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Robot  Path  Planning  using  Intersecting  Convex 
Shapes: Analysis and  Simulation 

Abstract-An automated path  planning  algorithm for a mobile robot 
in a  structured  environment is presented. An algorithm  based on the 
Quine-McCluskey method of finding prime implicants in a logical 
expression is used to isolate all the largest  rectangular  free convex areas in 
a specified environment. The free convex areas  are  represented as nodes 
in  a  graph,  and  a  graph  traversal  strategy  that  dynamically allocates costs 
to graph  paths is used. Complexity of the  algorithm  and  a  strategy to 
trade optimality for smaller computation time  are discussed. 

T 
I. INTRODUCTION 

HE TASK  of  moving robots in mapped environments is a 
two step process: 1) planning paths that are optimal by 

some criteria and 2) controlling the robot to execute the 
planned  paths gracefully. This paper deals with the former 
issue by suggesting a new  path finding strategy that is 
computationally efficient and yields near-optimal results. 

Earlier research in this area can be summarized by three 
approaches-Lozano-Perez [ 11 used a ‘‘visibility graph”  to 
set up a configuration space that can be mapped into a graph of 
vertices (representing corners of obstacles) between  which 
travel is possible in a straight line. Fixed costs are allocated to 
graph arcs, and the graph is searched for a path between 
source and destination. A disadvantage of this method  is that 
every time source and destination points are changed, the 
visibility graph has to be recomputed. Recently it has been 
shown that the time taken to  do this is of O(n2) [2],  [3]. 

Thorpe [4] imposed a regular grid on the environment, 
representing grid points not within the boundaries of obstacles 
as nodes  with arcs to the eight neighbor nodes. He used an A * 
search to traverse the graph obtained, employing a cost 
function that kept the path from getting too close to obstacles. 
Since the graph obtained is very large, heuristics have to be 
used to find solutions. 

Another approach has been to partition free space into 
convex polygons. This approach capitalizes on the fact that 
any  two  points  in a convex polygon can be joined with a 
straight line without leaving the polygon. If convex polygons 
can  be found such that  they represent areas free of obstacles, 
then a robot can travel between two points in that area without 
colliding into obstacles. Crowley and Chatila suggest breaking 
up the free  area (for traversal) into nonoverlapping convex 
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polygons [5 ] ,  [6]. Development of  the  path depends on 
traversing the connectivity graph that is produced by repre- 
senting “free” convex polygons as nodes with arcs  to nodes 
representing geometrically adjacent free convex polygons. 
The problem with a strategy that breaks up space into 
nonoverlapping areas is that it fails to take full advantage of 
convexity and consequently misses some straight line paths 
that  may belong to a convex area of which the procedure is 
not aware. This is a natural consequence of the fact that this 
method overlooks a considerable number of convex areas in an 
environment. Further, if paths are not dynamically refitted to 
be optimal, paths that  would be “naturally” straight, turn out 
to be contrived. This effect is particularly pronounced if there 
are relatively large free areas with which to contend. How- 
ever, there is a one-to-one correspondence between the source 
and destination points in free space and the graph nodes. Thus 
the method is successful in getting around the high computa- 
tional expense at the cost of optimality. 

Brooks [7] proposed a method that combines the advantages 
of both the earlier approaches. Instead of determining the 
corners of objects that are visible, his method isolates free 
areas in the form of generalized cones. Brook’s robot always 
traverses along the axes of free cones, and generously avoids 
the obstacles. Optimality is lost, however, because, although 
the cones overlap, one does not make full use of convexity. 
Kuan et al. [8] further improved Brooks’ method by using a 
mixed representation of free space. Their strategy used cones 
to represent narrow spaces and nonoverlapping convex poly- 
gons for larger free areas. Though their method works well for 
highly cluttered environments, the drawbacks associated with 
nonoverlapping areas still remain. It is worth mentioning that 
none  of these methods exploits any benefits from an orderly 
orientation of the obstacles. 

The path planning algorithm discussed in this paper (first 
presented in [9]) derives benefit from the concept of convexity 
by identifying all the largest rectangular free areas. A graph is 
created with nodes corresponding to each such convex area. 
Intersecting convex shapes are represented as adjacent nodes. 
Path planning is then reduced to finding a route from a source 
node to a destination node through the graph and choosing the 
best possible path based on a given cost function. 

