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Abstract

The desgn of complex interactiverobots inherently
yieldsaform of representatior— aninteractiveform.
Interactive representation is, arguably, the
foundationalform of representatiorfrom which all
othersarederived. It constitutesthe emergenceof
representationatruth value for the systemitself, a
criterionnot addresseth currentiterature.

Thereis aform of representationthat arisesnaturallyin
the designof complexinteractivesystems— robots. This
form arguablyconstitutesan emergencef the fundamental
form of representatiomut of which increasinglycomplex
formsareconstructedindderived. Furthermorethis form of
representation naturally satisfies an essential meta-
epistemologicatriterion for original representatiorsystem
detectable truth value.  No alternative approach to
representationin the current literature addresses this
criterion. Recognizingandexploiting the emergencef this
form of representatiom roboticsanddynamicsystemsis a
rich frontierfor exploration.

In standardartificial intelligence and cognitive science
models, inputs are received and processed,and, perhaps,
outputsemitted. The critical considerationthat arisesin
robotdesignis the possibility of a closureof this sequence
of processsuch that robot outputs influence subsequent
inputs via the environment, and, therefore, influence
subsequenhternal statesandprocessef the robot. That
is, the critical considerationis the closure of input,
processingandoutput to include full interaction, not just
action.

This simple closure introduces several important
possibilities. In particular, possible internal states that
might be consequenbn someaction or courseof action can
be functionally indicated in the robot. Because such
possibleconsguentstatesin the robot will depend,n part,
on the environment,those states, or some one of those
states,may or may not actually occur— the environment
may or may not yield the appropriaténput(s) in responseo
the output(s)to inducethoseindicatedstatesin the robot. If
noneof thoseindicatedstatesareenteredby the robot, then
theindicationsarefalse,andarefalsified for the robot The
errorin suchindicationsis detectabléoy andfor the system
itself.

In effect,to indicatesuchinternal statesas consequent
on particularinteractionson the part of the robot is to
implicitly predicateof that environmentwhateverproperties
aresufficientto supportthoseindications. It is to anticipate
thatthe environmentwill in fact respondas indicated,if the
interactionis engagedn. Someenvironmentswill possess
a sufficiencyof thosepropertiesandwill yield one of the
indicatedstates,while otherenvironmentswill not possess
such properties,and will not yield any of the indicated
states. For thoseenvironmentghatdonot yield an indicated
state,to setup suchanindicationis to set up an implicit
predication,an anticipation, that is false, and potentially
falsifiableby the system(Bickhard,1993, in press;Bickhard
& Tervea, 1995).

The possibility of error, and especially of system
detectable error, is a fundamental meta-epistemological
criterionfor representation. Whateverrepresentatioris, it
mustbe capableof somesort of truth value. Conversely,
somethingis repregntationfor a particular systemonly if it
is capableof somesortof truth valuefor that system This
is critical because many states and conditions and
phenomenarerepresentationa— canhavetruth value —
but only for someuseror designeior obsever outsideof the
systemitself, not for the systemitself (Bickhard, 1993;
Bickhard& Terveen1995).

Moderately complex robots, then, naturally involve a
form of representatiorthat is representationdor the robot,
not justfor anobservepr analystor designeror userof the
robot. This claim generatedive questions: 1) How can
notionssuchas‘indication’in the abovediscussiorbe made
goodin afunctionalmanneiin a robot, without committing
a logical circularity by presupposing the very
representationalitthatis allegedlybeingmodeled?2) Why
wouldit beusefulfor arobotto havesuchrepresentationsf
interactivepotentialities? 3) How couldsuch a notion of
representation possibly be adequate to “normal”
representational and cogniive phenomena such as
representatioof objects;representationf abstractionssuch
asnumbersjanguageperceptionyationality; andso on? |
will only outline an answerto the first of thesequestions,
referringothersto othersources.4) On what basiswould a
robotsetup suchindications?And5) How doesthis model
of representationelateto contemporaryresearchin artificial
intelligence,cognitivescienceconnectionismandrobotics?
My responsedo this questiontoo will, obviously, be
abbreviated.
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The Functional Story

