
PRIME FACTOR CYCLOTOMIC FOURIER TRANSFORMS WITH REDUCED
COMPLEXITY OVER FINITE FIELDS

Xuebin Wu∗, Zhiyuan Yan∗, Ning Chen†, and Meghanad Wagh∗

∗Department of ECE, Lehigh University, Bethlehem, PA 18015
†PMC-Sierra Inc., Allentown, PA, 18104

E-mails: ∗{xuw207, yan, mdw0}@lehigh.edu, †ning chen@pmc-sierra.com

ABSTRACT

Discrete Fourier transforms (DFTs) over finite fields have

widespread applications in various communication and stor-

age systems. Hence reducing the computational complexities

of DFTs is of great significance. Recently proposed cyclo-

tomic fast Fourier transforms (CFFTs) are promising due to

their low multiplicative complexities. Unfortunately, they

have very high additive complexities. Techniques such as

common subexpression elimination (CSE) can be used to

reduce the additive complexities of CFFTs, but their effec-

tiveness for long DFTs is limited by their complexities. In this

paper, we propose prime factor cyclotomic Fourier transforms

(PFCFTs), which use CFFTs as sub-DFTs via the prime fac-

tor algorithm. When the length has co-prime factors, the short

lengths of the sub-DFTs allow us to use CSE to significantly

reduce their additive complexities. In comparison to previ-

ously proposed fast Fourier transforms, our PFCFTs achieve

reduced overall complexities when the lengths of DFTs are

at least 255, and the improvement significantly increases as

the length grows. This approach enables us to propose the

first efficient DFTs with very long length (e.g., 4095-point)

in the literature. Finally, our PFCFTs are also advantageous

for hardware implementation due to their regular structure.

1. INTRODUCTION

Discrete Fourier transforms (DFTs) over finite fields have

widespread applications in error correction coding, which in

turn is used in all digital communication and storage sys-

tems. For instance, both syndrome computation and Chien

search in the syndrome based decoder of Reed-Solomon (RS)

codes, a family of error control codes with widespread ap-

plications, can be implemented efficiently via DFTs over

finite fields. Implementing an N -point DFT directly re-

quires O(N2) multiplications and additions, and becomes

costly when N is large. Hence, reducing the computational

complexities of DFTs has always been of great significance.

Recently, efficient long DFTs become particularly important

as increasingly longer error control codes are chosen for dig-

ital communication and storage systems. For example, RS

codes over GF(212) and with block length of several thou-

sands are considered for hard drive [1] and tape storage [2]

as well as optical communication systems [3] to achieve bet-

ter error performance; syndrome based decoder of such RS

codes requires DFTs of lengths up to 4095 over GF(212).
Furthermore, regular structure of DFTs is desirable as it is

conducive to efficient hardware implementation.

Various fast Fourier transforms (FFTs) have been pro-

posed to reduce the computation complexities for DFTs over

the complex field. Prime factor algorithm (PFA) [4] and

Cooley-Turkey algorithm (CTA) [5] can implement an N -

point DFT with O(N logN) multiplications for N with a lot

of small factors. The PFA was applied to DFTs over finite

fields [6], but DFTs obtained via the PFA still have high

multiplicative complexities. In contrast, recently proposed

CFFTs [7], which are based on efficient short convolution

algorithms, are promising because they require much fewer

multiplications. However, they have very high additive com-

plexities. Properly designed CSE algorithms (see, e.g., [8])

can greatly reduce the additive complexities of CFFTs for

short and moderate lengths, but they are much less effective

for long DFTs. This is because the run time and storage re-

quirement of the CSE algorithm in [8] become infeasible for

large lengths (say 2047 or 4095). As a result, a simplified but

less effective CSE algorithm was used to reduce the additive

complexity of 2047-point CFFTs in [9], but it still remains

very high. This complexity issue results in a lack of efficient
DFTs of very long lengths in the literature: to the best of our

knowledge, the CFFTs in [9] is the only 2047-point DFTs,

and efficient 4095-point DFTs cannot be found in the liter-

ature. An additional disadvantage of CFFTs is their lack of

structure and regularity, which makes it difficult to implement

CFFTs in hardware efficiently.

