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It is known that sucrose raises the surface tension of water; it is negatively adsorbed at the airlwater 
interface. We have analyzed this phenomenon from the point of view that the solute molecules are repelled 
from the interface because of the existence of a repulsive van der Waals force. The theoretical treatment 
employs the Lifshitz theory of forces, together with the thermodynamic theory of interfacial distances. 
Our calculation has yielded a quantitative prediction of the increase in surface tension of water as a function 
of solute concentration, which agrees well with experimental observations. It also predicts the concentration 
gradient of solute molecules in the region below the surface. 

Introduction 
It is a familiar fact of surface science that electrolyte 

solutes in water cause an increase in surface tension above 
that of the pure solvent. It is not so well-known that 
certain nonelectrolytes also cause an increase in surface 
tension. For both types of solutes, the change in surface 
tension is certainly due to negative adsorption. 

Wagner’ and Onsager and Samaras2 have developed the 
theory of the effect of electrostatic forces on ions at  and 
near an airlwater interface. The electrostatic “image force” 
causes a net repulsion to act on the ions, so that they are 
excluded from the interfacial region. Onsager and Samaras 
were able to make predictions of the phenomenon which 
were in a fair agreement with experimental observations. 

The negative adsorption of nonelectrolytes such as su- 
crose at  the airlwater interface suggests that a repulsive 
force should be inferred, acting on the solute molecules. 

Initial attempts to treat the case of nonelectrolyte so- 
lutions were made by Buff and G ~ e l . ~  They applied their 
calculations to the case of aqueous amino acids. The 
surface excess quantity was distributed between two pa- 
rameters, a and 8, where the former designated the surface 
activity of the fatty acid portion of the amino acids. The 
numerical magnitude of a was derived utilizing the em- 
pirical relation between the surface tension decrease and 
the chain length of the lower fatty acids, known as 
Traube’s rule. (The surface tension of aqueous fatty acid 
solutions is a linear function of the solute concentration 
in the Henry’s law region. Traube’s rule4 states that the 
proportionality factor between the decrease in surface 
tension and solute concentration is, in turn, a linear 
function of the chain length of the fatty acids.) The second 
parameter was assigned to the effect arising from an in- 
verse cubic interaction law. This law was derived from an 
analytical solution of the electrostatic problem of multi- 
poles embedded in a spherical cavity. Although Buff and 
Goel took into account the effects due to multipole in- 
teractions, they showed that the dipolar contribution 
constituted the dominant term in the net cavity image 
potential. Later, Clay, Goel, and Buff,5 in a more detailed 
treatment, considered the effects of finite solute size, an- 
isotropy, and also the diffuse nature of the interface. 

The approximate mathematical expression for the image 
potential of a randomly oriented dipole, obtained by Buff 
and Goel, was 

P241 
w(2) = - 
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where p is the dipole moment of the solute molecule, em 
is the dielectric constant of water, z is the distance of the 
dipole from the airlwater interface, and 4’ is a dimen- 
sionless correction factor, which ranges from 1 to 2.23. 
Since pz/3kT has the dimensions of the static dipolar 
polarizability, we can rearrange eq 1 in a convenient form, 
such as 

w(2)  = z( :) 
where k is Boltzmann constant, T is  absolute temperature, 
and a is the dipole polarizability of the solute molecule in 
a vacuum. 

We note, however, that the electrostatic behavior of a 
solute molecule that is due to the presence of the phase 
boundary (liquid/vapor or liquidlair) cannot be accounted 
for merely by the polarizability of the solute. The solute 
molecule replaces an equal volume of solvent, which (in 
the absence of solute) had a self-energy due to the sur- 
rounding solvent and to the absence of solvent on the other 
side of the phase boundary. Thus, it is more correct to 
employ an “excess” polarizability, a*, rather than a which 
is given by p2/3kT. 

So, in the limit of a continuum approximation, one 
would expect that w(z)  should be zero when the solute has 
the same dipole moment and dielectric constant as the 
solvent. Also, w(z) should be negative if the dipolar po- 
larizability of the solute is less than that of the solvent. 

