

mation has been to introduce a switching criterion, e.g.,
the nondimensional Deborah number9,10 (De). At low
Deborah numbers (De , 1), the hydrodynamic forces
dominate pattern formation, whereas at high Deborah
numbers (De . 1), systems behave as elastic solids.
Although this approach provides an easy crossover from
viscous to viscoelastic systems, an important missing link
in this context has been a systematic study of pattern
formation in purely elastic systems in comparable geom-
etries. For example, Lemire et al.11 reported that the fractal
dimensions of the instability patterns obtained by injecting
a low-viscosity liquid into a viscoelastic medium12,13 remain
unaffected by the interfacial tension; it merely increases
the size of the pattern. It is not readily obvious why the
interfacial tension does not influence the fractal dimen-
sions of patterns in viscoelastic fracture. In another
example, when a pressure-sensitive adhesive is peeled
from a solid substrate, an instability develops at the
contact line, and fingerlike patterns evolve.14,15 Although
these fingers look very similar to those observed in viscous
systems, they are different, because the characteristic
spacing between the viscoelastic fingers remains inde-
pendent of the velocity of peeling, unlike the behavior of
the viscous counterpart. In the absence of sufficient
knowledge about purely elastic system, it has been
argued16 that this instability in viscoelastic adhesives
parallels the Saffman-Taylor behavior1 in viscous sys-
tems. The velocity independence of instability was at-
tributed to the non-Newtonian character of the viscoelastic
liquid. Similar questions arise in the context of cavitation
or bubble formation, which occurs when a rigid indenter
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is detached from a layer of viscoelastic adhesive. Cavitation
in viscoelastic rubber was first observed in the experiments
of Gent et al.17-19 and Kaelble20 and was recently seen in
the experiments of Pond21 and Creton et al.22,23 It has
been argued18,22-25 that cavitation and bubble formation
occur at the interface as a result of the presence of
microscopic and macroscopic air bubbles at surface defects.
Under a tensile stress, negative pressure develops in the
air bubbles, and they expand to form cavities. Questions
arise as to whether there is any characteristic length scale
for the appearance of bubbles and whether the surface
roughness determines that length scale. Because the
wavelength reflects the underlying physics of the phe-
nomenon, it is imperative to carry out a detailed analysis
of the patterns of bubble formation in cavitation experi-
ments. A simple beginning in this case could be to study
the patterns of cavitation in a purely elastic system, in a
geometry similar to that of the classical probe tack
experiment.

Most notable among the surface and interfacial insta-
bilities in a confined elastic film are the Schallamach
waves,26 which are observed in sliding experiments of a
soft rubber indenter on a hard surface and vice versa.
“Waves of detachment” originate at the front of the contact
area and move rapidly to the rear at a speed much higher
than the sliding velocity of the indenter. These waves have
been understood to be elastic instabilities caused by
buckling of the rubber by tangential compressive stresses
present in that area. However, stationary instability waves
in the shape of a “V” were first observed by Lake et al.27

during the peeling of a rubber strip from glass at a low
peel angle. Although Lake et al.27 understood these
instabilities to be elastic in nature, they performed no
systematic study to analyze the effects of different material
and geometrical properties of the system on the morphol-
ogy of the waves and thus on the overall energetics of the
system. Recently, Shull et al.28 reported fingering insta-
bilities in elastic gel subjected to tensile stress and
explained them to be triggered by negative hydrostatic
stress very similar to the Saffman-Taylor instability in
viscous systems.1 Recently, we reported a new kind of
instability that was observed in experiments29 with
confined thin (length parallel to the plane of the film much
greater than the film thickness) films of purely elastic
material. In these experiment, a flexible plate is brought
into contact with a thin elastic film bonded to a rigid
substrate in the geometry of a classical peel experiment.
The two surfaces remain in contact everywhere except
close to the crack tip, where the contact line breaks into
uniformly spaced fingers. The space between the fingers
increases linearly with the thickness of the film (h) as λ
) 4h but remains independent of all other material
properties. The length of the fingers, however, increases
with increasing rigidity of the plates. For highly rigid
plates, the 1-D fingers degenerate into 2-D isotropic

patterns. Mönch et al.30 also reported a similar experiment
with rigid plates that led to isotropic instability patterns
in the contact area, with the result λ ) 3h. A plane strain
model proposed by Mönch and Herminghaus30 as well as
by Shenoy and Sharma29,31 captured the essential physics
of this phenomenon and predicted correctly the relation
λ ) 3h observed in the isotropic situation. The model
attributed the instability phenomenon to the competition
between the distance-dependent adhesion forces between
the two surfaces and the elastic restoring forces in the
film. At a critical separation distance between the two
surfaces, where the gradient of the adhesion force becomes
greater than the ratio of the modulus to the thickness of
the film, instabilities develop on the film surface.

The objective of the current study is to expand our
knowledge on instability pattern formation in purely
elastic systems. To this end, we have performed contact
mechanics experiments similar to the peel experiment in
different geometries and have investigated the morpho-
logical features of the instabilities. We also extend our
discussion to the phenomenon of cavitation or bubble
formation in confined elastic systems.

Experimental Section

Materials. The glass slides (Corning microslides) and cover
slips (Corning cover plates) used for these experiments were
obtained from Fisher Scientific. The glass slides were cleaned in
a Harrick plasma cleaner (model PDC-23G, 100 W) before surface
treatment. The material for film preperation, i.e., vinyl-end-
capped poly(dimethylsiloxane) oligomers of different chain
lengths, platinum catalyst, and the methylhydrogen siloxane
cross-linker, were obtained as gifts from Dow Corning Corp.,
Midland, MI. Two sets of filler gauges of various thicknesses
were required for making the films of controlled thickness; these
were purchased from a local auto-parts shop. The instability
patterns were observed with a Nicon Diaphot inverted microscope
equipped with a CCD camera and a video recorder.