In this paper, we propose prime factor cyclotomic Fourier

transforms (PFCFTs), which use CFFTs as sub-DFTs via the

prime factor algorithm. When the length of DFTs is prime,

our PFCFTs reduce to CFFTs. When the length has co-prime

factors, since the sub-DFTs have much smaller lengths, this

allows us to use CSE to significantly reduce their additive

complexity. In this case, although out PFCFTs have slightly

450978-1-4244-8934-3/10/$26.00 ©2010 IEEE SiPS 2010

higher multiplicative complexity than CFFTs, they have much

lower additive complexity. As a result, our PFCFTs achieve

smaller overall complexity than all previously proposed FFTs

when the length of DFTs is at least 255, and the improve-

ment significantly increases as the length grows. This ap-

proach also enables us to propose efficient DFTs with very

long length (e.g., 4095-point), first efficient DFTs of such

lengths in the literature. Our PFCFTs also have a regular

structure, which is suitable for efficient hardware implemen-

tations. Although the PFA is also used in [6], our work is

different in two ways: (1) the sub-DFTs are implemented by

CFFTs; (2) CSE is used to reduce the additive complexity of

DFTs. The reduced complexity of our PFCFTs is a result of

these two differences.

The rest of the paper is organized as follows. Section 2

briefly reviews the necessary background. In Section 3 we

propose our PFCFTs, and compare their complexity with pre-

viously proposed FFTs. The advantage of our PFCFTs in

hardware implementation is discussed in Section 4. Conclud-

ing remarks are provided in Section 5.

2. BACKGROUNDS

2.1. Cyclotomic fast Fourier transforms

Let α ∈ GF(2l) be a primitive N -th root of 1 (this implies

that N |2l − 1, otherwise α does not exist). Given an N -

dimensional vector f = (f0, f1, · · · , fN−1)
T over GF(2l),

the DFT of f is given by F = (F0, F1, · · · , FN−1)
T , where

Fk =
∑N−1

n=0 fnα
nk.

It is shown in [7] that the DFT is given by F = ALΠf ,

where A is an N ×N binary matrix, Π is a permutation ma-

trix, L = diag(L0,L1, · · · ,Lm−1) is a block diagonal matrix

with square matrices Li’s on its diagonal, and m is the num-

ber of cyclotomic cosets modulo N with respect to GF(2).
Block Li is an mi × mi circulant matrix corresponding to a

cyclotomic coset of size mi, which is generated from a nor-

mal basis {γ20

i , γ21

i , · · · , γ2mi−1

i } of GF(2mi), and is given

by

Li =

⎡

⎢
⎢
⎢
⎢
⎣

γ20

i γ21

i · · · γ2mi−1

i

γ21

i γ22

i · · · γ20

i
...

...
. . .

...

γ2mi−1

i γ20

i · · · γ2mi−2

i

⎤

⎥
⎥
⎥
⎥
⎦
.

Let f ′ = Πf = (f ′T0 , f ′T1 , · · · , f ′Tm−1)
T , and f ′i has a length

of mi. The multiplication between Li and f ′i can be for-

mulated as an mi-point cyclic convolution between bi =

(γ20

i , γ2mi−1

i , γ2mi−2

i , · · · , γ21

i)T and f ′i . Since mi is usually

small, using efficient bilinear algorithms for short cyclic con-

volutions, Lif
′
i can be computed efficiently by

Lif
′
i = bi ⊗ f ′i = Qi(Ribi ·Pif

′
i) = Qi(ci ·Pif

′
i),

where Pi, Qi, and Ri are all binary matrices, ci = Ribi is

a precomputed constant vector, and · denotes an entry-wise

multiplication between two vectors. Combining all the matri-

ces, we get CFFTs

F = AQ(c ·Pf ′), (1)

where both Q = diag(Q0,Q1, · · · ,Qm−1) and P =
diag(P0,P1, · · · ,Pm−1) are block diagonal matrices.

Since the multiplications of binary matrices A, Q, and P
with vectors require only additions, The only multiplications

needed in (1) are entry-wise multiplication c · Pf ′. Imple-

mented directly, CFFTs in (1) require much fewer multiplica-

tions than direct implementation, at the expense of very high

additive complexity.