Unfortunately, these two expectations cannot be derived 
from eq 1 and 2. In order to elucidate the limits of validity 
of eq 2, we will now focus our attention on an improved 
expression for the self-energy of the solute molecule, as 
derived by Imura and OkanoS6 Israelachvili,’ following 
the procedure of previous authors, has shown that the 
electrodynamic self-energy of a randomly orienting solute 
molecule, at a distance z from the airlwater interface, can 
be expressed as 
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where a*,(iw,) is the excess polarizability of the solute 
molecule and tj(iw,) and t,(iw,) are respectively the di- 
electric permeability of air and of water; these functions 
are evaluated along the complex frequency axis, The 
prime in the sum indicates that the zero frequency term 
is given half-weight in the summation. The zero frequency 
term in eq 3 originates from the orientation and the in- 
duction contributions to the multipole image intera~tion.~ 
Since the static dielectric constant of air is unity and that 
of water is about 80, E,,, >> tj, and we can obtain a sim- 
plified, approximate expression for g(z),=, from eq (3), as 
follows: 

Chaudhury and Good 

a sharp dichotomy of short-range (SR) interactions vs. 
long-range interactions. The latter can be treated by the 
methods of London15J6 and Li f~hi tz ;~  we refer to them, 
elsewhere,17J8 as “LW”. 

In principle, if the enthalpy of hydration of a solute is 
known, the contribution of the H-bond interaction to the 
net surface excess quantity can be estimated by using a 
step-function Boltzmann equation for the concentration 
profile. Fowkeslg has put forth the idea that the H-bond 
interaction is a subset of acid/base interaction, and pro- 
posed the use of Drago’s empirical acid/ base parameters20 
in obtaining a quantitative estimate of the H-bond in- 
teraction. Drago’s table of these parameters is, unfortu- 
nately, far from complete, and hence the Drago-Fowkes 
approach cannot be followed at  the present time. 

If we encounter a situation where the solute is strongly 
hydrated, so that the energy of hydration is much larger 
than the average kinetic energy, then we can simplify the 
picture by assuming that a t  least the first monolayer of 
water at the interface will be devoid of solute. This as- 
sumption points directly to a negative adsorption of the 
solute. But it does not, in general, account for the mag- 
nitude of the negative adsorption. The profile of solute 
concentration as a function of distance from the surface 
is needed. For example, it would be possible to envision 
a case where the profile of concentration vs. distance could 
have a maximum just below the surface layer, even though 
the very last layer was solute-depleted. Such a distribution 
would be rare, because it would require the combining of 
low polarizability of the solute with a strong tendency 
toward hydrogen bonding to water. In principle, we can 
calculate the contribution due to electrodynamic forces by 
using the expression for the self-energy of the solute, 
following Israelachvili’s appr~ach .~  There is, however, an 
immediate difficulty: it is not very clear as to what should 
be the best mathematical form for a*,(iw,) as a function 
of dielectric permeabilities of the solute and the solvent. 
For example, we note that eq 5 is only an approximation. 
Fortunately, there is a better approach, since, in principle, 
it is feasible to arrive at  an expression for the self-energy 
of the solute in a solvent phase by using the Lifshitz theory 
of forces. Approaches similar to that described below have 
been used by other workers in related f i e l d ~ . ~ l - ~ ~  

We will now develop an expression for the self energy 
of the solute, using the Lifshitz theory of flat-plate in- 
teraction. This procedure, coupled with Gibbsian ther- 
modynamics of interfacial distances, will then be applied 
to calculate the increase in the surface tension of sucrose 
solution as a function of solute concentration. This result 
will in turn be compared with the available experimental 
data. Toward the end of this paper, some relevant nu- 
merical calculations will be made for the self-energy of the 
solute, utilizing Israelachvili’s approach, and these will be 
compared with the result obtained by the Lifshitz theory. 

(4) 

where CY*, is now the excess static polarizability of the 
solute, the dominant term of which is due to the dipolar 
contribution, for a polar solute. 