Methods. Preparation of Glass Plates and Glass Disks.
The rigid glass slides (Corning microslides) and the flexible cover
plates (Corning cover plates) used in these experiments were
thoroughly cleaned by immersing them in hot piranha solution
for 30 min, rinsed with deionized water, and blow-dried in pure
nitrogen gas. The glass slides were further cleaned in oxygen
plasma at 2.0 × 10-4 atm for 30 s. One set of these glass slides
was used for cross-linking the polymer onto the slide surface.
The other set of glass slides and the flexible plates were coated
with an self-assembled monolayer (SAM) of hexadecyl trichlo-
rosilane (HC). Details of the monolayer formation process are
described in ref 32.

The flexural rigidity33 (D) of the cover slips was measured by
a cantilever beam experiment in which one end of the cover plate
was fixed on a rigid support while the other end was loaded with
known dead weights (P). The displacement (∆) of this end was
measured, and the flexural rigidity was calculated using the
equation34

where L is the length of the glass plate and b is its width. For
some experiments, cover plates with larger flexural rigidities
were prepared by gluing together two or more cover slips using
Sylgard-184 (Dow Corning) elastomer and cross-linking the
polymer at 80° C for 1 h.
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Borosilicate glass disks of 8-mm diameter were obtained from
Swift Glass Inc. One of the disks was cleaned and coated with
a SAM of HC by the above method. The second was used for the
grafting of long-chain PDMS [HSi(CH3)2(OSi(CH3)2)n(CH2)3CH3]
molecules of molecular weight M ) 20 000. Details of the grafting
method are described in ref 35.

Preparation of Thin Films. Cross-linked elastomeric films
of PDMS were prepared between two microscope glass slides by
platinum-catalyzed hydrosilation of vinyl-end-capped dimeth-
ylsiloxane oligomers to methylhydrogensiloxane cross-linker. The
glass slides (Corning microslides) were kept separated by spacers
of known heights (40-2000 µm). One of the glass slides was
coated with a SAM, which ensured its removal from the
elastomeric film after it was cross-linked. The film, however,
remained strongly adhered to the untreated glass slide. Oligomers
of different molecular weights (2000-50 000) were used to
prepare cross-linked networks of different elastic moduli (0.2-
6.0 MPa).

A dynamic mechanical analysis of these networks in a
frequency sweep at ambient temperature (25 °C) showed that
the loss modulus (µ′′) was at least 2 orders of magnitude lower
than the storage modulus (µ′). This result indicated that the
networks are primarily elastic with negligible viscosity effects.36

The same conclusion was reached in Johnson-Kendall-Roberts
(JKR)37 experiments in which hemispherical lenses of the same
networks were brought into contact with a Si wafer coated with
a self-assembled monolayer (SAM) of hexadecyl trichlorosilane
molecules. The loading data at a particular contact diameter
remained unchanged with respect to time, which again showed
that the cross-linked networks did not have any dynamic
rheological property.

ContactExperiments.A schematic of the experimental setup
is shown in Figure 1, in which a flexible glass plate is brought
into contact with the PDMS film in the form of a cantilever,
which was loaded by means of a spacer inserted in the opening
of the crack. The experiment has the advantage of a simple
geometry as in the classical peel experiment.38-40 It also matches
the geometry of Hele-Shaw cells with lifting plates.16,41,42 Cover
plates with different flexural rigidities (D ) 0.02-0.6 N‚m) could
be subjected to both crack-opening and crack-closing experiments
with or without a spacer. In crack-opening mode, an external
load is applied to lift the cover plate so that the contact line
moves away from the spacer. In crack-closing mode, the plate is
brought into contact with the film by the internal force of
adhesion43 (40 mJ/m2). In this case, the contact line moves toward
the spacer and comes to an equilibrium position.

The experiment could also be performed in a radially symmetric
geometry (Figure 2), in which a small glass sphere (∼50-100 µm

in diameter) is placed on the film as a spacer. The flexible plate
is brought into contact with the film from the top. Here, too, the
glass plate bends and makes a circular contact, which remains
stationary by the balance of the bending stress of the flexible
plate and the adhesion stress at the interface. This arrangement
corresponds to a radial Hele-Shaw cell3,5 in a liquid system, in
which a liquid between two parallel disks is displaced radially
by pushing air through a hole at the center of one of the disks.

Results and Discussion

Instability Patterns. Figures 3 and 4 show video
micrographs of the instabilities corresponding to the
experiments depicted in Figures 1 and 2, respectively.
The patterns evolve almost instantaneously when the
flexible plate contacts films with thicknesses lower than
a critical thickness (hc). This critical thickness depends
on the shear modulus (µ) of the film and the rigidity (D)
of the cover plate. However, no undulation is observed
when films with thicknesses greater than hc are used. For
h < hc, the patterns appear and remain stable irrespective
of whether the crack is opened, closed, or at rest. In other
words, the formation of these fingers does not depend on
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Figure 1. Schematic of the experiments in which a flexible
glass plate is brought into contact with an elastomeric film in
theconfigurationofacantileverbeam.The filmremainsstrongly
adhered to a rigid substrate. A spacer is inserted into the opening
of the crack. Instabilities in the form of uniformly shaped and
uniformly spaced fingers appear at the contact line (Figure 3).
The figure is not drawn to scale.