Several assumptions are made in this paper. 
A circular robot that can turn in place is  assumed  when 
optimality is mentioned. This allows one to shrink the 
robot to a point and to grow the obstacles by the radius of 
the robot. 
Obstacles are approximated by iso-oriented rectangles in 
which the edges are parallel to the coordinate axes. 
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The cost allocated to a path or a portion of a path  is 
directly proportional to its geometric length. 

11. ISOLATION OF PRIME CONVEX AREAS 

The algorithm presented here tries to isolate the largest 
“convex” areas that are free of obstacles. In this paper 
attention is restricted to rectangular convex areas as there are 
an infinite number of nonrectangular areas. This assumption 
of iso-oriented rectangles also helps in keeping  the computa- 
tional costs down. 

A convex area is an area that  is free of obstacles and  has the 
property that any two points in  that area can be joined by a 
straight line that lies entirely within  that area.  A prime  convex 
area is an area that  is free of obstacles and  is not fully 
incorporated in  any other single prime convex area. 

Given a map of boundaries and obstacles, an environment is 
partitioned by the edges of these shapes into a grid of at most 
2n + 1 x 2n + 1 rectangles where n is the number of such 
inadmissible areas representing obstacles. Each  such rectangle 
is represented by a pair of  binary strings each at most 2n + 1 
bit long. The left substring represents the relative x position 
and  the right they position. For example, for n = 2 as in Fig. 
l(a),  a partition that is second from the left and  third from the 
top could be represented by the string 

0 1 0 0 0  0 0 1 0 0 .  

A similar notation can be used for areas made  up  of several 
partitions. The string 

1 1 0 0 0  0 0 1 1 0  

represents a larger rectangle made up of four partitions: 

1 0 0 0 0  0 0 1 0 0  
0 1 0 0 0  0 0 1 0 0  
1 0 0 0 0  0 0 0 1 0  
0 1 0 0 0  0 0 0 1 0 .  

The following algorithm may be  used to identify all 
(rectangular) prime convex areas by fusing together free 
rectangular cells from the grid described. This algorithm is 
similar to the  Quine-McCluskey technique [lo]-[12] used to 
identify the prime implicants of a logical expression. 

The following six steps describe the method used. 

Step I 
Represent each horizontal strip by means of a pair of 2n + 

1 length binary strings. The right substring has  only one bit  set 
corresponding to the vertical position of the strip. The left 
substring has those bits set  which correspond to the free 
rectangles in  the strip. For example, the fourth strip of Fig. 
l(a) has the representation 

1 1 1 0 1   0 0 0 1 0 .  

Step 2 
Find  all the contiguous horizontal strips. This is done by 

breaking up the left substring into contiguous runs  of 1’s and 
repeating the right substring in each part. For example, the 

(C) (d) 

Fig. 1. Typical  layout  partitioned  into a grid  because of two obstacles. 
Layout  is  shown in (a) and the shaded areas marked A through H in (b), (c), 
and  (d) denote all  the prime convex areas for this layout. 

strip of step 1 can be broken into two contiguous horizontal 
strips: 

1 1   1 0 0   0 0 0 1 0  
and 

0 0 0 0 1   0 0 0 1 0 .  

Step 3 

Make a list of  all strings generated by Step 2 such  that 

1) strings are grouped by the strips that generated them; 
2 )  groups are ordered according to the vertical positions  of 

the generating strips. 

Step 4 

Generate a new list of strings from the  old  list of strings 
based  upon  the following rules. 

1) The new ith group of strings is generated by combining 
each string from the  old ith group with  each string from 
the old i + lth group, i = 1, 2, * a .  

2) Two strings are combined  by (logically) oRing the right 
substrings and (logically) Aiming the  left substrings. If 
the  new string has a null (all zero) left substring, discard 
that string. Otherwise, add it to the new list. 

3) Every time a string is  added to the new list, check off all 
the strings from the  old lists that are covered by the new 
addition. A string SI is  said to be covered by a string S2 if 
logical oRing of the two strings yields S,. 

Step 5 

Repeat Step 4 if the  new list generated has  two or more 
groups. 