2.2. Common subexpression elimination

Common subexpression elimination is often used to reduce

the additive complexity of a collection of additions. Consider

a matrix-vector multiplication between an N ×M binary ma-

trix M and an M -dimensional vector x over a field F. It can

be done with additive operations only, the number of which

is denoted by C(M) since the complexity is determined by

M and irrelevant with x. It has been shown that minimizing

the number of additive operations, denoted by Copt(M), is an

NP-complete problem [10]. Therefore it is almost impossible

to design an algorithm with polynomial complexity to find the

minimum number of additions.

Instead of finding an optimal solution, different algo-

rithms have been proposed to reduce C(M). The CSE al-

gorithm proposed in [8] takes advantage of the differential
savings and recursive savings, and greatly reduces the num-

ber of additions in calculating Mx, although the reduced

additive complexity, denoted by CCSE(M), is not always the

minimum. Furthermore, the CSE algorithm in [8] is random-

ized, and the reduction results of different runs may not be the

same. Therefore in practice, we can run the CSE algorithm

many times and choose the best results. Using the CSE algo-

rithm in [8], the additive complexity and overall complexity

of CFFTs with length up to 1023 are greatly reduced. It is

more difficult to apply the CSE algorithm in [8] to CFFTs

of longer length. This is because though the CSE algorithm

in [8] is an algorithm with polynomial complexity (it is shown

that it has an O(N4 + N3M3) complexity), its runtime and

storage requirement become prohibitive when M and N are

very large, which occurs for long DFTs.

2.3. Prime factor and Cooley-Turkey algorithms

The basic idea of both the PFA and the CTA is to first decom-

pose an N -point DFT into shorter sub-DFTs, and then con-

struct the N -point DFTs based on the sub-DFTs. The PFA

assumes that N contains at least two co-prime factors, that is,

N = N1N2, where N1 and N2 are co-prime. For any integer

n ∈ {0, 1, · · · , N −1}, there is a unique integer pair (n1, n2)
such that 0 ≤ n1 < N1, 0 ≤ n2 < N2, and n = n1N2 +

451

n2N1 (mod N). For any integer k ∈ {0, 1, · · · , N − 1},

suppose k1 = k (mod N1) and k2 = k (mod N2), where

0 ≤ k1 < N1 and 0 ≤ k2 < N2. By the Chinese Remainder

Theorem (CRT), (k1, k2) uniquely determines k, and k can be

represented by k = k1N
−1
2 N2+k2N

−1
1 N1 (mod N), where

N−1
1 N1 = 1 (mod N2) and N−1

2 N2 = 1 (mod N1).
Let α be a primitive N -th root of 1. Substituting the repre-

sentation of n and k in αnk, we get αnk = (αN2)n1k1(αN1)n2k2 ,

where αN2 and αN1 are primitive N1-th root and N2-th root

of 1, respectively. The k-th element of the DFT is given by

Fk =

N1−1∑

n1=0

(

N2−pointDFT
︷ ︸︸ ︷
N2−1∑

n2=0

fn1N2+n2N1α
N1n2k2

)
αN2n1k1

︸ ︷︷ ︸
N1−pointDFT

. (2)

Hence, the N -point DFT is expressed based on N1-point and

N2-point sub-DFTs. By first carrying out N1 N2-point DFT

and then N2 N1-point DFT, the N -point DFT is derived. Note

that the N1- and N2-point DFTs can be further decomposed

by the PFA, if N1 and N2 have co-prime factors.

The CTA differs from the PFA in that the CTA does not

assume the factors of N are co-prime. The CTA also use

different index representations of n and k. Let N = N1N2,

then n = n1+n2N1, where 0 ≤ n1 < N1 and 0 ≤ n2 < N2,

and k = k1N2 + k2, where 0 ≤ k1 < N1 and 0 ≤ k2 < N2.

The k-th element of the DFT is given by

Fk =

N1−1∑

n1=0

(

N2−pointDFT
︷ ︸︸ ︷
N2−1∑

n2=0

fn1+n2N1
αN1n2k2

)
αn1k2αN2n1k1

︸ ︷︷ ︸
N1−pointDFT

. (3)

Compared with (2), (3) has an extra term αn1k2 called the

twiddle factor and requires extra multiplications. However,

the advantage of the CTA is that it can be used for arbitrary

composite length, including prime powers to which the PFA

cannot be applied. The CTA is often very effective if N has a

lot of small prime factors. For example, N -point DFTs by the

CTA require O(N logN) multiplications if N is a power of 2.