First, | needto addressthe questionof how interactive
representatiorcould be implementedwithout presupposing
representation. All that is neededare some architectural
principlesadequatdo the modelthat arethemseles strictly
functional— not representational.This is, in fact, rather
simple. The indicated internal outcome states for an
interaction function like final states in an automaton
recognizerput for an automatonthat emits outputsto an
interactiveenvironment (Bickhard, 1980a). The indication
of such statescan be implementedwith pointers — a
pointer,say,to somelocationthat will containa “1” in the
state being indicated. This is certainly not the only
architecturghat will implementthe notions required,but it
doessuffice.

To indicate the interaction itself, upon which the
indicationsof final statesarebasedyequiresonly a pointer
to the subsystem— perhapsthe subroutineor interactive
recognize— thatwouldengagen thoseinteractions. So, a
pointerto a subsystenmogethemwith apointeror pointersto
final statesassociatedvith that subsystemsufficesfor the
implicit predicationof interactiverepresentatiorut none of
these pointers themselvesare or require representation.
Insofar as there is representationhere, it is genuinely
emergenin the architecturabrganization.

The Usefulness
Representations

of Interactive

Choice Why wouldit be usefulfor a robotto havesuch
indications? For two reasons: First, if thereare multiple
interactions possible in a particular environment, the
indicatedinternaloutcomesf thoseinteractionscanbe used
in selecting which interaction to actually engage in
(Bickhard, 1997b). A frog seeinga fly might set up
indicationsof the possibiity of tongue-flicking-and-eating,
while a frog seeinga shadowof a hawk might set up
indicationsof the possibility of jumping in the water. A
frog seeingboth needssome way to decide, and internal
outcomeindicationsprovide a basis for such decision—
e.g.,selectthe interactionwith the indicatedoutcomesthat
have the highest priority relative to current set-points.
(Note that if the relevantoutcomesare presumedto be
represented ratherthan indicated— as must be the caseif
the outcomesareconsideredo be externaloutcomesn the
environment— thenthereis a circularity involvedin using
suchnotionsto modelrepresentation.)

Error . The secondreasonwhy suchindicationsmight
beusefulis that they createthe possibility of error,and—
mostimportantly— the possibility of the detectionof error
by the system. Detectionof error,in turn, canbe useful for
guiding heuristics and strategiesof interaction, and for
evoking andguiding learningprocesses.Any generalform
of learning,in fact, requires suchsystemdetectionof error
(Bickhard & Terveen, 1995). In slogan form: Only
anticipationscan be falsified; therefore only anticipations
canbelearned.

On the Adequacy of Interactive

Representation

Interactive,or robotic, representatin might seemadequate
for the kinds of interactive properties that interactive
indicationswill implicitly predicateof the environment,but
there are many other things to be representedhat do not
prima facielook like interactiveproperties. To makegood
on claims of the adequacyof interactiverepresentatioras a
generaform of representationvould requirea programmatic
treatment of many or most of these representational
phenomenaThereisn't spacdo evenbeginthat explication
here(see for exanple, Bickhard,1980a,1980b,1992, 1993,
in press, forthcoming; Bickhard & Campbell, 1992;
Bickhard & Richie, 1983; Bickhard & Terveen, 1995;
Campbell& Bickhard,1986, 1992), but | will outline an
approacho theinteractiverepresentatioof physicalobjects
in order to indicate that this is at least a plausible
programme.

Complexities of Interactive Indications.
Before addressingobjectsper se, | needto outline some
forms of complexity that can be involved in interactive
indications. The first is that there may be multiple
interactive possibilities indicated at a given time. The
secondis that interactiveindicationscan be conditionalized
on eachother: interaction A with possible outcome Q
mightbeindicatedand,if A is engagedn andQ is in fact
obtained, then interaction B with possible outcome R
becomegossible. Thereare other kinds of complications
possible,but branchingsand conditionalized iterations of
interactiveindicationswill suffice for briefly addressinghe
problemof objectrepresentation.

