
ROEOT PATH PLANNING USING INTERSECTING CONVEX SHAPES

SANJIV SINGH* - MEGHANAD D. WAGH**

* C i v i l Engg., Robotics Lab, Carnegie Mellon Univ.,
** Dept. of Computer Science 8 E l e c t r i c a l Engg., Leh

Bethlehem,’ PA 18015

Abstract. This paper dcals wit.11 a11 aul.oltra.tctd
pat11 plan~ring algorithm for a rrrohile robor i n ?J

st,ructurt:d or~viorr~rnent.. ‘I’hc algori th~n is baseti I I ~ O I I

finding d l the largest (p r ime) free (:onvex areas i n t I I V
p~~vi ronr r~cnt , and represcnt,ir~g this inforrr~at,ion i r i t.he fo rm
o f a graph. ,\ grapll t,ravcrsal algorit,hm which exp1oit.s
back-tracking as well as dynamic cost aIlocal,ior~ 1.0 graplr
arcs is prcsent,ed and si~n~lat ,ed. A stra.t.egy ~o (,rad(> o f f
t ,he optirnality o f I,he rcsuits for a smaller cornputation
t.inle is described.

- 1. Introduction.

Considerable att,cntion has bren focllsrd on
aut,omat,ically planning paths for mobile robots brr.wrrn
arbit,rary source and destination poin1.s and a varic1.y of
riirfererrt, algorithrlls are now available to solve t.his
problcrrl’.“. ~ o s t , o f tI~c+sc: aIgorit,hrr~s howcvc:r, yield
eit,her non-ophnal solutions or are computationally
expensive. A new path finding strategy that is
computationally efficient, and yields near-optimal results
has been reported recent,ly’. This paper extends the
results presented i n t h a t work by studying the trade off
between the cornputation time and the optimality of t.he
pat.hs obtained.

‘The sirrlplest approach to t,tw path finding problerrl
i]JvOlVeS creat,ion of a connectivity graph wherv each Ilode

repres&t,s a possible source or destination point and each
]ink tias associated with it a predetermined path of
corresponding length. I)et.ermirlation of a path between a
given pair of source and dcstrination poink can then be
done either by searching t,hc connec1,ivity graph for t.he
sllort.est path, or by looking u p a table of preconlputrd
best. pa,ths fronl all possible source desl,ination pairs.
Iiowever, this neth hod is severely limited- l .hcre is no
scopc: to s tar t , or to end at. a point, not included i n the
initial list, of points. Also, modifying this list. is tirnr
intcnsivc as well as futile for the cas(: where there m a y
b e arbitrary start,ing and cr~ding poinLs. I n t h c past , th is
rrlethod has been used with some ar r lou l l t of S I I C C ~ S S i n
sit,uat,iorls where the robots are only requircd t,o re1)ra1 a
few fixed p a t l ~ s a n d t,h(. probability of adding a IIPW path
to the list is very low.

Earlier research on this problem by lgnat’yev2, and
Lozano-Perez3 reported a technique called V-Graph which
uses a graph of vertices between which travel is possible
in a s t ra ight line. This is essentially a table o f which
nodes (vertices) a re “visible“ (can be traveled 60 i n a

Pi t t sbu rgh , PA 15223
i gh Un iv . ,

CH2282-2/86/0000/1743$01.00 0 1986 BEE
1743

t,raversed frorrl the source node to the destination node
using on(% of a varicty of 1,echniqnes a ~ a i l a b l e ’ . ~ . l’hc
consideration of oplinmlity, however, brings about, t w o
complications:

Both thil source and dt.stir~abion points may
fall inside several different. nodes (sin(:(: w c
have intersect,ing prime convex areas). Thus
all possible paths originating frorn valid
start.ing nodes and terminating o n vulid ending
nodes have to be considered.