However, for DFTs over finite field GF(2l), the DFT lengths

are either 2l − 1 or its factors, and they do not have many

prime factors. In addition, the multiplicative complexity due

to the twiddle factor is not negligible for DFTs over finite

fields. Hence, we focus on the PFA in this paper.

3. PRIME FACTOR CYCLOTOMIC FOURIER
TRANSFORMS

3.1. Difficulty with long CFFTs

Consider an N -point DFT. Suppose there are m cyclotomic

cosets modulo N with respect to GF(2), and the i-th coset

consists of mi elements. Suppose an mi-point cyclic convo-

lution requires M(mi) multiplications, then the total number

of the multiplicative operations of implementing the N -point

DFT is given by
∑m

i=1 M(mi) and the number of the additive

operations is C(AQ) + C(P). The multiplicative complexity

can be further reduced since some elements in the vector c in

(1) may be equal to 1. We may then apply CSE to the matrices

AQ and P to reduce C(AQ) and C(P), respectively. Since

P = diag(P1,P2, · · · ,Pm) is a block diagonal matrix, it is

easy to see that Copt(P) =
∑m

i=1 Copt(Pi). Thus one can re-

duce the additive complexity of each Pi to get a better result

of C(P). The size of Pi is much smaller than that of P, and

it is possible to run the CSE algorithm many times to achieve

a smaller additive complexity. However, the matrix AQ does

not have this property, and the CSE algorithm has to be ap-

plied directly on this matrix. When the size of AQ is large,

the CSE algorithm in [8] requires a lot of time and memory so

that it becomes impractical. In [9], the reduced complexity of

2047-point DFT over GF(211) is given after simplifying the

CSE algorithm at the expense of performance loss. For the

same reason, it is difficult to reduce the complexity of 4095-

point DFT over GF(212) by the CSE algorithm in [8].

3.2. Prime factor cyclotomic Fourier transforms

Instead of simplifying the CSE algorithm or designing other

low complexity optimization algorithms, we propose prime

factor cyclotomic Fourier transforms by first decomposing a

long DFT into shorter sub-DFTs and then implementing the

sub-DFTs by CFFTs. We denote the additive (or multiplica-

tive) complexity of an N -point DFT over GF(2l) as K(N),
and the algorithm is denoted in the subscription of K. If

N can be decomposed as a product of s co-prime factors

N1, N2, · · · , Ns, we can use the PFA to decompose the N -

point DFT into N1-, N2-, · · · , and Ns-point DFTs. Suppose

we use CFFTs to compute these sub-DFTs, the additive (or

multiplicative) complexity of the N -point DFT is given by

KPFCFT(N) = KPFCFT(

s∏

i=1

Ni) =

s∑

i=1

N

Ni
KCFFT(Ni).

If the additive complexity of a directly implemented N -point

CFFT is O(N2), then the additive complexity of the corre-

sponding PFCFT is O(N
∑s

i=1 Ni), which is much smaller

than the CFFT, and can be even further reduced by the CSE

algorithm. Since the CSE algorithm is more effective for

shorter CFFTs, the decomposition makes it easier to reduce

the additive complexity of long DFTs. However, since the

CFFT has a very small multiplicative complexity, the mul-

tiplicative complexity of the corresponding PFCFT may in-

crease a little. Our results show that for long DFTs, the total

complexities of the PFCFTs are much smaller than the corre-

sponding CFFTs. In [6], the PFA is used to reduce the DFTs

complexity, but the idea of CFFT is not used.

452

L mult. CCSE(Q
(L)) CCSE(P

(L)) total

2 1 2 1 3

3 3 5 4 9

4 5 9 5 14

5 9 16 10 26

6 10 21 11 32

7 12 25 22 47

8 19 35 16 51

9 18 40 31 71

10 28 52 31 83

11 42 76 44 120

12 32 53 34 87

Table 1. Complexities of short convolutions

lengths mult. add. (scheme 1) add. (scheme 2)

3 1 6 6

5 5 21 17
7 6 31 24
9 11 51 48

11 28 106 86
13 32 125 100
15 16 90 80
17 38 153 183

23 84 335 407

31 55 338 358

33 85 420 438

35 75 407 304
45 90 481 415
51 115 641 755

63 97 791 1038

65 165 1093 883
73 144 1498 1567

85 195 1602 1817

89 336 2085 4326

91 230 1668 1418
93 223 1910 1408
117 299 2328 2015

Table 2. The reduced complexity for CFFTs whose lengths

are less than 200 and are factors of 2l − 1, 4 ≤ l ≤ 12.