It is worthwhile to note the similarity of form, between 
eq 4 and 2. Equation 4 is, however, significantly different 
from eq 2, since, in the derivation of eq 3, and hence of 
eq 4, the concept of excess polarizability was invoked. 
Equation 4 potentially can predict that g(z),=, can be zero, 
negative or positive, depending upon the sign of CY*,. 

An approximate expression for CY*, has been given by 
McLachlan,8 as follows: 

where, t, is the dielectric constant of the solute and r is 
the radius of the solute, in the spherical approximation. 
From eq 4 and 5 ,  it is clear that if t, E,, a*, will be 
negative, and it will be positive when t, > E,. The values 
of the static dielectric constants for most water-soluble 
nonelectrolytes are generally smaller than that of water, 
and, hence, in view of eq 4 and 5, one would expect a 
positive adsorption of the solutes, but Buff and Goel’s 
equation will only predict a negative adsorption. 

The complete, exact treatment of positive and negative 
adsorption of dipolar nonelectrolytes in aqueous solution 
is far more complicated than has been believed to be the 
case, mainly because no general, quantitative theory exists 
that can properly account for the effects due to short-range 
forces, especially hydrogen bonding. The assumptions of 
electromagnetic theory, from the earliest “image force” 
treatment to the sophisticated Lifshitz approachg require 
that the distances considered be large compared to the 
distance between centers of charge. This directly excludes 
hydrogen bonds from the treatment. Moreover, hydrogen 
bonds are known to be partially covalent in character. The 
inclusion of hydrogen bonding in the continuum treatment 
of surface phenomena, e.g., using dipole-dipole (Keesom) 
interaction as a surrogate,lO has allowed hydrogen bonding 
to be included as a contributor to Hamaker coeffcientslOJ1 
and hence to a widely used treatment of surface ten- 
s i ~ n . ~ ~ - ’ ~  But the inherently short-range and directional 
character of hydrogen bonds is mathematically incom- 
patible with the inherently long-range character of elec- 
tromagnetic (London, Debye, or Keesom) interactions. 
Therefore, it is justified, or indeed necessary, to introduce 
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Quantitatiue Theory of Negative Adsorption 

Theory 
In order to calculate the free energy (self-energy) of an 

electrically neutral molecule (1) in medium (3) at  a dis- 
tance, z ,  from the interface between fluids 2 and 3, we will 
use the Lifshitz theory of electromagnetic interactions 
across a phase boundary. According to this theory: the 
free energy of interaction between two semiinfinite parallel 
slabs, j and k, through a medium, m, of thickness, 1, is 
expressed as 
G(1) = 

E,(iwn) - Em(iwn) --?’[ kT ] (6) 

where e j ,  t k ,  and E ,  are, respectively, the dielectric 
permeabilities of the phases j ,  k, and m along the complex 
frequency axis, i.e., 

tk(iw,) - t,(iw,) I[ 8, l2n=o t j ( i W n )  + t m ( i W n )  E k ( i W n )  + t,(iwn) 
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E = E(iW,)  = 1 + - d w  (7) 

where t” (w)  is the loss component of the frequency-de- 
pendent dielectric function, E ( W )  = d(w) + i t” (w) ,  wn = 
4a2nkT/h, h = Planck’s constant, and n = quantum 
number of the relevant oscillation. The prime on the 
summation sign indicates that the n = 0 term is given 
half-weight in the sum. It will be shown below, the eq 26, 
how e l ,  Ek,  and E ,  are to be evaluated. 

Since we are interested in the aqueous solution/air in- 
terface, we will use a notation in which the medium 2 or 
j is air, medium 3 or m is water, and medium k is the 
solution. 

We will assume, first, that the solution is dilute, so that 
as far as mutual interaction of the solute molecules is 
concerned, the rarified medium approximation can be 
applied. That is to say, the sucrose molecules do not 
interact with each other, and in their interaction with 
water, the water can be treated as a continuum.n We note 
that Onsager and Samaras2 and also Buff and G ~ e l , ~  in 
their theory of the negative adsorption of solutes, treated 
water as a continuum. 