Webs Branchingsandconditionaliterationsyield the
possibility of interactive indications forming potentially
complexwebsor netsof indications. In effect,the whole of
sucha webis indicatedas currently possible,but actually
reachingsome parts of the web will be contingent on
perhapsnanyintermediaténteractionsandoutcomes.

Objects. Somesub-networksn sucha complexweb
may havetwo critical propertiesl) A subnetmay be closed
in the sensehat, if anypartof it is reahable— possible—
thenall partsof it are. Thatis, all points (possiblestates)
in suchawebindicatethe potentiality of all otherpointsin
the web, perhapswith necessaryntermediateinteractions.
2) Such a closed subnet may be invariant under some
interestingclassof possibleinteractions,in the sensethat
many possible interactionswill leave the closed subnet
invariantin internalstructureandstill reachable.

A toy block, for example,will offer many possible
interactionsto a child. The block canbe visually scanned,
dropped, thrown, chewed, manipulated, and so on.
Furthermore,any of such possibilities will indicate the
availability of the rest of them: a particular visual scan
becomesmomentarily unavailableif the block is turned
over, but is recoverabléf the block is turnedback over to
its original position. Still further,this entire organization
of interactive possibilities remains invariant for many
interactions such as manipulations, throwings, hidings,
storingin thetoy box, locomotionson the part of the child,



andso on. It doesnot remaininvariant, however, under
burningor crushing.

Thepoint is thatablock, for aninfant, is no more than
such closed and invariant organizations of interactive
possibilities. The infant knows nothing of substance®r
molecules— thoseall comelaterin theorizingabout such
thingsasblocks. This, | propose,s the generamannern
which interactive representation can handle object
representationsThis is a Piagetiarsort of accounbf object
representationgPiaget, 1954), and | suggest similarly
Piagetiarflavoredapproacheto otherrepresentationaksues
(though| do not endorseall of Piaget's model: Bickhard,
1988;Bickhard& Campbell,1989). My basicpoint in this
paper,however, is simply that interactiverepresentations
not immediately blocked by the multitudinous forms of
representatiothat mustultimately beaccountedor.

How to SetUp Interactive Indications

Interactiveindicationsmight be useful for a robot, but on
what basis could they be set up? The generalansweris
simple: on the basis of previous outcomes of previous
interactions. Previousoutcomesdifferentiate environments
into thosethat yield that outcome and those that don't.
Conditionalizedindicationsof interactivepotentialities are,
in effect, conditionalized on those prior differentiations.
Any environmenthatwill yield stateQ from interactionA
will also — according to the conditional — be an
environmentin which interaction B is possible, with
possible consequenstateR.  So, if Q is obtained,then
direct(not conditionalizedpointersto B andR shouldbe set
up. As with the restof the model, many complexitiescan
arisehere,but this generalpoint sufficesto show that the
problemof how to setup interactiverepresentations not
itself anaporia.

Relationshipsto Contemporary Work

Symbol Systems The symbol system hypothesis
involves inputs andsubsequenprocessing(Newell, 1980),
but doesnot involve any necessarnotion of closurefrom
outputsbackto inputs. It doesnot involve any recognition
of the necessityfor interaction. Correspondinglyjt does
not solvethe problemof systemdetectablesrror. Error can
be definedfrom a useror designerperspectiveandit canbe
useful to do so, but this is still error, therefore
representatiorfpr the useror designernot for the system
itself.