3.3. Complexity reduction

We reduce the additive complexities of our PFCFTs in three

steps. First, we reduce the complexities of short cyclic con-

volutions. Second, we use these short cyclic convolutions to

construct CFFTs of moderate length. Third, we use CFFTs of

moderate length as sub-DFTs to construct our PFCFTs.

Our first step is to obtain short cyclic convolutions

with low complexity. Suppose an L-point cyclic convo-

lution a(L) ⊗ b(L) is calculated with the bilinear form

Q(L)(R(L)a(L) · P(L)b(L)), we apply the CSE algorithm to

reduce the additive complexities required in the multiplication

Length Decomposition mult. add. total

15 3× 5 20 81 221
63 9× 7 131 552 1993

255

3× 5× 17 910 3672 17322

3× 85 670 5316 15366
15× 17 830 4072 16522

5× 51 842 3655 16285

511 7× 73 1446 12238 36820

1023

3× 11× 31 4760 21198 111638

11× 93 50057 22672 118755

33× 31 4450 24174 108724
2047 23× 89 15204 77770 397054

4095

5× 7× 9× 13 22690 81303 603173

5× 7× 117 18070 98488 514098

5× 9× 91 19450 99573 546923

5× 13× 63 20480 96838 567878

7× 9× 65 18910 91509 526439

7× 13× 45 21780 83305 584245

9× 13× 35 23860 88908 637688

35× 117 19240 106093 548613

45× 91 18540 101575 527995

65× 63 16700 107044 491144

Table 3. The complexities of our PFCFTs of (2l − 1)-point

DFTs over GF(2l) (4 ≤ l ≤ 12) for possible decompositions.

The 31- and 127-point DFTs are omitted since our PFCFTs

reduce to CFFTs in these two cases.

with P(L) and Q(L) (the multiplication R(L)a(L) is precom-

puted). The additive complexities CCSE(Q
(L)), CCSE(P

(L)),
and the total additive complexity CCSE(Q

(L)) + CCSE(P
(L))

as well as the multiplicative complexities are listed in Tab. 1.

The short cyclic convolution algorithms for lengths 2–9 and

11 are from [9, 11–13], and the 10-point cyclic convolution

is built from 2- and 5-point convolutions while the 12-point

cyclic convolution is built from 3- and 4-point convolutions.

Convolutions with longer lengths are not needed in this paper.

The second step is to reduce the additive complexity of

CFFTs with moderate length, which will be used to build long

DFTs. Because of their moderate lengths, we can run the CSE

algorithm many times and choose the best results. For any k
so that k|2l − 1 (4 ≤ l ≤ 12) and k < 200, the multiplicative

and reduced additive complexity of the k-point CFFTs are

shown in Tab. 2.

Two possible schemes can be used to reduce the addi-

tive complexity of CFFTs in (1), and they may lead to differ-

ent additive complexities. Scheme 1 reduces C(AQ), while

scheme 2 reduces C(A) and C(Q) separately. From a the-

oretical point of view, it is easy to show that Copt(AQ) ≤
Copt(A) + Copt(Q), since (AQ)x = A(Qx). However, this

property may not hold for the CSE algorithm since it is not

able to identify all the linearly dependent patterns in the ma-

trix. We may benefit from reducing C(A) and C(Q) for the

453

N
[14] PFA [6] DCFFT [8, 9] PFCFT

mult. add. total mult. add. total mult. add. total mult. add. total

15 41 97 384 – – – 16 74 186 21 81 221

63 801 801 9612 – – – 97 759 1826 131 552 1993

255 1665 5377 30352 1135 3887 20902 586 6736 15526 670 5316 15366

511 13313 13313 239634 6516 17506 128278 1014 23130 40368 1446 12238 36820

1023 32257 32257 645140 5915 30547 142932 2827 75360 129073 4450 24174 108724

2047 76801 76801 1689622 – – – 7812 529720 693772 15204 77770 397054

4095 180225 180225 4325400 – – – – – – 16700 107044 491144

Table 4. Comparison of the DFT complexity reduction results in the literature and our paper.

following two reasons. First, Q has a block diagonal struc-

ture, which is similar as P, therefore we can find a better

reduction result for C(Q). Second, the size of A is smaller

than AQ, and hence the CSE algorithm requires less memory

and time to reduce A than to reduce AQ. The additive com-

plexities based on schemes 1 and 2 are both listed, and the

boldface additive complexity is the smaller one for each k.