Second, we will use a preliminary model in which the 
concentration of the solute molecules is practically zero 
from the air/water interface down to a depth I ,  and is 
constant throughout the rest of the solution phase, Le., 
from z = 1 to z = m (see Figure 1). We do this in order 
to calculate the self-energy of a sucrose molecule as a 
function of its distance from the air/water interface. (At 
the conclusion of this section, we will make some calcu- 
lations that have a bearing on the validity of the model.) 

It is to be noted that, in this procedure, the interaction 
of the water molecules in the solution, with air, through 
a water film, is set equal to zero. As a result, we need to 
calculate the energy of interaction of only the solute 
molecules in the solution phase, with air, through a film 
of water of thickness of 1. 

Let us now assume that the interaction energy with the 
air phase, of a single solute molecule in the solution, a t  a 
distance z from the air/water interface, is represented 
approximately by 

G(z) = -a/(zI” (8) 
Since G(z) cannot be infinite, this applies in the region that 
extends from some small distance from the physical in- 
terface, e.g., one molecular diameter, to the region where 
the solute concentration has its bulk value, c,(b). 

(24) Krupp, H. Adu. Colloid Interface Sci. 1967, I, 111. 
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Figure 1. 

If N, denotes the number of solute molecules per unit 
volume, then the total energy of interaction of all solute 
molecules in unit volume of the solution phase, with air, 
through a water film of thickness 1 (see Figure 1) is 

This G(1) is the same as the G(1) in eq 6. Hence, it may 
be deduced that the power of z in eq 8 is equal to 3. This 
will be exact when 1 >> r, where r is the molecular radius 
of the solute. The coefficient a is given by 

It is possible to evaluate the coefficient, a, in eq 8, if we 
know the loss component of the dielectric permeabilities 
of water and of the solute in pure phases as a function of 
frequency. Expressing N ,  in terms of volume fraction, &, 
and the volume (4d/3) of a single solute molecule treated 
as a sphere, eq 10 can be simplified to 

If the coefficient a in eq 8 is negative, the solute particle 
will be repelled from the interface, and negative adsorption 
will prevail. 

The concentration of the solute in an aqueous medium 
at a distance z from the liquid/vapor interface may then 
be expressed in terms of Boltzmann’s equation, relative 
to the concentration cs(b) in the bulk: 

cs(z)  = c,(b) exp[-G(z)/k7‘l (12) 

See Figure 2, the line representing c,(z). 

tionZ5, may be written in the formz6 
At  constant temperature, the Gibbs adsorption equa- 

d r  = -Cri@) dpi (13) 

where pi is the chemical potential and I’i(B) is the Gibbsian 
surface excess of component i with respect to a surface 

~ 

(25) Gibbs, J. W. “Collected Works”; Dover Press: New York, 1961; 

(26) Good, R. J. Pure Appl .  Chem. 1976,48, 427. 
VOl. 1. 
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Figure 2. Schematic concentration profiles. Subscripts w refers 
to water and s to sucrose. Dashed lines indicate Gibbs construction 
for dividing surfaces: rs = 0 surface, rw = 0 surface, and z = 0 
surface. 

defined by an arbitrary criterion 8. (We will, for clarity, 
employ symbols with a circumflex to denote dividing 
surfaces. /3 designates a dividing surface for which the 
criterion that identifies it has n$ yet been specified.) We 
will employ, for the criterion @, the z = 0 surface, i.e., a 
surface that is assumed to coincide with the geometric 
surface, which demarcates the liquid phase from the vapor 
phase, and denote it by the superscript (2) or, in Figures 
2 and 3, by underlining. We may now write 

dy = -CI'i(') dp, (14) 

can be expressed in the form26 
L2 

= ~ ~ o [ c i ( z )  - ci(b,)] dz + ix0[c i (z )  - ci(b2)] dz 

where the integration is carried out over a path normal to 
the interface, from a location at  -Ll, deep within bulk 
phase 1, to a location L2, deep within bulk phase 2 (see 
Figure 2). ci(z) is the concentration of component i at  
elevation z and ci(bl) and ci(b2) are bulk concentrations 
of i in phases 1 and 2, respectively. Since medium 2 is air, 
the concentration of both water and sucrose may be taken 
as effectively zero in that phase, so that the second integral 
vanishes. Then eq 15 can be written 

= LL'[ci(z) - ci(b)] dz 

where we have dropped the subscript 1 on b. 
The concentration c, of the ith component in an ideal 

solution can be expressed in terms of the volume fraction 
$ 1 :  

CI = #lPl/ML (17) 

where p, and M, are, respectively, the density and molec- 
ular weight of that component in ita pure state. Equation 
15 can be used with eq 29, below, to relate the surface 
excesses, and to each other. 