Figure 2. Schematic of the experiments in which a glass sphere
is used as a spacer and a glass cover plate is brought into contact
with the film. Here, too, the elastic film remains strongly
adhered to a rigid substrate. Instabilities appear in the form
of circular and elongated fingers along a ring with the glass
sphere at its center (Figure 4). The figure is not drawn to scale.

Figure 3. Video micrographs of instabilities triggered by forces
of adhesion in the experiments depicted Figure 1. Glass plates
of different flexural rigidities are brought into contact with
elastomeric films of various thicknesses and shear moduli.
Micrograph a corresponds to an elastic film of thickness h )
40 µm and shear modulus µ ) 2.0 MPa and a cover glass of
flexural rigidity D ) 0.02 N‚m; micrograph b corresponds to h
) 80 µm, µ ) 0.25 MPa, and D ) 0.02 N‚m; micrograph c
corresponds to h ) 160 µm, µ ) 1.0 MPa, and D ) 0.2 N‚m; and
micrograph d corresponds to h ) 350 µm, µ ) 0.25 MPa, and
D ) 0.4 N‚m. The arrow shows the direction in which the crack
opens.
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the velocity of the contact line unlike its counterpart in
viscous systems.

In experiments of the type depicted in Figure 1, the
crack front develops into wavy undulations, and well-
shaped fingers with uniform spacing are observed. Mi-
crographs a-d in Figure 3 correspond to films of increasing
thickness (40-350 µm) and varying shear modulus (µ )
0.25-2.0 MPa). The arrow indicates the direction in which
the crack opens. The uniform shape of the fingers in these
micrographs indicates that the normal stress distribution
in the film along the direction of the contact line is uniform.
The spacing between the fingers increases with the
thickness of the film, but it does not depend on the flexural
rigidity of the plate. However, for each film of a given
modulus and thickness, instability does not develop if the
upper plate is too flexible. For example, note micrograph
3d, in which a cover plate of flexural rigidity D ) 0.4 N‚m
is brought into contact with a film of thickness 350 µm.
No undulation is observed for this film if a more flexible
plate (e.g., D ) 0.02 N‚m) is used. For the plate with D
) 0.2 N‚m (Figure 3c), the instability disappears if the
film thickness exceeds 330 µm. Experiments with films
of different thicknesses and elastic moduli and cover plates
of different rigidities indicate that the critical thickness
(hc) beyond which instability disappears varies linearly
with (D/µ)1/3, as shown in Figure 5.

In experiments of the type depicted in Figure 2, films
of two different thicknesses (40 and 80 µm) and shear
moduli (0.25 and 2.0 MPa) were used, whereas the flexural
rigidity of the cover plate were maintained at D ) 0.02
N‚m. Films of shear modulus µ ) 0.25 MPa are used in
micrographs 4a and b corresponding to film thicknesses
of 40 and 80 µm, respectively. In micrographs 4c and d,
the elastic modulus of films was µ ) 2.0 MPa, and the film
thicknesses were 40 and 80 µm, respectively. The results
summarized in Figure 4 show that the instability patterns
appear as equally spaced bubbles (Figure 4a and d),
elongated fingers (Figure 4c), or broken fingers (Figure
4b) along a circular ring with the glass sphere at its center.
The wavelength of the instability is measured by estimat-
ing the distance between these features along the ring.

An interesting aspect of the instability patterns in
Figures 3 and 4 is the directionality of the waves. Whereas
the waves in Figure 3 are formed along the contact line,

i.e., in the direction normal to crack propagation, the waves
in Figure 4 appear along the circle of detachment. This
spatial directionality makes this case different from the
isotropic situation, where isotropic wave vectors appear
throughout the contact area. These unidirectional waves
are referred to as 1-D patterns in this paper.

Wavelength. The wavelengths of the instability pat-
terns shown in Figures 3 and 4 remain independent of
either the shear modulus (µ) of the film or the flexural
rigidity33 (D) of the plate, but they increase linearly with
the thickness (h) of the film. The wavelengths obtained
from numerous experiments as depicted in Figures 1 and
2 can be plotted on a single master curve (Figure 6) with
the result λ ) 4h. The wavelength does not even depend
on the force of adhesion between the film and the
contacting plate. This particular observation was made
in experiments where the adhesion strength was enhanced
by oxidizing the film in a plasma chamber and then
bringing it into contact with a flexible plate in the geometry
of Figure 1. The spacing between the fingers remained
unaltered despite the considerable enhancement of the
adhesion at the interface. This situation is somewhat

Figure 4. Video micrographs of instability patterns in the experiments depicted in Figure 3. A glass sphere, at the center of each
image, is used as a spacer, and a glass cover plate with a rigidity (D) of 0.02 N‚m is brought into contact with films of different
shear moduli (µ) and thicknesses (h). Micrographs a and b correspond to µ ) 0.25 MPa and h ) 40 µm and 80 µm, respectively.
Micrographs c and d correspond to µ ) 2.0 MPa and h ) 40 and 80 µm, respectively. The two surfaces are not in contact in regions
where instability patterns are developed.

Figure 5. For every value of D and µ, there exists a critical
thickness (hc) of the film above which the instability disappears.
Critical thickness data (hc) obtained from experiments with
films of different elastic moduli (µ) and cover plates of different
flexural rigidities (D) scales nicely with the quantity (D/µ)1/3.
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similar to the classical Rayleigh-Kelvin instability44 on
a cylindrical liquid surface, which breaks up into liquid
drops as a result of a gradient in the Laplace pressure.
Although surface forces trigger the instability, the wave-
length depends only on the diameter of the liquid cylinder
(λ ) πd) and not on its surface tension. The wavelength
of the elastic instability also remains independent of the
velocity of the moving contact line, in contrast to the
classical Saffman-Taylor instability1,2 with immiscible
liquids. It remains unaltered irrespective of whether the
crack opens, closes, or is at rest.