Step 6 
A string from any list that is not checked  off represents a 

prime convex area for the layout. 
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List 1 List 3 

1 1 1 1 1   1 0 0 0 0  (A) 1 0 0 0 0   1 1 1 0 0  

1 0 0 0 0   0 1 0 0 0  
0 0 1 1 1   1 1 1 0 0  (D) 

0 0 1 1 1   0 1 0 0 0  r/ 1 0 0 0 0   0 1 1 1 0  I/ 
0 0 1 0 0   0 1 1 1 0  

1 1 1 1 1   o o i b o  (B) 0 0 0 0 1   0 1 1 1 0  

1 1 1 0 0  0 0 0 ' 1 0  v 1 1 1 0 0   0 0 1 1 1  (E) 

1 1 1 1 1   0 0 0 0 1  (C) 

0 0 0 0 1   0 0 0 1 0  L/ 0 0 0 0 1   0 0 1 1 1  r/ 

List 2 List 4 

1 0 0 0 0   1 1 0 0 0   1 0 0 0 0   1 1 1 1 0  
0 0 1   1 1   1 1 0 0 0  v 0 0 1 0 0   1 1 1 1 0  d 

1 0 0 0 0  0 1 1 0 0  i/ 
0 0 0 0 1   1 1 1 1 0  

0 0 1 1 1   0 1 1 0 0  / 
0 0 1 0 0   0 1 1 1 1  4 
1 0 0 0 0   0 1 1 1 1  

1 1 1 0 0   0 0 1 1 0  v 0 0 0 0 1   0 1 1 1 1  d 
0 0 0 0 1   0 0 1 1 0  

1 1 1 0 0   0 0 0 1 1  v List 5 
0 0 0 0 1   0 0 0 1 1  / 

1 0 0 0 0  1 1 1 1 1  (F) 
0 0 1 0 0  1 1 1 1 1  ( G )  
0 0 0 0 1  1 1 1 1 1  (H)  

Fig. 2. Obtaining all prime  convex  areas for layout of Fig. I(a).  Prime 
convex  areas remain unchecked and are labeled as A through H. 

A Quine-McCluskey type of proof [lo] can be constructed 
to show that the algorithm described above does indeed 
provide all the rectangular prime  convex areas. The prime 
convex areas corresponding to the layout of Fig. 1, isolated by 
this procedure, are listed in Fig. 2. 

111. SETTING UP THE GRAPH 
The next step in the path planning is the representation of 

information about the prime areas (generated in Section 11) in a 
usable data structure. In order to facilitate application of 
techniques such as orderly graph traversal and backtracking, a 
graph is set up where each node represents a prime convex 
area. Two nodes are joined by an arc if the areas they 
represent intersect and each arc has associated  with ' it 
information about the geometrical intersection. Fig. 3 shows 
such a graph obtained from the layout of Fig. 1. 

If optimality is not a criterion, traversing the graph is 
straightforward. Prime convex areas in  which source and 
destination points are located may  be determined, and the 
graph may be traversed from the source node to the destination 
node  using one of a variety of techniques available [ 131, [14]. 
However, the consideration of optimality brings about  two 
complications. 

Both the source and destination points may fall inside 
several different nodes (since the convex areas may 
intersect). Thus all possible paths originating from valid 
starting nodes (forming set S )  and terminating on valid 
ending nodes (set D) have to be considered. 
Arcs cannot have fixed weights attached to them because 
any  two  points  in one convex area are not necessarily 
equidistant to a point in another convex area. The cost of 
traveling from one node to another is dependent on where 
the path  points are actually located in the convex areas 
and 'has to be computed every time an  arc between two 
nodes  is chosen. 

103 

arc nodes area of intersection 

a A - F  
b A - G  
e A - H  
d B -  F 
e 8 - G  
I 8 - H  
g A - D  
h B -  D 
I G - D  
j H -  D 

B - E  
1 C -  E 
m F - E  " G - E  
0 D - E  
P C - F  
4 C - G  , 
r C - H  

0 0 1 0 0   1 0 0 0 0  
1 0 0 0 0  1 0 0 0 0  

O O O O l  1 0 0 0 0  

0 0 1 0 0   0 0 1 0 0  
1 0 0 0 0  0 0 1 0 0  

0 0 1 1 1  1 l l O O O  
0 0 0 0 l  O O l O O  

0 0 1 1 1  0 0 1 0 0  
0 0 1 0 0  0 0 1 l 1  
0 0 0 0 1  0 0 1 1 1  
1 1 1 0 0  O O l O O  
1 1 1 0 0  0 0 0 0 1  
1 0 0 0 0  0 0 1 1 1  
0 0 1 0 0  0 0 1 1 1  
0 0 1 0 0  0 0 1 0 0  
1 0 0 0 0  0 0 0 0 1  
0 0 1 0 0  0 0 0 0 1  
0 0 0 0 1  0 0 0 0 1  