In the third step, we use the CFFTs of moderate lengths

in Tab. 2 as sub-DFTs to construct long DFTs. Hence, we use

the complexities listed in Tab. 2 to derive the computational

complexities of the DFTs with composite lengths 2l − 1 over

GF(2l) for 4 ≤ l ≤ 12. All the possible decomposition of

2l − 1 with factors less than 200 and the corresponding mul-

tiplicative and additive complexities are listed in Tab. 3. Note

that for each sub-DFT, the scheme with the smaller additive

complexity listed in Tab. 2 is used in our PFCFTs to reduce

the total additive complexity. Since some lengths of the DFTs

have more than one decomposition, it is possible that one de-

composition scheme has a smaller additive complexity but a

larger multiplicative complexity than another one. Take 4095-

point DFT as an example. The decomposition 7× 9× 65 re-

quires 91509 additions and 18910 multiplications, while the

7×13×45 decomposition requires 21780 additions and 83305

multiplications. Therefore a metric of the total complexity is

needed to compare the total complexities of different decom-

positions. In this paper, we follow [8] and assume the com-

plexity of a multiplication over GF(2l) is 2l − 1 times of that

of an addition over the same field, and the total complexity

of an DFT is a weighted sum of the additive and multiplica-

tive complexities, i.e., total = (2l − 1) ×mult + add. This

assumption is based on both software and hardware imple-

mentation considerations [8]. Using this metric, in Tab. 3 the

smallest total complexity for each DFT is in boldface.

3.4. Complexity comparison

For composite N = 2l − 1 (4 ≤ l ≤ 12), the complexities of

our PFCFTs are compared to the best DFTs in the literature

known to us in Tab. 4. Although the FFTs in [14] are proved

asymptotically fast, the complexities of our PFCFTs are only

a fraction of those in [14]. Compared with the previous PFA

result [6], our PFCFTs have much smaller multiplicative com-

plexities due to CFFTs used for the sub-DFTs. The additive

complexities of our PFCFTs for N = 511 and 1023 are much

smaller due to CSE. Thus our PFCFTs have smaller total com-

plexities than those in [6]. Compared with the direct CFFT

(DCFFT) results in [8] and [9], for N ≥ 63, our PFCFTs have

much smaller additive complexities due to their decomposi-

tion structure. For instance, the additive complexity of our

PFCFTs is about half of that of the DCFFT for N = 511, and

one third for N = 1023. Although the multiplicative com-

plexities of our PFCFTs are somewhat larger than DCFFTs,

the reduced additive complexity outweighs the increased mul-

tiplicative complexity for long DFTs. Hence, our PFCFTs

have smaller total complexities than CFFTs in [8] and [9] for

N ≥ 255, and the improvement increases as N grows.

When the lengths of DFTs are prime (for example,

31-point DFT over GF(25), 127-point DFT over GF(27),
and 8191-point DFT over GF(213)), our PFCFTs reduce to

CFFTs. Therefore, our PFCFTs and CFFTs have the same

computational complexities in such cases.

...
...

...
...

· · ·

+ × +f F

c

Pf ′ c ·Pf ′

Fig. 1. The circuitry of CFFTs.

4. HARDWARE ARCHITECTURE OF OUR PFCFTS

CFFTs have a bilinear form, and therefore their hardware im-

plementation consists of three parts as shown in Fig. 1. The

input vector f is first fed to an pre-addition network, which

reorders f into f ′ and then computes Pf ′. Then a multiplica-

tive network computes the entry-wise product of c and Pf ′.
The DFT F is finally computed by the post-addition network

which corresponds to the linear transform AQ. Although the

structure in Fig. 1 appears simple, the two additive networks

454

are very complex for long DFTs. Even with CSE, the two

additive networks still require a large number of additions.