Based on the earlier analysis of Mönch and Herming-
has30 and Shenay and Sharma,29,31 we present a simple
analysis of the situation using Figure 7, where a rigid
glass plate is used, instead of a flexible one. A thin elastic
film on a rigid substrate is subjected to forces of adhesion
on its surface when it is brought into contact with the
rigid plate. The distance-dependent attractive forces (e.g.,
van der Waals forces) lead to undulations, whereas the
elastic force in the film provides stability. The figure shows
the sinusoidal deformation, u2 ) u0 sin(2πx1/λ), of the film

at the interface, where λ is the characteristic length scale
of the undulations. At location A, the film is subjected to
the van der Waals force A/6π(d - u0)3 and the elastic force
Eu0/h, resulting in the net destabilizing force FA ≈ A/6π(d
- u0)3 - Eu0/h, where A is the effective Hamaker constant.
Similarly, the net stabilizing force at B is FB ≈ A/6π(d +
u0)3 + Eu0/h. Instability ensues when FA g FB. In a linear
approximation, Shenoy et al.31 deduced the exact condition
for the onset of instability in this setting as A/6πd4 g
2E/3h. Because E/h has units of force (spring constant)
per unit area [(N/m2)/m], the inequality signifies that
instability ensues when the spring constant of the van
der Waals forces (A/6πd4) exceeds that of the elastic film
(2E/3h).

The problem can be further analyzed under plane strain
approximations (ε33 ) 0), which results in the following
set of stress equilibrium relations in terms of the pressure
field p and the displacement components u1(x1,x2) and u2-
(x1,x2)

and the incompressibility condition

The right-hand side of eq 2a is 0, because the film is not
subjected to any body forces. Equation 2 is solved using
the vanishing displacement condition at the film-
substrate interface, i.e., u1(x1,x2)0) ) u2(x1,x2)0) ) 0 and
the condition of no slippage of the film over the rigid cover
plate u1(x1,x2)h) ) 0. The fourth boundary condition is
obtained by equating the pressure at the surface of the
film to the traction due to van der Waals forces. Thus,
using a linear approximation, the pressure, p, at x2 ) h
is written as

For a thin film, eqs 2 can be simplified by using the
lubrication approximation so that the terms containing
h∂/∂x are neglected. Integration of the simplified equations
leads to following expressions for the displacements

where the pressure p remains independent of the thickness
coordinate. Hence, at x2 ) h, the displacement u2(x1,x2)h)
is obtained as

Inserting the expression for p (eq 3) into this relation, the
following wave equation is obtained(44) Lord Rayleigh. Proc. London Math. Soc. 1878, 10, 4.

Figure 6. Wavelengths (λ) of instability patterns from the
experiments depicted in Figures 1 and 2 increases linearly with
the thickness (h) of the films. The wavelength, however, remains
independent of both the elastic modulus of the elastomer and
the rigidity of the glass plate. Symbols 0, O, and 4 correspond
to a cover glass plate of flexural rigidity D ) 0.02 N‚m against
films of moduli (µ) 2.0, 1.0, and 0.25 MPa, respectively; b
corresponds to D ) 0.09 N‚m and µ ) 0.25 MPa; and 9 and [
correspond to D ) 0.4 N‚m and µ ) 1.0 and 0.25 MPa,
respectively. Data from all experiments fall on a single straight
line satisfying the relation λ ) 4h.

Figure 7. Schematic of a simple experiment in which a thin
elastic film bonded to a rigid substrate is subjected to adhesion
forces by being brought into contact with a rigid cover plate.
The arrows indicate the forces acting on the film. The solid
arrows represent attractive van der Waals forces, which tend
to enhance any initial perturbation on the surface of the film,
and the dashed arrows represent the elastic forces, which tend
to inhibit the growth of instability.
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However, in a linear approximation, the instability
condition suggests that the van der Waals spring constant
scales linearly with the elastic spring constant of the film,
i.e., A/6πd4 ∼ 2E/3h. Thus, eq 5 simplifies to

Equation 6 has a solution of the form

which signifies surface waves of wavelength λ ) x2πh )
4.44h. Although the numerical coefficient does not have
much significance in this approximate analysis, the linear
scaling suggests that the length scale of the instability
should depend only on the thickness of the film, not on
any other material properties of the system. Furthermore,
in the linear approximation, the discussion holds for any
type of distance-dependent intermolecular forces. Shenoy
and Sharma31 did a more elaborate analysis of the problem
and obtained the relation λ ) 3h. The theoretical result
was verified in the experiments of Mönch et al.30 for a
similar geometry. Experiments in Figures 1 and 2 are,
however, more akin to the classical peel experiment.
Understanding one-dimensional waves in this geometry
calls for relaxation of the plane strain approximation, the
incorporation of the bending of the flexible plate, and a
stability analysis of the 3-D stress equilibrium relation.
Work in this direction is in progress by Shenoy et al.
(personal communication). Whereas the above analysis
describes a scenario in which two surfaces are brought
into contact, similar situation also arises when they are
taken apart. Fluctuations inherent in the interface (e.g.,
thermal fluctuations, roughness of surfaces, fluctuations
in material properties) can result in spatial variations in
the adhesion forces. The resultant perturbations on the
surface grow when a negative stress is applied, leading
to nonuniform surface deformations.