Fig. 3. Graph of intersecting  prime  convex  areas  for  layout of Fig. l(a) and 
areas of intersection  associated with each  arc. 

It should be noted here that the isolation of prime convex 
areas and their representation in a graph needs to be done only 
once for a given environment and  need  not  be repeated until it 
changes. Section IV describes a strategy. to overcome these 
difficulties and to choose an optimal path. Complexity issues 
of the associated algorithm are discussed in Section V. 

IV. DYNAMIC PATH PLANNING 
The basic strategy of robot path planning involves travers- 

ing the graph generated in Section I11 from a node containing 
the source point to a node containing the destination point, and 
finding the optimal path in terms of graph nodes and 
consequently a geometric representation of  this path. Recall 
that  nodes are connected if the areas they represent intersect. 
Thus moving from one node to another is geometrically 
equivalent to choosing a point in the intersection of the two 
areas. However, the placement of this point within  this 
intersection is dependent on where the path will progress next. 
A one' node look ahead is used in  this work and is found to 
provide reasonable results. 

Since graph arcs cannot have fixed weights attached to 
them, the cost function must dynamically allocate costs to path 
segments as the path develops. Fig. 4(a) illustrates graph 
traversal from node Xi to Xi+ and'then  to either node Xi+2 or 
to X;+2. Fig. 4(b) shows the development of the correspond- 
ing geometric path. Let a, b, and b' denote areas of 
intersection of Xi and Xi+ 1; Xi+ and and Xi+l and 
X;+2. Also denote by mid@) and mid(b') midpoints of the 
two intersections. Assume that the current path  has progressed 
till a point C; in node X;.  

Assuming  that the graph traversal is Xi -+ X j +  1 -+ 
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(b) 

Fig. 4. Development of  path segment based  upon  relative  position of a 
future node.  (a)  Graph  path. @) Corresponding geometric path. 

points Ci and mid(b) are joined by a straight line. If  the line 
intersects area a, then  the  next  path  point chosen is the point 
where the line first meets a. On the other hand, if the line does 
not intersect a, then the next  point chosen on  the  path is the 
corner of a that is closest to the line. This second case is 
illustrated by the graph traversal Xi -+ Xi+ I -+ X.' 1+2' The 
point  chosen is labeled Ci+ and the path segment Ci -+ Cj, 1 is 
added to the current path. Since the new point C;, 1 is now in 
Xi+ I ,  a similar procedure could be  used to continue path 
planning till the destination node is reached. 

Since a one node look ahead is used, path cost assignments 
cannot begin  until  the graph node path progresses at least to 
the  third node. Similarly, when Xi+ is the final destination 
node (and therefore there is no Xi+2 node), the final 
destination point itself is  used in place of mid(b) in the above 
description to compute the last two path segments. Hence the 
graph traversal technique used maintains two concurrent 
paths, one going through the graph nodes Xi and the other 
going through path points Ci. The list of Ci lags behind the list 
of Xi by one step for the reason described above. 

An exhaustive graph search for optimal  path is performed 
using a backtracking procedure. It involves extending the  path 
till either a destination node is reached or till a new node 
cannot be found. This may be due to two reasons. 

Nodes connected to the current node  may already be on 

The cost of  the  path generated so far exceeds the cost of a 
the path. 

source-to-destination path already established. 

If  the current path cannot be extended, the algorithm 
backtracks by dropping the  last  node from the current path  and 
continues moving forward along another arc. Once at least one 
path  between  the source and the destination is established, a 
backtrack from a node A to node B implies that all possible 

ways  of going from A to one of the destination nodes  have 
been explored. Knowing  the  costs of these alternatives, it is 
possible to obtain the minimum cost of a path from A to a 
destination node and, consequently, the  minimum cost of a 
path from B to a destination node  via arc B --t A .  