- One should therefore dynamically assign cost.s t ,o
pat.11 srgrr~onts as the' ac.(.ual point. pat.h dovclops. I:ig. :<
i l l t ~ s ~ r a t e s t . l w graph traversal frorn nod(, X i to Xi- , anti
then to either node Xit2 or Let (I: b and b ’
denote areas of intersection of Xi and Xi+.,; X i _ , and
XitZ; and xi,^] and X’i t2 . Also denote by

r n i d (b) and r n i d (b ‘) midpoints of the t.wo interscctiorts.
Assume that the current path has progressed till a point
Ci i n node Xi. For the sake of choosing the next,

Arcs cannot have fixed weights at,tachcd to
r.hcrn bocause a n y two poini,s i n on(! convcx
area are not necessarily equidistant t o a point
in another convex area. This means that, the
cost of traveling from one node to another is
dependent on where the poinhs are actually
located in the convex areas and has I,O be
computed every t,ime a path segment is choscn.

C A

graph node

A

B

C

D

E

F

G

H

Fig.

prime convex area
corresponding

1 1 1 1 1 1 0 0 0 0

1 1 1 1 1 0 0 1 0 0

1 1 1 1 1 0 0 0 0 1

0 0 1 1 1 1 1 1 0 0

1 1 1 0 0 0 0 1 1 1

1 0 0 0 0 1 1 1 1 1

0 0 1 0 0 1 1 1 1 1

0 0 0 0 1 1 1 1 1 1

2. Graph of int.ersecting prime convex

areas for the layout, of Fig. I

J I
.I

I 745

Dynamic Cost Allocation. Grczph 7raaersal AIgorith?ri

initialize
bestcost := 00 , currentcost := 0
unmark all graph arcs
set tcost for all arcs not emanating from a

destination node =co
set tcost for all arcs emanating from a

destination node = 0
{tcost associated with an arc Xi 8 X. is the

tentative minimum cost of reaching a
destination node via that arc starting

J

from Xi)

findnewnode
Choose Xi+1 such that

an arc exists between Xi and Xi+,
and Xi+1 is not on current node path
and xi+1 is not in S
(I i 1 d the arc between Xi and Xi+l is not marked

{the arc has not already been considered
and rejected)

moveforward !to
Add Xi-l to current node path
Determine C. {as explained earlier)
Add Ci to current point path

Add cost of segment Ci-l 9 Ci to current cost
i .- . - i + 1

hacktrack[from to xi]
Unmark all arcs originating from X.
Mark arc from Xi to Xi+1
min := minimum tcost associated with an arc

emanating from Xi+l (except X.
if min < cc then delete each arc Xi+1 1 Xj

with tcost > i9.min (j ~/ i)

151

=+I ~+ Xi)

and set (tcost of xi --. := m + cost
of segment C. --+ Ci+l

Reduce the current cost by the
cost of ci-l -- ci

Remove Xi+l from current node path
Remove C- from current point path
i .- . - i - 1

path planning {main program)
determine S, D ;
if s I1 1) f nil then

else
compute straight line path

initialize
for every X. i s do

i := 0;
f indnewnode [X.

backtrackflag := false

while (newnode exists) or (i > 0) do
if backtrackflag = true then

1+11

backtrack[from Xi+l to Xi]
f indnewnode [Xi+l]

endif

if newnode exists then
moveforward
if (currentcost > bestcost) then

else
backtrackflag := true

if Xi+1 t D then
copy best path
backtrackflag := true

findnewnode [Xiil]
else

endif
endif

endif

endwhile

1746

W(- discard a nodr pat,\] (Xi i j , X i - 2 , ... 1 b y
deleting the arc from X, ~ to xi^, 2 . It should b t . pointed
out here that since the arcs i n the original graph are n o t
directed, th i s deletion should no t a lk r t he a r c from X i i Z
to X i , ,. In thr d a t a st,ruct,ure used in our programs, we
a.chive t.his by representing each graph arc t.hrough t,wo
dirccted arcs. 'T'hvse deletions ensure that, as t h r search
for an optimal path progresses, the number of arcs i n th r
graph decrrasr and the sc:arc:h becomes faster.

(56, 0)
(10, 100)

(80, 100)

(46, 95) (0, 10)
(0, 0) (100, 46)

Source Destination

(100, 60)

Fig. 4. The Simulated l ayou t and the opt,imal paths

As p aproachcs unity, a large number of arcs may
be deleted at every backtrack step and therefore thr
graph size and the computation t,ime reduces quickly.
Fig.s 6 and 8 show this predictable trend in the
computation time. Similarly as p decrmses fro~rl cc) the

1747

1748