Amplitude. The length of the fingers or the amplitude
is another morphological feature of the waves that is
strongly influenced by the detailed energetics of the
system. Experiments depicted in Figure 1 with films of
different thicknesses and shear moduli and cover plates

of different flexural rigidities indicate that the amplitude
increases with the flexural rigidity (D) of the cover plate
and decreases with the shear modulus of the film. When
the amplitude data obtained from different experiments
are plotted against the quantity (D/µ)1/3, a linear relation
is observed (Figure 8). Thus, the dependence of the
amplitude on the flexural rigidity of the plates and the
shear modulus is very similar to that of the critical
thickness, hc, on these parameters.

Cavitation. The phenomenon of bubble formation in
Figure 4 is further studied in two different experiments
in the geometries of Figures 9 and 11. In experiments of
the type depicted in Figure 9, a flexible plate is first brought
into complete contact with the film and then a small force
is applied to it to initiate a crack. Here, too, films of
different shear moduli (µ) and thicknesses (h) were used
with plates of different flexural rigidities (D). For thinner
films (h < hc), crack initiation is preceded by the formation
of bubbles of uniform size very close to the contact line,
as shown in Figure 10. Micrographs 10a-d show the

Figure 8. Amplitude (A) of the instability patterns in the
geometry of Figure 1 obtained for films of different thicknesses
and shear moduli in contact with cover plates of different
rigidities. The amplitude is plotted as a function of the length
scale (D/µ)1/3.

Figure 9. Schematic of the experiments in which a flexible
cover plate is brought into contact with the film, and a very
small load is applied to initiate a crack. The elastic film remains
attached to the rigid glass plate. Crack initiation starts with
the nucleation of uniformly spaced bubbles very close to the
contact line.

Figure 10. Video micrographs of bubbles formed close to the contact line in the experiments depicted in Figure 7. Bubbles of
uniform size appear with uniform spacing, which remains independent of all material parameters, except the thickness of the film.
The spacing follows the same law, λ ) 4h. Micrographs a-d correspond to films of shear modulus µ ) 1.0 MPa and thicknesses
h ) 40, 80, 190, and 360 µm, respectively. A flexible plate of rigidity D ) 0.02 N‚m was used with the films in micrographs a-c,
and one of rigidity D ) 0.2 N‚m was used with the film in micrograph d.
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patterns of bubbles for films of increasing thickness (40-
360 µm) and of identical shear modulus (µ ) 1.0 MPa). In
all of these cases, the bubbles appear much earlier than
the actual opening of the crack, and they remain uniformly

spaced, with a spacing (λ) that follows the same relation
to the thickness of the film, i.e., λ ) 4h.

The experiments depicted in Figure 11 provide more
insight into the process of cavitation or bubble formation
at the interface of a confined thin elastic film and a rigid
glass disk. The disk is kept fixed on a rigid support, and
a thin elastic film on a flexible glass plate is brought into
or out of contact with it from above. Debonding and bonding
of the film are achieved by placing annular dead weights
on the flexible glass backing, causing it to bend to a finite
radius of curvature under the load. Evolving patterns of
cavities or instabilities are formed at the interface during
loading and unloading of the film. By loading, in this paper,
we imply loading of the glass backing with dead weights,
leading to detachment of the film from the indenter, and
by unloading, we mean removal of these weights.

The video micrographs in Figure 12 show typical
patterns of bubble formed during a loading and unloading
cycle. In this particular experiment, an elastic film of
thickness h ) 60 µm and shear modulus µ ) 0.9 MPa
remains strongly attached to a glass plate (50 × 50 mm)

Figure 11. Schematic of the experiments in which an elastic
film on a glass backing is brought into contact with a glass disk
bonded to a rotatable frame. Debonding and bonding of the
film is carried out using dead weights in the shape of annular
rings.

Figure 12. Video micrographs of cavitation patterns during loading and unloading obtained from the experiment described in
Figure 11. A film of thickness h ) 60 µm and of shear modulus µ ) 0.9 MPa remains strongly attached to a glass plate of flexural
rigidity D ) 1.2 N‚m and is brought into contact with a glass disk coated with a HC SAM. As a load is applied, the film detaches
from the disk, with the formation of bubbles or cavities. Micrographs a-i corresponds to nondimensional loads Fn (see text) ) 0,
0.05, 0.07, 0.1, 0.18, 0.19, 0.25, 0.4, and 0.6, respectively, and j-p correspond to Fn ) 0.3, 0.16, 0.1, 0.09, 0.04 0.013, and 0,
respectively. The insets in a few micrographs indicate FFTs of the corresponding images. The horizontal line in each micrograph
represents a length of 1 mm.
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of flexural rigidity D ) 1.2 N‚m that is brought into contact
with a glass disk of diameter dd ) 8 mm. The disk is coated
with a monomolecular layer of hexadecyl trichlorosilane
molecules to eliminate secondary interactions at the
interface. The load is increased in steps of∼50 g by placing
weights whose inner (di) and outer (do) diameters are 30
and 60 mm, respectively. The load is thus applied along
a ring of diameter da ) 2/3(do

2 + dodi + di
2)/(do + di) ) 47

mm. An equivalent situation can be considered where the
flexible plate is supported only on a disk without any
contacting elastic film in between. The radial variation of
the displacement of the flexible plate in that case can be
deduced,34 and the maximum displacement at the center
can be expressed as εmax/da ) (Pda/D) × η2[1 - ln(η)]/8π,
where η ) dd/da and P is the applied load. Whereas εmax/da
is a measure of aspect ratio of the gap between the two
plates, the nondimensional quantity Pda/D signifies how
much moment (Pda) is applied with respect to the rigidity
(D) of the flexible member. Therefore, the load data can
be expressed in terms of the dimensionless quantity Fn )
Pda/D, making it independent of the rigidity D.