Since an exhaustive search can  be  immensely time consum- 
ing, a parameter P was introduced to dynamically shrink the 
graph as the search progresses. Suppose that there are 
alternate paths  of differing costs to go from an intermediate 
node A to the destination node. If the graph arcs had 
preassigned weights, one would  have  been able to eliminate all 
but the  minimum  weight  path from all future considerations. 
In this case, however, the costs of these paths depend  not  only 
upon  the node A but also on  the position of the  path point in 
the large area represented by node A .  Since the position  of  this 
point  in  node A depends upon  how one arrived at  node A ,  one 
can  no longer assume that one would  obtain  the same path 
lengths from A to the destination in the next  visit to A .  All 
those  paths  whose lengths are within a factor @ (2 1) of  the 
minimal  path length are allowed to survive for future 
traversals. The other paths from the particular node A are 
deleted by removing appropriate arcs originating from A .  Fig. 
5 shows the process of links being deleted. If one is 
backtracking from node B to node A ,  then it means  that  all 
possible nonredundant paths from nodes D,  E,  F, and G to the 
destination  node have been explored. The minimum  cost  of 
reaching the destination from each of D ,  E ,  F, and G are 
stored as al ,   az ,  a3, and a4, respectively. Note  that al, &, &, 
and ti4 are the costs of the arcs between B and D ,  E,  F, and G .  
The pair a1 + a1 that represents the smallest  cost is compared 
with other pairs.  For all pairs that have a cost that  is greater by 
a factor 0, the corresponding arcs are deleted. This  modifica- 
tion  is performed while backtracking from node B because  that 
is the only time when the exploration of all the alternatives of 
going from B to the destination is complete. 

The considerations outlined above result in the  following 
graph traversal algorithm. 

Dynamic Cost Allocation Graph  Traversal Algorithm 

initialize 
bestcost : = 03, currentcost : = 0 
unmark all graph arcs 
set tcost for all arcs not emanating from a destination 

set  tcost for all arcs emanating from a destination  node = 0 
{tcost associated with an arc X;  -+ Xj is the tentative 

minimum cost of reaching a destination node  via  that arc 
starting from Xi) 

Choose Xi+ 1 such that 
an arc exists between X;  and Xi, I 

and Xi+ is not  on current node  path 
and Xi+ is  not  in S 
and the arc between X;  and Xi, is not  marked {the arc 

node = 03 

findnewnode [X;+ 

has not already been considered and  rejected} 
moveforward [to Xi+ 

Add Xi+ to current node  path 
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C f h P 

Fig. 5 .  Deleting links  from  graph. 

Determine C; {as explained in text} 
Add Ci to current point path 
Add cost of segment Cj-l -+ Ci to current cost 
i : =  i + 1 

backtrack [from Xi+ I to X;] 
Unmark all arcs originating from X; ,  I 
Mark arc from X ;  to Xi+ 
min : = minimum tcost associated with an arc emanating 

if min < co then delete each arc Xi+ + Xj) ( j  # i) 

and set (tcost of X ;  -+ Xi+ : = m + cost of segment 

Reduce the current cost by the cost of path Ci-, + Ci 
Remove Xi+ from current node  path 
Remove Ci from current point path 

from Xi+l (except X;+I 4 X;) 

with tcost > /3 emin 

ci -+ c i + l  

i : =  i - 1 

path planning (main  program} 
determine S, D;  
if S n D # nil  then 

compute straight line path 

initialize 
for every X, E S do 

i : = 0; backtrackflag : = false 
findnewnode [Xi+ 
while (newnode exists) or ( i  >’ 0) do 

if backtrackflag = true then 

else 

backtrack [from Xi+ 1 to Xi] 
findnewnode [Xi+ 

endif 
if newnode exists then 

moveforward 
if (currentcost > bestcost) then 

backtrackflag : = true 
else 

findnewnode [Xi, I] 
endif 

endif 
endwhile 

endif 

An analysis of the complexity of this algorithm and the 
results obtained  by its simulation are presented in Section V. 