It has been shown% that the distance between the Gibbs 
dividing surfaces for ru = 0 and for I's = 0 is AB* If the 
solute is negatively adsorbed, the z = 0 surface lies between 
the FW = 0 and rs = 0 surfaces (see Figure 2). 

The surface excesses of water and of solute with respect 
to the z = 0 surface can now be expressed as 

where hap and Xi,- are the Gibbsian distance parameters26 
for water and solute, respectively, relative to the z = 0 
surface, and L1 is large compared to the thickness of the 
interfacial region, i.e., effectively infinity (see Figure 2): 

A&,- = Xi# + Xfi' (19) 
Xa3 the last section, we will evaluate Afic from experimental 
data. Xf iS  is of considerably more operational significance 
than AB' or Xi#. Since 4, = (1 - $s), eq 15, Ma, and 18b 
can be combined to obtain 

X f i ?  = -[4,/4wIX's (20) 

XES^, which is equal to I',@)/c,(b), is given by 

Through the employment of eq 12, eq 21 simplifies to 

The chemical potential, pi, can be written in terms of the 
mole fraction, xi, of the ith component as 

pi = pio + RT In x, (23) 

where pio is the standard chemical potential of the ith 
component and x i  is the mole fraction of i. 

Substituting eq 23 into eq 14 and using eq 19 and 20 
yields 

dy = -X&T[N/Vw] dx, (24) 

where N = N, + N, is the total number of moles and V,,, 
is the volume of pure water in the solution. Integrating 
eq 24, we obtain 

Application to Sucrose Solutions 
In order to estimate G(z),  the free energy of interaction, 

our first task is to find a suitable representation of the 
dielectric permeability, $icon). An expression for el(iwn) 
which Ninham and ParsegianZ7 developed from eq 7 can 
be used: 
c,(iwn) = 

( 6 -  - €0) (e0 - no2) (no2 - 1) 
1 +  + + (26) 

l + [ q  wMW 1 + [ $ 1 2  1+[9]' wuv 

where e,= zero frequency dielectric constant, e,, = dielectric 
constant in the microwave range at  the high frequency 
limit, no = refractive index in the optical region, and wm, 
wm, and wuv are the characteristic absorption frequencies 
in the microwave, infrared, and ultraviolet regions, re- 
spectively. For sucrose there is a small, insignificant in- 
frared relaxation. The dielectric constant of sucrose in the 
microwave region is about 3.3,2s which is not significantly 
different from the square of the refractive index (no2 = 

(27) Ninham, B. W.; Parsegian, V. A. Biophys. J. 1970, 10, 646. 
(28) 'Handbook of Chemistry and Physics", 62nd ed.; Weast, R. C., 

(29) Hough, D. B.; White, L. R. Adu. Colloid Interface Sci. 1980,14, 
Ed.; Chemical Rubber Publishing Co.: Cleveland, OH, 1982. 
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Table I. Dielectric and Optical Properties of the Substances Employed 
characteristic frequencies 

WMW x lo-", wm x 1044, WU" x 10-16, 
material e, €0 nn rad/s rad18 radfs ref 
water 80.1 5.2 1.332 
sucrose 3.3 1.5376 

2.38) in the optical region. The infrared term is small 
enough that neglecting it will not cause significant error 
in the numerical computation of the coefficient a. (For 
further details on this subject, see ref 29.) 