Different phases of bubble formation can be identified
in Figure 12. At the beginning of the experiment the film
remains in complete contact with the disk. The few
scattered bubbles that appear at zero load (Figure 12a)
are due to local imperfections and bending of the glass
plate because of its own weight. As the load is increased
from 0 to 0.07 (Figure 12a-c), the glass plate bends further,
leading to an increased number of bubbles at the interface.
Initially (Figure 12a,b), bubbles appear in a random
manner and fast Fourier transforms (FFTs) of these
micrographs do not indicate the existence of any dominant
wave vector. A characteristic separation distance (λ)
between the bubbles emerges, however, as the load is
increased to Fn ) 0.07 (Figure 12c). This distance (λ)
decreases with increasing load as a result of the appear-
ance of more bubbles at increased load. This is the bubble
nucleation phase.

As the load is increased further, the number of bubbles
saturates, and no new bubbles are formed. This is the
bubble growth phase, during which bubbles grow in size
with increasing load [Fn ) 0.1 (Figure 12d) to 0.18 (Figure
12e)]. The radial separation between the bubbles, however,
remains unchanged. FFTs of these images show a circular
ring, signifying an isotropic instability pattern and a
constant wave vector.

With increasing load (Fn ) 0.18-0.19), bubbles start to
coalesce, giving rise to interconnected patterns (Figure
12e and f) with thin filaments of contacted regions left
between the bubbles. Coalescence of bubbles occur more
toward the center, where the displacement of the plate is
greatest. Complete detachment of the film, however, does
not occur until a sufficiently high load (>0.25) is applied.
At this load, the film loses contact with the disk, resulting
in a circular debonded region (Figure 12g). This is the
bubble coalescence phase.

With increased load (0.4-0.6), the central detached area
grows in radius (Figure 12h and i), and fingerlike
structures start to appear toward the circumference. The
inter-connected pattern of instabilities is replaced by
equally spaced fingers along the periphery of the detached
region, thus forming the unidirectional (or 1-D) instability
pattern characteristic of the peel geometry. The transition
from the isotropic pattern in micrograph 12f to the 1-D
pattern in micrograph 12g does not occur smoothly,
however. Rather, it occurs abruptly as the load on the
plate is increased. In fact, the transition to the 1-D pattern
in Figure 11g can occur at a lower load if the glass plate
is knocked even slightly. In other word, in micrographs

12e and f, the interface appears to be locked into a
metastable state from which it jumps into a more stable
state (Figure 12g) when perturbed. The pattern remains
frozen in this state as the load is further increased,
although the length of the fingers decreases.

The wavelength of the micrographs in Figure 12 is
measured by FFT analysis of the images (for the isotropic
pattern) and by estimating the peak-to-peak distance
between the fingers (for the 1-D pattern). The wavelength
(λ) data for films of different thicknesses (h ) 36, 60, 80,
and 120 µm) are plotted (solid symbols) with respect to
the load applied in Figure 13. For films of all thicknesses,
λ/h remains large (>4) at the beginning of the bubble
nucleation phase; however, it decreases to 4 as the bubbles
grow in number and size and then coalesce to form 1-D
fingers. Similar results were obtained for films with
different elastic moduli.

Instability patterns during unloading of the plate are
shown in micrographs 12j-p. These patterns look quite
different from the ones observed during loading. As the
loads are withdrawn from the plate, the length of the
fingers grows inward. Eventually, all fingers collapse at
the center, as observed in micrograph 12m (Fn ) 0.087).
The patterns remain one-dimensional and do not go back
to the isotropic forms as in micrographs 12a-f. The one-
dimensional character of the patterns remains unaltered
even at lower load (0.09 0.013), where cavities in the form
of long fingers span from the center to the circumference
of the detached area and the fingers simply grow thinner
(Figure 12m-o). At zero load (Figure 12p) on the plate,
the fingers break into bubbles, which look very similar to
the classical Rayliegh-Kelvin instability44 of a liquid jet
or cylindrical liquid column. A similar phenomenon of the
breaking up of a long cylindrical bubble into spherical
bubbles was also observed in the experiments of Shull et
al. (personal communication). The wavelengths of the
instability patterns are estimated by analyzing the FFT
spectra of the images or by the direct measurement of the
separations between the fingers and are plotted in Figure
13.Theopencircles in this figure indicate thedataobtained
from a 60-µm film of shear modulus µ ) 0.9 MPa. The
figure shows that the wavelength remains close to 4h for

Figure13. Characteristic separation distance between bubbles
(in Figure 12) plotted as a function of load for films of different
thicknesses. Symbols [, b, 9, and 2 represent data obtained
during loading of the films of shear modulus µ ) 0.9 MPa and
thicknesses h ) 36, 60, 80, and 120 µm, respectively. Symbol
O represents the unloading cycle for a film of thickness h ) 60
µm and shear modulus µ ) 0.9 MPa. The figure shows that, in
the bubble nucleation phase, the wavelength of the instability
decreases from a higher value (λ/h > 4), but as the pattern of
instability develops fully, λ/h decreases to ∼4 and remains
unaltered irrespective of the film thickness.
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all loads, except very small ones for which the charac-
teristic spacing between bubbles increases.

To summarize, the patterns are interconnected and
isotropic during the loading phase, but they are radial or
one-dimensional during the unloading phase. The char-
acteristic length scales of the instability patterns during
loading and unloading, however, remain similar. Inter-
estingly, the 1-D pattern during unloading remains
unaltered even during subsequent loading and unloading
cycles. This observation was made in experiments in which
the glass plate was first loaded, then unloaded to an
intermediate weight (not zero load), and then loaded again.
The patterns did not evolve as in micrographs 12a-i;
rather, they retrace the path in Figure 12j-p.

