ROBOT PATH PLANNING USING INTERSECTING CONVEX SHAPES

SANJIV SINGH* - MEGHANAD D. WAGH**

* (ivil Engg., Robotics Lab, Carnegie Mellon Univ., Pittsburgh, PA 15213
** Dept. of Computer Science & Electrical Engg., Lehigh Univ.,

Bethiehem, PA 18015

Abstract. This paper deals with an automated
path planning algorithm for a mobile robot in
structured enviornment. The algorithm is based upon
finding afl the largest (prime) f{ree convex areas in the
environment and representing this information in the form
of a graph. A graph traversal algorithm which exploits
back-tracking as well as dynamic cost allocation to graph
arcs is presented and simulated. A strategy to trade off
the optimality of the results for a smaller computation
time is described.

L. Introduction.

Considerable attention has been focused on
automatically planning paths for mobile robots between
arbitrary source and destination points and a variety of
different. algorithms are now available to solve this
problern!, Most of algorithms yield
either non-optimal solutions or are computationally
expensive. A path finding strategy that is
computationally efficient and yields near-optimal results
has been reported recently!. This paper extends the
results presented in that work by studying the trade off
between the computation time and the optimality of the
paths obtained.

these however,

new

The simplest approach to the path finding problem
involves creation of a connectivity graph where each node
represents a possible source or destination point and each
link has associated with it a predetermined path of
corresponding length. Determination of a path between a
given pair of source and destrination points can then be
donc either by scarching the connectivilty graph for the
shortest path, or by looking up a table of precomputed
best paths from all possible source destination pairs.
However, this method is severely limited- there is no
scope to starl or to end at a point not included in the
initial list of points. Also, modifying this list is time
intensive as well as futile for the case where there may
be arbitrary starting and ending points. In the past, this
method has been used with some amount of success in
situations where the robots are only required to repeat a
few fixed paths and the probability of adding a new path
to the list is very low.

Earlier research on this problem by lgnat’yvev?, and
Lozano-Perez® reported a technique called V-Graph which
uses a graph of vertices between which travel is possible
in a straight line. =~ This is essentially a table of which
nodes (vertices) are “visible” (can be traveled to in a

CH2282-2/86/0000/1743%01.00 © 1986 IEEE

1743

straight line) from cach node. However, every time the
source and destination points are specified, the graph has
to be augmented with new nodes and new links. Thus,
not only does the resultant graph have a large number of
links but the establishment of links s
complex.

these highly

The other approach used more recently™® has been
to partition the free space into convex polygons since any
two points in a convex shape can be joined with a
straight line without leaving the shape. If convex shapes
can be found such that they represent areas free of
obstacles, then a robot can travel between two points in
that area without colliding into obstacles. Crowley and
Chatila suggest breaking up the frec area (for traversal)
into non-overlapping convex shapes™. Development of
the path depends on traversing the connectivity graph
that is produced by representing free convex polygons as
nodes. Nodes corresponding to polygons with common
edges are joined by arcs. The problem with a strategy
that breaks up space into non-overlapping areas is that it
fails to take full advantage of convexity and consequently
misses some straight line paths that may belong to a
convex area that the procedure is not aware of. This is
a natural consequence of the fact that the need for non-
overlapping arcas overlooks a considerable number of
convex areas in the layout. Further, if the paths are not
dynamically refitted to be optimal, paths that would be
“naturally™ straight, turn out to be quite contrived. This
effect is particularly pronounced if there are relatively
large frce arcas to contend with. However, there is a
one-to-one correspondence between © the source and
destination points in free space and the graph nodes, and
thus the method is successful in getting around the high
computational expense at the cost of optimality.

In this paper, we expand upon the work reported in
Singh! which exploits the concept of convexity by
identifying all the largest rectangular free areas. In order
Lo achieve near-optimality, without sacrificing
computational efficiency, a graph is created with nodes
corresponding to each such convex area. Intersecting
convex shapes are represented as adjacent nodes. Path
planning is then reduced to finding a route from a source
node to a destination node through the graph and
choosing the best possible path based on a given cost

function. The cost function used in this paper is the
length of the path. In order to improve the
computational complexity, and to provide a reasonable

data base, the obstacles as well as free areas are chosen

The
size and equivalently the robot is shrunk to a point to
simplify path planning without collisions. The advantages
of this method that 1t allows the extraction of all
near straight line paths, precomputation of the database
and graph generated, and a systematic trade-off between
the optimality and computation time.

to be rectangular in shape. obstacles are grown in

are

2. Path Planning Using Intersecting Convex Shapes.

For
attention

computational simplicity, we restrict
only to rectangular free (there arc an
infinite number of nonrectangular free areas). Given a
map of the boundaries and the obstacles, the environment
is partitioned by the edges of these shapes into a grid of
alt most 2n--1 x 2n-= 1 rectangles where a is the number

our
areas

of such inadmissible arcas representing obstacles. Fach
such rectangle can be represented by a pair of binary

strings each at most 2n41 bit long.
represents the relative z position and the right the y
position. For example, a partition that is second from
the left and third from the top could be represented by
the string