In fact, the symbolsystemhypothesisis one of a large
classof approacheto representatiothat attemptto construe
representatioin termsof the processingf inputs, with no
recognitionof the essentialimportanceof full interaction
(Bickhard, 1993; Bickhard & Terveen,1995; Coffa, 1991,
Dretske, 1981, 1988; Fodor, 1987, 1990; Hanson, 1990;
Loewer& Rey, 1991;Millikan, 1984, 1993; Palmer,1978;
Pylyshyn,1984; Smith,1987) Inputs are,in thesemodels,
supposetb setup correspondences- usually somespecial
kind of correspondences— betweeninternal statesof the
system and particular properties or entities in the
environment,andare sugposedo representthose properties
or entities by virtue of those correspondences These

approachebavedifficulty accountingfor errorat all, anddo
not evenaddresghe problemof systemdetectablesrror. The
difficulty in accountingfor error ariss because,f the
correspondencexists,thentherepresentatioexistsandit is
correctwhile, if the correspondencdoesnot exist, then the
representatiodoesnot exist,andso cannotbeincorrect.

Thereis agreatdeal of effort being currentlydevaedto
attempting to account for error in some such model
(Dretske, 1988; Fodor, 1990; Hanson, 1990; Loewer &
Rey, 1991; Millikan, 1993). | will not addressthe
vicissitudesof theseattempts(though| do not think that
any of themsucceedpecausenoneof them evenaddresshe
strongercriterion of systemdetectablesrror. On their own
terms, error, if definable at all, is definable from the
perspectiveof someobserveor useror designeror analyzer
of the systemin question,not for the systemitself. There
are, in addition, many other problematicsof this general
approach to representation,none of which arise as
problematicfor the interactiveapproach(Bickhard, 1980b,
1993;Bickhard& Terveen]1995).

Connectionism Interactiverepresentations a direct
alternativeto standardsymbol manipulation approachego
representationWhataboutconnectionism?The key to the
answerto this questionis to note that a connectionistnet
servesto differentiateinstancesof one input pattern class
from instances of some other class of input patterns
(Bickhard & Terveen]1995; Churchland1989; McClelland
& Rumelhart, 1986; Rumelhart, 1989; Rumelhart &
McClelland, 1986; Smolensky,1988; Waltz & Feldman,
1988). This is preciselywhatatransducers supposedo do
in standard information processingmodels (Bickhard &
Richie, 1983; Fodor & Pylyshyn,1981; Loewer & Rey,
1991). A connectionistnet can be trainedto differentiate
newinstanceof new patterns,while a transducethasto be
designedor evolved spediically for its differentiation task,
but, beyondthe difference betweendesign versus training
origins, the tasksthat are performedare the samesorts of
differentiationtasks.

Connectionismand information processingapproaches
agreeon the next stepin the modeling: the differentiations
accomplishedby transducersor by connectionistnets are
taken to be representationsof that which has been
differentiated. It is this stepthat immediatelyencountersa
host of problems, not the least of which is how such
“representations’could possibly be in error, and how the
systemitself coulddetectsucherror.

In the interactive model, in contrast, such
differentiationsareusefulin orderto serveas the basis for
settingup interactiveindications,andthereis no requirement
thattheybe allegedto be representationah orderthat they
servethat function. Sensoryinput processing,in other
words — or connectionistnet processing— does not
directly generate representationsof what is on the
environmentalend of those inputs, but, instead, sets up
indications of what is interactively possible in the
environmentdifferentiatedby that input processing. Input
processingpccurs— andservesa necessarjunction — in
both cases,but the interactivemodel doesnat require or
assumethat the system has any representationof what
producegheinputs. (Humansdo havesuchrepresentations



of the sourcesof [some of] our inputs, andthat must be
accountedor, but flatworms don't, andit's not clearthat
frogs do — primitive forms of representationdo not
necessariljnvolve suchrepresentations.)