What causes this hysteresis and irreversibility in
pattern formation? JKR-type contact mechanics experi-
ments on the glass disk showed that there is negligible
adhesion hysteresis (2 mJ/m2) between the PDMS elas-
tomer and the HC SAM on the glass, suggesting that
hysteresis in pattern formation does not stem from
adhesion hysteresis on the surface. However, there can
be hysteresis due to the interfacial friction if shear stress
develops at the interface as a result of the mismatch of
the moduli45 of the polymer film and the glass contactor.
The shear stress, however, can be released if the interface
has low friction, thus allowing for interfacial slippage.15

To test thishypothesis, loadingandunloadingexperiments
depicted in Figure 11 were conducted on a surface grafted
with poly(dimethylsiloxane) (PDMS) polymer, which also
exhibits very low adhesion hysteresis (∼2 mJ/m2) but

which provides lower resistance to slippage than HC-
coated surfaces.15,46

Experiments on the PDMS-coated surface led to dif-
ferent observations, which are summarized in the evolu-
tion patterns in Figure 14. Video micrographs a-h and
i-n in this figure represent the loading and unloading
cycles, respectively. Whereas, during loading, the patterns
observed with the PDMS- and HC-coated surfaces look
similar, the patterns are different during unloading. As
the load is decreased from Fn ) 0.46, 1-D fingers are
initially formed, but they do not grow long toward the
center, unlike the case with the HC-coated surface. With
decreasing load, interconnected isotropic cavitation pat-
terns characteristic of the loading cycle emerge, signifying
reversibility of the evolution path. Furthermore, micro-
graphs 14e and f during loading and 14j and k during
unloading indicate that detachment and reattachment of
the central region of the film with the disk occur at similar
loads, unlike the case for the HC-coated disks. It is
plausible that high interfacial slippage at the interface of
the PDMS film and the PDMS-grafted glass disk releases
the interfacial shear stress and thus eliminates the
hysteresis in pattern formation during loading and
unloading cycles.

Pattern Formation under Rotation. The phenom-
enon of pattern formation was further studied by applying
rotational shear to the film relative to the contacting disk.
In these experiments, a rigid glass indenter fixed at the
center of a supporting disk was rotated (0.5-5 rpm) by a
drive with respect to the elastic film. Figure 15 shows the

(45) Hutchinson, J. W.; Suo, Z. Adv. Appl. Mech. 1991, 29, 63.
(46) Zhang Newby, B.-m.; Chaudhury, M. K. Langmuir 1998, 14 (17),

4865.

Figure 14. Video micrographs of cavitation patterns in loading and unloading experiments with a glass disk coated with PDMS
molecules. The experiment is done on a film of thickness h ) 52 µm and shear modulus µ ) 0.9 MPa. Micrographs a-h represent
the loading cycle (0.07, 0.11, 0.14, 0.18, 0.21, 0.25, 0.28, and 0.46, respectively), and micrographs i-n represent the unloading cycle
(0.32, 0.25, 0.21, 0.14, 0.11, and 0.07, respectively).
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cavitation patterns obtained for films of thickness h ) 36,
52 and 80µm and shear modulus µ ) 0.9 MPa. The pattern
in micrograph 15a is obtained for the 36-µm film under
load Fn ) 0.05. This pattern is akin to that obtained for
a 60-µm film in the loading cycle (Figure 12) under similar
loading conditions. The pattern changes dramatically
(Figure 15b), however, when a shear is applied by rotating
the contacting disk relative to the film. The bubbles
collapse together to form equally spaced concentric rings,
which remain stable with respect to the rotational speed
of the disk. The pattern does not change even after the
cessation of rotation. Whereas, at lower loads, rings appear

throughout the contact area, at higher loads (e.g., Figure
15c,d and e,f at Fn ) 0.11 and 0.16, respectively) the
bubbles tend to coalesce toward the center of the contact
area, and a circular debonded region forms; away from
the center, stable concentric rings appear that remain
equally spaced. A similar phenomenon was observed for
films of higher thicknesses (e.g., Figure 15g,h for a film
witha thickness of 80 µm) and also with the PDMS-grafted
glass disk (Figure 15i,j).

The evolution of the instability patterns is summarized
in Figure 16. A film of thickness h ) 36 µm and shear
modulus µ ) 0.9 MPa in contact with a HC-coated surface
is subjected to nondimensional load Fn ) 0.05, which
results in micrograph 16a. When a rotational shear is
applied, the pattern transforms to the concentric equally
spaced rings shown in Figure 16b. The rings remain
unaltered when the rotational shear is withdrawn. As the
normal load is withdrawn, the rings break up into bubbles
in the same way as shown in Figure 12p.

Figure 17 shows the characteristic separation distance
(λ) between the rings as estimated by measuring the
spacing between the rings, as well as by analyzing the
FFT spectra of the images. Data from experiments with
films of different thicknesses and of shear modulus µ )
0.9 MPa are plotted as a function of load on the plate. λ/h
is again found to be ∼4 for different cases.