V. ANALYSIS AND SIMULATION OP THE ALGORITHM 
Performance of the algorithm presented in Section IV was 

evaluated in terms of two characteristics-optimality of the 
results and  speed  of computation. Near optimality is obtained 

I , , ,  

a 0 10 20 30 ho SO 60 70 80 90 106 
, , , / ,  

d 9 

Fig. 6 .  Sample layout with three obstacles partitioned into 7 X 7 grid by 
distinct edges of objects and sample paths obtained by procedure of this 
paper for 6 = 1. 

by taking into consideration all the rectangular prime convex 
areas and by conducting a complete search of the graph 
obtained. These very same considerations unfortunately also 
imply poor execution speed. Since both speed  and optimality 
may  not be realized simultaneously, the parameter /3 is used to 
systematically trade off optimality for execution speed. 

Recall  now that p determines which graph arcs are deleted 
while backtracking. If /3 is very large, no arcs are removed and 
the search for an optimal path proceeds through all possible 
travel patterns. On the other hand, if /3 = 1 at every 
backtrack, all but one arc going out from the backtracked node 
is deleted. The only arc  to survive is the one corresponding to 
the minimum length path from that node to the destination. 
The computational time in this case is  much smaller than  in the 
first case but the results obtained are suboptimal since a highly 
restricted search is performed. ’ The algorithm described in 
Section IV was applied to a layout containing three obstacles. 
/3 was varied between 1 and 2. Fig. 6 shows the layout and the 
paths produced between six pairs of source and destination 
points for /3 = 1. Since none of the edges of the different 
obstacles coincide, they divide the environment into a 7 x 7 
grid (determined by the placement of obstacle edges). Table I 
compares the costs of paths obtained by our routine with the 
absolute minimum costs of the paths. It also lists the amount of 
time required by our algorithm (implemented in Pascal on a 
DEC 2065) to compute each path. As can be seen from the 
table, the procedure suggested is relatively fast and the paths 
produced are very close to optimal. It can also be seen that as /3 
increases, paths tend to get closer to optimal but the 
computational tiine required increases. 

Fig. 7 shows the same paths in a “cluttered” environment 
obtained by adding more obstacles to the layout of Fig. 6. 

’ Note that the time required to obtain the set of prime convex areas and to 
set up the graph need  not be  considered  important  since these tasks are 
performed only once for any environment and need to be repeated only if the 
obstacles are  repositioned.  The  graph  search  time, on the other hand, is 
important since  it relates to a  repetitive  task. 
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TABLE I 
COMPARISON  OF  PATH LENGTHS OBTAINED BY PROCEDURE OF THIS  PAPER  WITH  OPTIMUM  PATH LENGTHS FOR  LAYOUT OF 

FIG. 6 

~~ 

Sample 
Path 

Computation Time 
Optimal Percent  Deviation from Optimality (SI 

Path  Length p = l   p = 1 . 5  p = 2  p = l  p = 1 . 5  p = 2  

a-I 
e-i 
c-j 

d-f 
h-g 

b-k 

145.64 0.09 0 0 5.09 6.42 7.85 
75.97 0.72 0.72 0.72 4.13 4.56 4.92 

141.42 1.98 1.98 0.31 3.90 5.21 6.42 
104.70 0 0 0 4.97 5.95 7.38 
100.00 0 0 0 0.006 0.006 0.006 
100.62 0 0 0 4.82 6.18 7.62 

Time required to set up the graph and the database was 1.42 s. 

C f h 

k 

7 ,  I I - , . ,  I I I I I 

a 0 10 20 30 40 so 60 70 80 90 100 

Fig. 7. Sample cluttered layout partitioned into 7 X 7 grid  by  distinct edges 
of objects and sample  paths  obtained  by procedure of this paper for 6 = 1. 

Note, however, that this addition has been done without 
changing the grid by aligning the new objects with the objects 
already present. Optimality of the resultant paths  and the 
computational time in this setup are presented in Table 11. It 
can  be seen that the parameter ,!3 has the same effect in a 
cluttered environment. A comparison of Table I1 with Table I 
shows that the computational times required in a cluttered 
environment are substantially lower than  in a simple environ- 
ment. This is attributed to a lower number of arcs in  the graph. 
The graph corresponding to the layout of Fig. 6 has 13 nodes 
and 96 directed arcs whereas that  of Fig. 7 has 12 nodes  and 
only 34 directed arcs. 