The left sub-string

01000 0100

used for
A string

A similar notation can be

several of the

areas made up of
rectangles.
11000 o0110

for example, represents a convex arca made up of 4 cells:

and

Q= QO+
o000
[eleRoNe]
OO
= H OO0
.OOOO

A prime convex area is a free area which s not part
of any other free area. The following algorithm may be
used to identify «all the prime convex areas by fusing
together the free rectangular cells from the grid described
above. This algorithm is, in some sense, similar to the
Quine-McCluskey technique® used to identify all the prime
implicants of a logical expression.

Prime Conver Area Idenitfication Algorithm

Step 1. Represent each horizontal strip (made up of
horizontally aligned cells) by means of a pair of 2n+1
length binary strings. The right sub-string has only one
bit set corresponding to the vertical position of the strip.
The left sub-string has those bits set which correspond to
the free rectangles in the strip.

Step 2. Find all the contiguous free rectangles in

cach horizontal strip. This is done by breaking up the
left sub-string into contiguous runs of 1's and repeating

the right sub-string in cach part.

Step 3. Make a list of all strings gencrated by
2 such that

step

1. Strings arc grouped by identical right sub-

strings.

2. Groups are ordered by the position of 1s in
the right substrings.

1744

Step 4. Generate a new list of strings from the old
list of strings based upon the following rules:

1. The new #th group of strings is generated by
combining each string from the old #th group
with each string from the old «+1-th group. 1
= 1,2,...

2. Two strings are combined by (logically) OR-ing
the right sub-strings and (logically) AND-ing
the left sub-strings. If the new string has a

null (all zero) left sub-string, discard that
string. Otherwise, add it to the new list.

3. Every time a string is added to the new list,
check off el the strings from the old lists that
are covered by the new addition. A string S,
is said to be covered by a string S, if logical

OR-ing of the two strings yiclds S,.

Step 5. Repeatl step 4 if the new list generated has
two or more groups.

Step 6. A string from any list that is not checked
off represents a prime convex area for the layout.

The next step in path planning is the setting up of
a graph with prime convex areas as nodes. Two nodes
are joined by an arc if the areas they represent, intersect.
An arc has associated with it information about the area
of intersection of the prime areas representing its ends.
Fig. 1 shows a typical layout with two objects and the
corresponding graph is given in Fig. 2.

N

7

Fig. 1. An environment partitioned by

the edges of obstacles

H optimality is not a criterion, the prime convex
the points are
determined, may be

source and destination
and the graph

which
may be

areas In
located

traversed {rom the source node to the destination node
using one of a variety of techniques available™. The
consideration of optimality, however, brings about

- One should therefore dynamically assign costs to

path segments as the actual point path develops. Fig. 3

two illustrates the graph traversal from node X to X, , and

complicalions: then to either node X, or toX", .- Let a, b andd’

denote areas of intersection of X, and X1 XiAJ and

~» Both thé source and destination points may Xi+2; and X, , and X Also denote by

fall inside several different nodes (since we mid{b) and mid(b") midpoints of the two interscctions.
have intersecting prime convex areas). Thus

0 Assume that the current path has progressed till a point
all possible paths originating from vaelid C, in node X. TFor the sake of choosing the next
starting nodes and terminating on wvelid ending ' !

nodes have to be considered.

& Arcs cannot have fixed weights attached to
them because any two points in one convex
area are nol necessarily equidistant o a point
in another convex area. This means that the
cost of traveling from one node to another is
dependent on where the points are actually
located in the convex areas and has to be mid (b) X-+2
computed every time a path segment is chosen. . 1
\
\
\
\
\
c A N
N\
C.
i+l
\ Xi (a)
C.
7 i
c! iy
i+l |,
/
’
/
/
/
K
/
. X!
mid(b') i+2
Xiv1

Fig. 8. Development of a path segment based upon

h 4 esponding relative position of a future node
graph node ?orr
prime convex area segment of the shortest path, one should look ahead to
A 11111 10000 nodes to be visited in the future. In the procedure

presented here, we look ahead only one node
B 71111 00100

Assuming that the graph traversal is X,-» X
1

i1 T
111 ©0000 X, o0 Join points C, and mid(b) by a straight line. If the

Q
i
-

D oo0111 11100 line intersects area a. then the next path point chosen is

the point where the line first meets a. On the other
E 11100 ©O0111 hand, if the line does not intersect a, then the next point
- 10000 11111 ('hosc.n on the path is the corner of ¢ that is closest to

the line. This second case is illustrated by the graph
e oo0100 11111 traversal X;-» X, | - X The point chosen is
; 60001 11111 labeled C,., and the path segment C, o ("Hl s added to

the current path. For the purposes of this paper, the

cost allocated to this segment is merely proportional Lo
areas for the layout of Fig. 1 its length. Since the new point G,

Fig. 2. Graph of intersecting prime convex

S now ')
is now in XH], a

1745

similar procedure could be used to continue path planning
till the destination node is reached.