In order to calculate a in eq 8, we have decomposed the 
sum, eq 11, into two terms, as follows: 

and 

When j refers to air, E, will be taken as unity. To calculate 
a,=,, we have used the available data3, for the static di- 
electric constant of sucrose solutions. a,=,, which was 
independent of 4s, was found to be equal to 0.055kTr3. 

In order to carry out the summation in eq 27b, we have 
expressed the dielectric permeability of the solution, t k ,  
in terms oft, and ts, via the Lorentz-Lorenz equation, in 
the form 

a,,, was calculated by using eq 26-28 in conjunction with 
the dielectric data of Table I. The value of a,,, was thus 
found to be -1.06kT9. The value of a (=an,, + a,,,) may 
now be estimated as -kTr3. 

At  this point, for the sake of comparison, we will re- 
calculate the value of the coefficient a, using eq 3. Sub- 
stituting the expression of a*, from eq 5 into eq 3, one 
immediately arrives a t  the following expression: 

kTr3 [%(iW,) - tnz(iun)I[tj(iun) - em(iun)I 
g(z) =----E' 

223 n=O [es( iun)  + 2ern(iun)l[tj(iun) + em(iun)] 
( 3 4  

The coefficient a now can be expressed as 

kTr3 
2 

[es(i%J - tm(iun)l[tj(iun) - Em(iun)I 
a = -E! (1la) 

n=O [ S ( i u n )  + 2em(iun)l[ej(iuJ + tm(iun)] 
Equation l l a  is formally similar to eq 11. It can, how- 

ever, be noted that, in eq l l a ,  the dielectric permeability 
of the solute ts(iun) appears explicitly, whereas, in eq 11, 
the contribution of the solute is implicit in the dielectric 
permeability of the solution, tk( iW,) .  

Using the Ninham and Parsegian representation (eq 26) 
for the dielectric permeabilities of all the species involved, 
and the parameters in Table I, we have calculated the 
values of a,,=, and a,,, from eq l la .  The values of a,=, 
and a,>, were thus found to be 0.126kT9 and -1.113kT9, 
respectively. This gives the value of net a (=an,, + a,,,) 
to be -0.986kTr3, which is indeed very close to the value 

(30) Harned, H. S.; Owen, B. B. "The Physical Chemistry of Electro- 
lvte Solutions". 2nd ed.: Reinhold New York. 1950: ACS Monoer. No. 
95, p 188. 

- 
(31) Parseeian. V. A.: Ninham. B. W. J. Colloid Interface Sci. 1971. - .  

37,'332. 
(32) Nir, S. Progr. Surf. Sci. 1977, 8,  1-58. 

1.06 5.66 1.9 31 
2.3 32 

obtained by Lifshitz theory (eq 11). 
The fact that the net coefficient a is negative indicates 

that sucrose will be repelled by the air/water interface, and 
negative adsorption will prevail. 

Quantitative Results and Discussion 
On the basis of the above discussion, the Boltzmann 

c,(z) = ex~[- ( r /z )~ l  (29) 

In order to calculate the Gibbsian distance parameter, At,., 
we have decomposed the integral, eq 21, into two parts and 
let L go to infinity: 

expression, eq 12, can be simplified to 

(32) 
where 6 is a distance of the order of the diameter of a water 
molecule. 

In the region 0 < z < 6, eq 29 does not apply. At  such 
short distances, short-range interactions which do not obey 
the Lifshitz theory become important. Since sucrose 
molecules interact with the surrounding water molecules 
through formation of hydrogen bonds, the sucrose mole- 
cules are, effectively, solvated. The energy of formation 
of a hydrogen bond is in the range of 3-5 kcal/mol. De- 
solvating a sucrose molecule by removal of all the water 
molecules that would lie between it and the gas phase 
would require a t  least 3 times this energy, depending on 
orientation of the sucrose molecule. So the energy re- 
quirement will be about 15-25 times kT at room tem- 
perature, and the Boltzmann probability of finding a su- 
crose molecule in the region, z < 6, will be in the range 2 
X to 1 X 10-l'. Even if the energy to detach a water 
molecule were only 1.35 kcal (or 4 kcal for three molecules) 
the Boltzmann factor would be and this would cor- 
respond to effectively total exclusion of water from that 
region. 