In order to understand the relationship of the computational 
time to the problem parameters, four different environments 
with five nontrivial paths in each were simulated. The results 
shown  in Table 111 indicate that the computational time 
depends on the number of nodes, the number of arcs, and also 
the structure of the graph as in  any other backtracking 
algorithm [ 131. It is also clear that the time is more strongly 
dependent on the number of  nodes  than  on  the number of arcs. 

Upper  bounds  on the number of  nodes  and arcs in the graph 
can  be derived as follows. Assume  that there are n nonoverlap- 
ping objects with  no edges aligned. The layout is  then 

d 9 

partitioned by the edges of the objects into a (2n + 1) x (2n 
+ 1) grid. If n # 0, each free area is bounded  at least on one 
side by an obstacle. To estimate the number of prime convex 
areas bounded either on the east or the west by an obstacle, 
note  that for any pair of obstacles, E and W (with E on  the  east 
of W), there can  only  be one prime convex area that  is 
bounded by both  the  west face of E and the east face of W. 
This is because if there are two areas A I and A 2  enclosed by 
the same pair of objects E and W with the north  edge of A I  
further north of  the  north edge of Az,  then  the  object limiting 
A2 on the north will  be  within A , .  A ,  will  thus  be  unable to 
qualify as a free convex area. Thus A I  and A2 must  have the 
same north edges. A similar argument shows  that their south 
edges also coincide. Therefore there is at most one area 
bounded by the west face of E and the east face of W. The 
number of ways in which n objects and two north-south 
boundaries can be  paired  is (n + 2)(n + 1)/2. However, the 
area enclosed  by  the pair made  up  of the east-west boundaries 
need  not  be considered since only the areas which are bounded 
either on east or west (or both) by obstacles are being counted. 
Thus there are only (n + 2)(n + 1)/2 - 1 = n(n + 3)/2 
such prime convex areas.  The same number of prime convex 
areas can be accounted for by a north-south argument. Thus 
the number of prime convex areas is  bounded  above by n(n + 
3) and  the number of graph nodes  is of O(n2). Notice that  this 
is a loose upper bound since many pairs of faces counted in the 
above argument may not indeed give rise to a free convex area 
and some areas may be counted twice, once in the east-west 
argument and once in the north-south argument. 

Suppose now that a new obstacle with all its edges aligned  to 
earlier edges is added  to the setup. It may be  paired  with  all 
other obstacles, giving rise to possible new convex areas. At 
the same time, however, it prohibits a pair of obstacles, one on 
its north-east  and the other on south-west, from enclosing a 
free convex area. Similarly, pairing of obstacles on its south- 
east  with  those  on its north-west  is  no more possible. This 
results in the reduction of  many  of the free convex areas 
counted  in the earlier argument. A large number of simula- 
tions were carried out to establish the dependence of the 
number of graph nodes  on  the number of objects thus  added to 
the layout. The results obtained indicate that a random  addition 
of aligned objects almost always results in a graph  with 
number  of nodes bounded by the limit based  on  the number of 
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TABLE I1 
COMPARISON OF PATH  LENGTHS  OBTAINED BY PROCEDURE  OF  THIS  PAPER WITH OPTIMUM  PATH  LENGTHS  FOR  LAYOUT  OF 

FIG. 7 

Sample 
Path I 

Computation Time 
Optimal Percent  Deviation from Optimality ( S )  

Path Length p = 1  @ = 1 . 5  p = 2  p = 1  p = 1 . 5   p = 2  

a-I 
e-i 
c-j 
b-k 
d-f 
h-g 

152.69 3.60 0.01 0.01 1.95 2.70 3.07 
104.53 0.21 0 0 1.29 1.34 1.60 
150.74 0 0 0 0.98 1.30 1.91 
108.28 0 0 0 2.04 2.86 3.35 
123.40 0 0 0 1.80 2.30 2.74 
101.49 0 0 0 1.62 1.62 2.06 

Time  required to set up the graph and the  database was 1.85 s. 