It can be that the cost allocation to the
developing path lags behind the graph traversal by onc
step.
the graph node path progresses at least to the third node.
Similarly, when X, | is the final destination node {and

sechn

Consequently, cost assignments cannot begin until

therefore there is no XHZ node), the final destination
point itself is place of mid(b}) in the above
description to compute the last two path segments. The
graph traversal technigue used maintains two concurrent
paths, one going through the graph modes, X,, and the
Note that the list
of C, lags behind the list of X, for the reason described

used in

other going through path points, G,

above. Assuming X, is the current node, € is the

i1
current. point on the path and, S and D denote the sets
of starting and ending nodes, respectively, the procedure

reads as follows:

Dynamic Cost Allocation Graph Traversal Algorithm

initialize
bestcost := o©o¢ , currentcost := O
unwark all graph arcs
set tcost for all arcs not emanating from a
destination node =00
set tcost for all arcs emanating from a
destination node = O

{tcost associzted with an arc Xi , Xj ie the

tentative minimum cost of reaching =a
destination node via that arc starting
from Xi}
findnewnode [X.

1+1]
Choose X. such that
i+1

an arc exists between Xi and Xi+1

and X501

end Xi+1 is not in S

is not on current node path

and Xi+1

{the arc has not already been considered
and rejected}

and the arc between Xi is not marked

.
moveforward[to X, ;]

Add Xi;1 to current node path
Determine C; {as explained earlier}

Add €, to current point path

Add cost of segment C. _ » Ci

1 to current cost

ioi= 41 + 1
backtrack [from Xi4q to X3
Unmark all arcs originating from Xi+

to Xi+1

1
Mark arc from Xi

min := minimum tcost associated with an arc
emanating from Xi+1 (except Xi+171 Xi)

if min < o¢ then delete each arc Xi+1 — Xj
with tecost > fSmin (§ # i)

and set (tcost of Xi - Xi+1) := m + cost

of segment c; — Ci+1

Reduce the current cost by the
cost of Ci g7 Oy

Remove X from current node path

i+l
C; from current point path

1746

path planning {main program}
determine S, 3
ifSnD# ni then
compute straight line path
else
initialize
S do
i := O; backtrackflag :=

findnewnode[Xi+1]

for every XOE

false

while (newnode exists)
if backtrackflag =

or (i > 0O) do
true then

b?cktrack[from Xi+1 to Xi]
flndnewnode[Xi+lj
endif
if newnode exists then
moveforward
if (currentcost > bestcost) then
backtrackflag := true
else

if X; ;€ D then
copy best path
backtrackflag :=

else
f1ndnewnode[Xi+1]

endif

endif
endif

endwhile

true

B

3. Results of Simulations.

This section describes the results obtained by
shimulating the algorithms of Sec. 2 for the layout shown
in Fig. 4 for the four indicated source destination pairs.
Parameter 3 used in the backtrack procedure of the
Dynamic Cost Allocalion Graph Traversal Algorithm was
important to strike a balance between the computational
time of the algorithm and the optimality of the solution.
In the simulations reported, 8 was varied between 1 and
1.9. The amount of time it took the graph
algorithm to come up with a path is shown as a function
of 3 in Fig. 5. Fig. 6 shows the dependance of the
deviation from optimality (averaged over all four paths)
on . It may be that as A Increases, the
computation time goes up. At the time the
optimality improves but the small set of data and limited
range of A used here does not illustrate this fact fully.
The impact of 3 on the algorithm performance can be
understood as follows. When one backtracks from point
X;,; to X, it is because all the possibilities of reaching
the destination from X, , have been explored. 1 a
particular path, amongst those explored, has a cost that
is substantially lower than the others, then obviously the
other paths should be discarded.

traversal

seen
same

In the present case, however, there is an additiopal
complication. As depicted in Fig. 3, the actual cost of
the path from a node to the destination point is based
upon the path” and not on the “node path”.
Thus if one arrives af Xiﬂ from different nodes, the
actual point paths to the destination (cven though they
may go through the same nodes) will have differing costs.
In fact, this same consideration keeps us from assigning
static costs to the graph arcs. However, it is reasonable
to assume that the costs of paths originating from

“point

different points in the same node, going through the same

set of nodes and terminating at the same destination
point may nol differ from one another by large
percentages. We use f to estimate the velalive cost

difference between such paths and discard a node path
originating from node X, , if the cost of its currently
associated point path is atleast B times greater than the
cost of a point path associated with another node path.