The rings in Figures 15 and 16 are similar to curvilinear
vortex patterns, which have been observed in the visco-
metric flow of a viscoelastic liquid between two parallel
plates.10,47 Above a critical Deborah number, these vortices
propagate in the form of concentric spirals from a lower

Figure 15. Video micrographs of cavitation patterns with films
of different thicknesses and under different normal loads and
rotational shears. Micrographs a-h and i,j represent films in
contact with glass disks coated with a HC SAM and PDMS
chains, respectively. The isotropic instability pattern in mi-
crograph a corresponds to a film of thickness h ) 36 µm and
shear modulus µ ) 0.9 MPa, subjected to a load of Fn ) 0.05
in the geometry of experiment in Figure 11; the bubbles coalesce
into concentric rings (b) when a rotational shear is applied at
the interface. Similarly, micrographs c,d and e,f were obtained
for the same film subjected to nondimensional loads 0.11 and
0.16, respectively. Micrographs g and h were obtained for a
film of thickness h ) 80 µm and shear modulus µ ) 0.9 MPa
subjected to load 0.16. Micrographs i and j represent the patterns
obtained for a film of thickness 52 µm and elastic modulus µ
) 0.9 MPa under a load of 0.14 in contact with a PDMS-grafted
glass disk.

Figure 16. Video micrographs show how the cavitation
patterns evolve as (a) a load is applied, (b) the interface is
subjected to rotational shear, and (c) the load is withdrawn.
The patterns correspond to a film of thickness h ) 36 µm and
shear modulus µ ) 0.9 MPa. The applied load is Fn ) 0.05. The
figure also shows the corresponding FFT spectra of the images.

Figure 17. Characteristic separation distance between the
rings or bubbles (in Figure 13) plotted as a function of load for
films of different thicknesses. Symbols [, b, and 9 indicate
films of shear modulus µ ) 0.9 MPa and thicknesses h ) 36,
60, and 80 µm, respectively. The figure shows that the λ/h value
for all thicknesses remains close to 4.
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to a higher critical radial position between the plates.
Interestingly, in that case also, the radial wavenumber
scales linearly with the gap (h) between the plates and
also depends on the ratio of the rheological properties of
the viscoelastic liquid. The driving forces of the instabili-
ties, however, are different in the two situations. In
viscometric flow, the vortices are formed because of stress-
induced secondary radial flow over and above the base
torsional flow. In the case of thin elastic films, the driving
force is the interfacial-shear-induced coalescence of
bubbles.

Questions arise as to where the bubbles originate during
cavitation experiments. In this context, the experimental
and theoretical works of Gent et al.,17-19 Lindsey,24 and
Pond21 on cavitation at the interior of a rubber block are
worth reviewing. The essence of their understanding is
that cross-linked rubber contains microscopic air bubbles
(∼10 Å to 1 µm) that inflate when sufficient negative
pressure is applied. The critical negative pressure de-
creases as the initial size of bubbles increases, reaching
a lower limit of 5µ/2, which corresponds to a bubble size
on the order of 0.1 µm. These bubbles are still smaller
than the visible range. Air can also be present in rubber
in a dissolved state so that the vapor pressure of air in the
rubber is equal to its partial pressure in the cavities. This
dissolved air can diffuse from the bulk into the cavities
when a negative pressure is applied. A similar situation
can also occur in the case of bubble formation at the
interface of an elastomer and glass. The intrinsic rough-
ness of the interface could host trapped air bubbles, which
appear when the two surfaces are separated. However,
the bubbles cannot appear randomly, because the distance-
dependent attractive forces at the interface and the
consequent response of the elastic film give rise to these
stress patterns, so that the spatial positions of the bubbles
are determined even before the bubbles become visible.
Therefore, although the defects at the interface could take
part in the formation of bubbles, it is the intrinsic balance
of the forces in the film that determines the spacing
between the bubbles or the fingers. It is not clear yet,
however, how shear helps in the coalescence of bubbles
and the subsequent formation of concentric rings in the
rotation experiment.

Summarizing Comments

The experiments reported herein indicate that surface
of a confined thin elastic film subjected to adhesion forces
undergoes undulations leading to different kinds of
instability patterns depending on the geometry of the
experiment. In the geometry of the peel experiment, two
different length scales are identified: the thickness of the
film, h, and the ratio of the material properties of the
flexible contactor and the film, (D/µ)1/3. Whereas h solely

determines the characteristic length scale of the waves,
i.e., λ, the amplitude of waves, A, is determined by (D/
µ)1/3. In experiments with infinitely rigid plate (D f ∞),30

isotropic instability patterns are observed that are char-
acterized by a single length scale, i.e., the distance λ
between the surface waves. λ remains independent of the
nature of the surface force that triggers the instability
because the intrinsic balance of forces within the layer
remains independent of the surface force, which enters as
a boundary condition. Problems of this kind are different
from those in which the instability is triggered by a body
force. Examples of this latter kind of instability are the
intermolecular-force-induced spinodal dewetting48,49 of an
ultrathin (<100 nm) liquid film and the electric-field-
induced hydrodynamic instabilities50 in a dielectric poly-
mer layer between two parallel plates (capacitors). In
either case, the body force appears in the equations
representing the force balance within the layer, and the
length scale of the instability depends on the ratio of the
surface tension forces to the gradient of the body force, in
addition to the thickness of the film (h). The absence of
a body force in the problem discussed in this paper makes
λ depend only on h. The invariability of λ with the velocity
of the moving contact line suggests that the fingering
phenomenon occurring during the peeling of a viscoelastic
adhesive could be due to the elastic character of the
adhesive. The uniform morphology of the patterns in
purely elastic systems is also useful for understanding
viscoelastic systems. For example, branching in viscoelas-
tic fingering occurs in a systematic manner at right angles
to the crack and behind the crack tips.11 This is in contrast
to viscous fingering, where branching occurs by tip
splitting5,6 and at angles less than 90°. Although the
instability patterns of these two systems are quite
distinguishable visually and also by fractal analysis, the
patterns of purely elastic systems (Figures 3 and 4) could
serve as definitive evidence of the role of elastic instability
in a viscoelastic system.
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