TABLE ILI 
DEPENDENCE OF  GRAPH  PARAMETERS  AND  PATH  COMPUTATION  TIME  (AVERAGED  OVER FIVE NONTRIVIAL  PATHS  FOR = 

1) ON NUMBER  OF  OBJECTS  AND  SIZE  OF  GRID  OBTAINED  BY DISTINCT  EDGES  OF  OBJECTS 

Number of 
Objects 

Average Path 
Number of Number of Computation Time 

Grid Size Graph Nodes Graph Arcs (SI 

3 7 x 7  13 
10 7 x 7  12 
10 7 x 7  11 
26 11 x 11  30 

objects with distinct edges. This is also illustrated by the fourth 
row  of Table 111. In this layout there are five obstacles with 
distinct nonoverlapping edges, and consequently the grid 
created by the distinct object edges is 11 X 11. The number of 
nodes for this five obstacle layout is  bounded by 5(5 + 3) = 
40. The table shows that even after adding 21 additional 
(aligned) objects to the setup, the graph has only 30 nodes, 
well within the five obstacle bound. 

The number of arcs in the graph could be bound above (very 
loosely as before) by assuming that the graph is a complete 
graph, i.e., each prime convex area intersects with every 
other. Since it is known that the number of nodes in a layout 
partitioned into (2n + 1) x (2n + 1) grid by the distinct 
edges of the obstacles is limited to n(n + 3), the number of 
directed arcs in the complete graph is  bound by n(n + 3)(n2 
+ 3n - 1). 

VI. CONCLUSION 
The path planning procedure outlined in this paper differs 

from earlier methods in that it takes advantage of all the free 
(rectangular) convex areas in a layout. This allows for most 
near-optimal paths made up of straight line segments to be 
found efficiently. In addition, if the source and the destination 
points belong to the same convex area, the optimal path  is 
picked trivially. This procedure calls for the representation of 
the relationships between convex areas through a graph and 
use of a backtrack procedure modified for dynamic cost 
allocation. Because overlap of convex areas is permitted, the 
graphs generated are a little more complex than the ones used 
by previous researchers. However, even  in  the worst case, the 
number of nodes in our graph is O(n2), where n is the number 
of obstacles. If obstacle edges line up at  all,  as in the case of 

96  4.60 
34  2.27 
42  1.59 

212  46.85 

industrial layouts, the graph complexity decreases drastically. 
Simulation of the modified backtrack procedure used here 
indicates that most near-optimal paths can be found relatively 
quickly. The number of arcs which represent the intersections 
of convex areas generally decrease if the setup is cluttered with 
aligned objects. This results in a faster search through the 
graph  and consequently speed improvement for the procedure. 

Another advantage of this procedure is the need to maintain 
a relatively  small database which  may be precomputed 
(without knowledge of source and destination points) rapidly 
from a map  of the obstacles. In order  to come up with a near- 
optimal path, a graph node path as well as a geometric path are 
concurrently developed. 

While dynamically establishing the geometric path, this 
procedure looks ahead only one node in the node path. 
Consequently the path segment Ci, 1 -+ Ci+2 is determined 
independently  of the segment Ci -, Ci+ I.  It is therefore 
possible in certain cases that the path obtained Ci -+ Ci+ I + 

Ci+2 is not the optimal path from Ci -+ Ci,, (in particular 
when Ci and CiCz can be joined by a straight line). This 
drawback can, however, be overcome by refitting the geomet- 
ric path every time a new point is added to the path. 

The speed  of the algorithm is governed by both the graph 
size and the structure. Since the number of graph nodes  in an n 
obstacle layout is bounded by O(n2), execution speed  is 
roughly  of the same order. However, a much lower bound 
generally holds if  many of the objects are aligned. This 
suggests that the procedure is more suited to situations where 
the obstacles are positioned in a somewhat regular fashion. 
Further, parameter p, introduced in the backtracking graph 
traversal algorithm, allows a systematic trade-off  between the 
path optimality and the execution time. 
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There is no learning capability that is incorporated in the 
algorithm as described. However, it can easily be added in the 
following manner. Procedure findnewnode can be configured 
to look for the  best possible next node to approach the present 
destination node, rather than  the first valid one. This can be 
done by keeping track of how  many times each link of each 
node  was chosen in  past successful paths  on the way to a given 
destination. This approach would serve to cut down the graph 
search considerably because there would be a greater chance 
that  the  best paths would  be  found early in the search. Thus 
less time would be spent looking at entire paths with costs 
greater than the best cost. It  should  be noted, however, that 
even  though this learning capability would improve the 
computational speed, it would be expensive in terms of its 
memory requirements. 
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