In the region, 6 < z < m, the Boltzmann relation (eq 29) 
will be applicable. So we can rewrite eq 30 as 

At, = -6 + Lm[e-(r/2)3 - 13 dz 31 

The diameter 6 for water, as estimated from the density 
and molecular weight data, is about 3.5 A. The diameter, 
2r, for sucrose, is about 8.0 A. 

In order to estimate A,, the integral in eq 31 was 
evaluated by expanding the exponential in a power series 
and integrating term by term until a satisfactory conver- 
gence was observed. This led to an estimate of Atst the 
Gibbsian distance parameter of sucrose in water, of 5.5 A. 

For sucrose solutions, N/V, as a function of x, was 
found to be linear. Data were taken from ref 28, to obtain 
the equation 

(34) 

where N and V, are expressed in mol and cm3, respec- 
tively. With the use of eq 32, eq 25 becomes 

(33) 

N/V, = 0.0555 + 0.05954~~ 

A7 = -X&T(0.0555~, + 0.02977~,~) 
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Table 11. Change of the Surface Tension of Water as a 
Function of Sucrose Concentration 

concentration of sucrose, &ycdcd, &eXptl, 
w t  70 dvn/cm dvn/cm ref 19 

10 
20 
30 
40 
55 

0.45 0.5 
1.0 1.0 
1.64 1.4 
2.6 2.1 
4.6 3.7 
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Figure 3. Calculated dimensionless distribution of sucrose as 
a function of distance from the z = 0 surface. 

At this stage, we can compute Ay as a function of solute 
concentration. The results are shown in Table 11, where 
they are compared with the experimental values. The 
agreement with experiment is excellent, for the lower 
concentrations. At  higher concentrations of sucrose, the 
theory overpredicts the value of Ay by about 0.5-0.9 
dyn/cm; this is not a high level of disagreement. 

Figure 3 shows the calculated relative concentration of 
sucrose vs. distance from the z = 0 surface. As already 
noted, the model breaks down for distances less than about 
3.5 A. The smooth curve in Figure 3 describes average, 
not instantaneous, composition, of course. It is interesting 
that the sucrose concentration reaches about 90% of the 
bulk concentration at  a distance of about 8 A, or the di- 
ameter of a sucrose molecule (treated as a sphere) from 
the z = 0 surface. If we assume that the region of total 
exclusion of sucrose is 3.5 A thick, we can see from Figure 

3 that this region accounts for no more than about 60% 
of the negative adsorption. 

Discussion 
The discrepancy between the experimental and theo- 

retical values of Ay at higher concentrations is probably 
due to a number of factors which were not included in the 
approximation of this theory: 

(1) The interactions of solute molecules among them- 
selves were neglected. In a more realistic approximation, 
three- and many-body effects will come into the picture, 
especially a t  high concentrations. 

(2) The electromagnetic interaction may be screened 
because of the diffuse nature of the distribution of sucrose 
from the interface to the bulk. This fact was neglected 
in the approximation employed. 

(3) We have used a continuum model for water, which 
will break down when z - rw, the radius of the water 
molecule. This breakdown will be pronounced, at the 
higher concentrations of solute. 
(4) We have assumed that the solute molecule is iso- 

tropic, which is not exact for sucrose. 
(5) Better spectroscopic data are needed, and also a 

better representation of ~(iu,), for the actual calculations. 
With refinements such as these, it should be possible 

to improve upon these computations that we have made. 

Conclusion 
The important conclusion of this paper is that the ele- 

vated surface tension of sucrose solutions, due to the 
negative adsorption of solute molecules at the air/solution 
interface, is a manifestation of the short-range forces be- 
tween sucrose and water and the electrodynamic repulsion 
of the (hydrated) solute molecules from the surface. The 
negative adsorption can be predicted nearly quantitatively 
by means of the Lifshitz theory. 

In spite of the simplifications employed, the results that 
we have obtained are in excellent agreement with exper- 
iments, except at high concentrations. This agreement 
encourages us to feel that the theory is probably correct. 
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