The parameter 8 thus allows us to adjust for the
differences between the point path and the node path.
For 8 = 1, the algorithm converts to one that identifies a

node path with a point path and assumes that the cost
of node path is independent of the location of the starting
point within the origination node. Conversely, 8 oo
implies that the node path and the associated point path
are independent of cach other and the cost of a node

path could change drastically if the starting point is
located differently within the origination node.

We discard a node path (Xivp Xpg oo) by
deleting the arc from X, to X ,. [t should be pointed

out here that since the arcs in the original graph are not
directed, this deletion should not alter the arc {rom an
to X,, ;- In the data structure used in our programs, we
achive this by representing each graph arc through two
directed arcs. These deletions ensure that as the search
for an optimal path progresses, the number of arcs in the
graph decrease and the search becomes faster.

100
50 4
"]
70 / \
/B
60 ‘ A
50 /
| -
400 . 2 /
\ 11/
20 / /‘i‘/@/
1
— B

OJ.// T
0 10 20 30 40 50 60 70 8 9% 100

Source Destination

(68, 0) (80, 100)

(10, 100) (100, 50)

(45, 98) (0, 10)

(o, o) (100, 4B)

Fig. 4. The Simulated layout and the optimal paths

1747

40_7‘, ! [

35 . ﬁ»’&f\’_’—
N VAY
: /
ANRREEED
s X
N
5 T [|

1
090 1.00 110 120 130 140 150 1.60 1.70 1.80 1.90

Fig. 5. Computation time for the paths in

the layout of Fig. 4

As B aproaches unity, a large number of arcs may
be deleted at every backirack step and therefore the
graph size and the computation time reduces quickly.
Fig.s 6 and 8 show this predictable trend in the
computation time. Similarly as B decreases from cc, the

o |

OL S -'J]

1 T ; A
090 100 L10 120 130 140 150 L60 170

Fig. 6. Average deviation from optimality of the

paths in layout of Fig. 4

path obtained from the algorithmy moves further and
further away from the optimal path. However, the entire
procedure being discrete, the percent deviation fromr the
optimality does not exhibit a nice and smooth monotonic
characteristics. From the limited number of simulations
performed, one may sce that for many cases. even for 3

1, the deviation from optimality is not large.
However, it should be noted that onc may sometimes

come across cases for which a decrease of 4 to such small

very

values may cause a large deviation from optimality. In a
realistic application, this may be acceptable since the

optimality criterion is not necessarily based only upon the
shortest distance. Finally, before this technique is
applied, one may have 1o obtain suitable range of g
values for the given layout through typical simulations.

1. Conclusions.

The algorithm presented here appears to hold
promise for planning paths of robots that operate in a
structured environment. 1t makes
travel

use of all the convex
robot can through freely. As a
the paths obtained are more optimal but
because of a larger graph size, take longer to compute.
It has been shown that by contrelling a particular
parameter (A) in the algorithm, one may be able to
systematically trade-off the optimality of solution for the
computational time. This may prove to be a very useful
feature of this algorithm. Finally, it may be noted that
if the obstacles arc better lined up (as is the case for
most industrial set-ups), then both the computation time
and the data base size required by this algorithm are
both drastically reduced.

areas a
consequence,

1748

2]

13

3 M. M. Mano,

References.

' S. Singh, “Path Planning and Navigation for a

Mobile Robot,” Master’s thesis, Department of

Computer Science and Electrical Engineering,
Lehigh University, August 1985.
M. B. lgnat’yev, F. M. Kulakov and

A. M. Pokrovsky, “Robot Manipulator Control
Algorithms,” Tech. Report JPRS 59717, NTIS.
August 1973,

T. Lozano-Perez and M. A.
algorithm for planning
among obstacles.” Communicalions
vol. 22, pp. 560-570, October 1979.

“An
paths
of ACM,

Wesley,
collision-free

Jo L. Crowley, “Navigation for an Intelligent
Mobile Robot,” Tech. Report CMU-RI-
TR-84-18, Carnegie-Mellon Univ., August 1984.

R. Chatila, “Path planning and environment
Jearning in a mobile robot system,” Furopean
Conf. on Artificial Intelligence, Orsay, France,
July 1982,

“Digital Design,” Prentice-Hall
Inc., Engelwood Cliffs, NJ, 1984.

E. Horowitz and S. Sahni, “Fundamentals of

Computer Algorithms,” Computer Science
Press, Rockville, MD, 1984.

. E. Kwuth, “The Art of Computer
Programming: Fundamental Algorithms,” Vol.
1, Addison-Wesley Publication, Reading, MA,
1968.