Robotics Interactive representatiorcannotexist in
standardsymbol manipulationor connectionistarchitectures
— there are no closed interactions involved in their
purportedrepresentations— but it arisesnaturallyin robot
design. How doeghis comparewith contemporaryrobotics
literature? The problematicsof standard conceptionsof
representationare clearly recognized (Beer, 1990, 1995;
Bickhard, 1996; Brooks, 1991a, 1991b, 1991c; Prem,
1995), androbotic and autonomousagentdesignproblems
naturally lead to the sorts of indications that constitute
interactive representation— whether or not they are
recognizedas representationa(Kuipers, 1988; Kuipers &
Byun, 1991, Maes, 1990; Nehmzow & Smithers, 1991,
1992; Stein, 1994). Recognizing the emergence of
representationand representationatruth value in those
designs,with all the concomitantimplications for related
domainsof cognition and robotic functioning, is a rich
frontierfor roboticsanddynamicsystems(Bickhard,1997a,
1997b, forthcoming;Bickhard & Campbell,1996a, 1996b;
Bickhard & Terveen, 1995; Brooks, 1994; Cherian &
Troxell, 1995a,1995b; Hooker, 1995; Hooker, Penfold, &
Evans,1992;Hooker& Christensen,in preparation).

In particular,the problemof action selectionin robots
andartificial agentscanbe solvedin the generalcaseonly
via somesort of selectionof actionson the basis of their
anticipatedconsequences.That is, the problem of action
selectionforcesthe emergenceof interactiverepresentation
(Bickhard, 1997b). Once recognized, interactive
representationis the framework within which complex
representatiortanbe designedandlearned,and upon which
higher order cognition can be constructed, including
rationality and language(Bickhard, 1992, forthcoming, in
press;Bickhard & Campbell, 1996a, 1996b; Bickhard &
Terveen1995). Interactiverepresentatiompensthe doorto
genuinehighercognitionfor artificial agents— justasit dd
for natural agents(Bickhard, 1992, in press,forthcoming;
Bickhard& Campbell,1992;Bickhard& Terveenl1995).

Pragmatism. Since the ancient Greeks, mind has
been studied primarily as a passive consciousness,
processingnputs. The shift to conceiving of mind as an
actionsystemis fundamentallydueto the philosopherC. S.
Peirce(Joas,1993). Peirce’s pragmatismhas influenced
manypeople,in spiteof its relativelyshorthistory, andthis
literaturecontainsmultiple parallelsandpartial convergences
with theinteractivemodel.

Most important are Piaget (e.g., 1954), the later
Wittgenstein(1958), Heidegger(1962), and Merleau-Ponty
(1962). An actionframework,however,doesnot guarantee
viability of the model in detaill. The most common
subsequentrroris a vestigial, sometimessubtle and only
implicit, commitmentto classicatorrespondencaotionsof
representationThis canbe manifestin argumentdor such
classical notions, even within a dynamic or robotic
framework(e.g.,Clark, 1997; Clark & Toribio, 1995),0r in
arguing against representationwhere representation is
construedonly in this classicalform (e.g., Brooks, 1991a;

Port& vanGelder,1995),or in arguingfor a versionof the
idealismthat correspondenceonceptionsof represatation
have so often generated(e.g., Maturana& Varela, 1980,
1987; Varela, Thompson,& Rosch, 1991). These and
many other positionsare discussedn Bickhard & Terveen
(1995).

The shift to an action framework is of fundamental
importance, and interactvism sharesthis move with a
growing minority of positions in the literature. The
interactive model, however, contributes some essential
additionsand correctionsof its own. System detectable
error, for example, is not addressedelsewhere,but is,
arguably, essential for an adequate naturalization of
representatiorwhethelin organismsor machines.

Conclusion

Interactive representationarises naturally in interactive
systemsThis is evidentfor robots, in particular,but it is
also apparentin simple interactiveorganisms. Insofaras
interactiverepresentatiorservesas the fundamentaform of
representationout of which more complex forms are
constructedand derived, this servesto connectthe most
complex human representationahbilities with primitive,
emergentgevolutionaryprecursors.

Interactive representatiomaturally satisfies a critical
meta-epistemologicariterion— systemdetectablesrror—
that must be satisfied by any model of original
representatiorgndthatis not satisfiedor evenaddressedby
standarcconceptionof representation.As such, interactive
representatiomffersa promising approachto representation
in particularandcognitiveproblemsin general.
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