Furthermore, both lack regularity and structure, making it dif-

ficult to implement them efficiently in hardware.

In contrast, our PFCFTs are more suitable for hardware

implementation due to their regular structure. Since long

DFTs are decomposed into short sub-DFTs, their hardware

implementation becomes much easier and can be reused in

our PFCFTs. Fig. 2 illustrates the regular structure of our

15-point PFCFT. Instead using the circuitry in Fig. 1 for 15-

point CFFTs, we only need to design a 3-point CFFT module

and a 5-point CFFT module, and our 15-point PFCFT is

obtained by using these two modules, as shown in Fig. 2.

Even when the total complexity of our PFCFTs is higher than

that of CFFTs, our PFCFTs may be considered due to their

advantage in hardware implementation.

3

3

3

3

3

5

5

5

Fig. 2. The regular structure of our 15-point PFCFT.

5. CONCLUSION

In this paper, we propose a family of fast DFTs over GF(2l)
(4 ≤ l ≤ 12) with composite lengths, called PFCFTs. Our

PFCFTs have smaller total complexities that previously pro-

posed FFTs when N ≥ 255. Our PFCFTs of very long

lengths (say 4095-point) are the only known efficient DFTs

of such lengths. Finally, our PFCFTs also have advantages in

hardware implementation due to their regular structure.

6. REFERENCES

[1] “Hard disk drive long data sector white paper,” April 20

2007. [Online]. Available: http://www.idema.org/

[2] Y. Han, W. E. Ryan, and R. Wesel, “Dual-mode decod-

ing of product codes with application to tape storage,”

in Proc. IEEE Global Telecommunications Conference,

vol. 3, Nov. 28–Dec. 2, 2005, pp. 1255–1260.

[3] T. Buerner, R. Dohmen, A. Zottmann, M. Saeger, and

A. J. van Wijngaarden, “On a high-speed Reed-Solomon

codec architecture for 43 Gb/s optical transmission sys-

tems,” in Proc. 24th International Conference on Micro-
electronics, vol. 2, May 16–19, 2004, pp. 743–746.

[4] I. J. Good, “The interaction algorithm and practical

Fourier analysis: An addendum,” Journal of the
Royal Statistical Society. Series B (Methodological),
vol. 22, no. 2, pp. 372–375, 1960. [Online]. Available:

http://www.jstor.org/stable/2984108

[5] J. W. Cooley and J. W. Tukey, “An algorithm for the

machine calculation of complex Fourier series,” Math-
ematics of Computation, vol. 19, no. 90, pp. 297–301,

1965.

[6] T. K. Truong, P. D. Chen, L. J. Wang, Y. Chang, and I. S.

Reed, “Fast, prime factor, discrete Fourier transform al-

gorithms over GF (2m) for 8 ≤ m ≤ 10,” Inf. Sci., vol.

176, no. 1, pp. 1–26, 2006.

[7] P. V. Trifonov and S. V. Fedorenko, “A method for fast

computation of the Fourier transform over a finite field,”

Probl. Inf. Transm., vol. 39, no. 3, pp. 231–238, 2003.

[8] N. Chen and Z. Yan, “Cyclotomic FFTs with reduced

additive complexities based on a novel common subex-

pression elimination algorithm,” IEEE Trans. Signal
Process., vol. 57, no. 3, pp. 1010–1020, Mar. 2009.

[9] M. D. Wagh, N. Chen, and Z. Yan, “Cyclo-

tomic FFT of length 2047 based on a novel 11-

point cyclic convolution,” 2009. [Online]. Available:

http://arxiv.org/pdf/0812.2971

[10] M. R. Garey and D. S. Johnson, Computers and In-
tractability: A Guide to the Theory of NP-Completeness
(Series of Books in the Mathematical Sciences). W. H.

Freeman, January 1979.

[11] R. E. Blahut, Fast Algorithms for Digital Signal Pro-
cessing. Addison-Wesley, 1985.

[12] ——, Theory and Practice of Error Control Codes.

Addison-Wesley, 1984.

[13] P. V. Trifonov, private communication.

[14] Y. Wang and X. Zhu, “A fast algorithm for the Fourier

transform over finite fields and its VLSI implementa-

tion,” IEEE Journal on Selected Areas in Communica-
tions, vol. 6, no. 3, pp. 572–577, April 1988.

455

