
IEEE JOURNAL OF ROBOTICS AND AUTOMATION, VOL. FA-3, NO. 2, APRIL 1987 101

Robot Path Planning using Intersecting Convex
Shapes: Analysis and Simulation

Abstract-An automated path planning algorithm for a mobile robot
in a structured environment is presented. An algorithm based on the
Quine-McCluskey method of finding prime implicants in a logical
expression is used to isolate all the largest rectangular free convex areas in
a specified environment. The free convex areas are represented as nodes
in a graph, and a graph traversal strategy that dynamically allocates costs
to graph paths is used. Complexity of the algorithm and a strategy to
trade optimality for smaller computation time are discussed.

T
I. INTRODUCTION

HE TASK of moving robots in mapped environments is a
two step process: 1) planning paths that are optimal by

some criteria and 2) controlling the robot to execute the
planned paths gracefully. This paper deals with the former
issue by suggesting a new path finding strategy that is
computationally efficient and yields near-optimal results.

Earlier research in this area can be summarized by three
approaches-Lozano-Perez [11 used a ‘‘visibility graph” to
set up a configuration space that can be mapped into a graph of
vertices (representing corners of obstacles) between which
travel is possible in a straight line. Fixed costs are allocated to
graph arcs, and the graph is searched for a path between
source and destination. A disadvantage of this method is that
every time source and destination points are changed, the
visibility graph has to be recomputed. Recently it has been
shown that the time taken to do this is of O(n2) [2], [3].

Thorpe [4] imposed a regular grid on the environment,
representing grid points not within the boundaries of obstacles
as nodes with arcs to the eight neighbor nodes. He used an A *
search to traverse the graph obtained, employing a cost
function that kept the path from getting too close to obstacles.
Since the graph obtained is very large, heuristics have to be
used to find solutions.

Another approach has been to partition free space into
convex polygons. This approach capitalizes on the fact that
any two points in a convex polygon can be joined with a
straight line without leaving the polygon. If convex polygons
can be found such that they represent areas free of obstacles,
then a robot can travel between two points in that area without
colliding into obstacles. Crowley and Chatila suggest breaking
up the free area (for traversal) into nonoverlapping convex

Manuscript received May 30, 1985; revised June 27, 1986. This work was
presented in part at the 1986 IEEE International Conference on Robotics and
Automation, San Francisco, CA, April 7-10.

J . S. Singh is with the Construction Robotics Laboratory, Porter Hall,
Carnegie-Mellon University, Pittsburgh, PA 15213, USA.

M. D. Wagh is with the Department of Computer Science and Electrical
Engineering, Lehigh University, Bethlehem, PA 18015, USA.

IEEE Log Number 8714088.

polygons [5] , [6]. Development of the path depends on
traversing the connectivity graph that is produced by repre-
senting “free” convex polygons as nodes with arcs to nodes
representing geometrically adjacent free convex polygons.
The problem with a strategy that breaks up space into
nonoverlapping areas is that it fails to take full advantage of
convexity and consequently misses some straight line paths
that may belong to a convex area of which the procedure is
not aware. This is a natural consequence of the fact that this
method overlooks a considerable number of convex areas in an
environment. Further, if paths are not dynamically refitted to
be optimal, paths that would be “naturally” straight, turn out
to be contrived. This effect is particularly pronounced if there
are relatively large free areas with which to contend. How-
ever, there is a one-to-one correspondence between the source
and destination points in free space and the graph nodes. Thus
the method is successful in getting around the high computa-
tional expense at the cost of optimality.

Brooks [7] proposed a method that combines the advantages
of both the earlier approaches. Instead of determining the
corners of objects that are visible, his method isolates free
areas in the form of generalized cones. Brook’s robot always
traverses along the axes of free cones, and generously avoids
the obstacles. Optimality is lost, however, because, although
the cones overlap, one does not make full use of convexity.
Kuan et al. [8] further improved Brooks’ method by using a
mixed representation of free space. Their strategy used cones
to represent narrow spaces and nonoverlapping convex poly-
gons for larger free areas. Though their method works well for
highly cluttered environments, the drawbacks associated with
nonoverlapping areas still remain. It is worth mentioning that
none of these methods exploits any benefits from an orderly
orientation of the obstacles.

The path planning algorithm discussed in this paper (first
presented in [9]) derives benefit from the concept of convexity
by identifying all the largest rectangular free areas. A graph is
created with nodes corresponding to each such convex area.
Intersecting convex shapes are represented as adjacent nodes.
Path planning is then reduced to finding a route from a source
node to a destination node through the graph and choosing the
best possible path based on a given cost function.

Several assumptions are made in this paper.
A circular robot that can turn in place is assumed when
optimality is mentioned. This allows one to shrink the
robot to a point and to grow the obstacles by the radius of
the robot.
Obstacles are approximated by iso-oriented rectangles in
which the edges are parallel to the coordinate axes.

0882-4967/87/0400-0101$01 .OO 0 1987 IEEE

102 IEEE JOURNAL OF ROBOTICS AND AUTOMATION, VOL. RA-3, NO. 2, APRIL 1987

The cost allocated to a path or a portion of a path is
directly proportional to its geometric length.

11. ISOLATION OF PRIME CONVEX AREAS

The algorithm presented here tries to isolate the largest
“convex” areas that are free of obstacles. In this paper
attention is restricted to rectangular convex areas as there are
an infinite number of nonrectangular areas. This assumption
of iso-oriented rectangles also helps in keeping the computa-
tional costs down.

A convex area is an area that is free of obstacles and has the
property that any two points in that area can be joined by a
straight line that lies entirely within that area. A prime convex
area is an area that is free of obstacles and is not fully
incorporated in any other single prime convex area.

Given a map of boundaries and obstacles, an environment is
partitioned by the edges of these shapes into a grid of at most
2n + 1 x 2n + 1 rectangles where n is the number of such
inadmissible areas representing obstacles. Each such rectangle
is represented by a pair of binary strings each at most 2n + 1
bit long. The left substring represents the relative x position
and the right they position. For example, for n = 2 as in Fig.
l(a), a partition that is second from the left and third from the
top could be represented by the string

0 1 0 0 0 0 0 1 0 0 .

A similar notation can be used for areas made up of several
partitions. The string

1 1 0 0 0 0 0 1 1 0

represents a larger rectangle made up of four partitions:

1 0 0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 1 0 0
1 0 0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0 1 0 .

The following algorithm may be used to identify all
(rectangular) prime convex areas by fusing together free
rectangular cells from the grid described. This algorithm is
similar to the Quine-McCluskey technique [lo]-[12] used to
identify the prime implicants of a logical expression.

The following six steps describe the method used.

Step I
Represent each horizontal strip by means of a pair of 2n +

1 length binary strings. The right substring has only one bit set
corresponding to the vertical position of the strip. The left
substring has those bits set which correspond to the free
rectangles in the strip. For example, the fourth strip of Fig.
l(a) has the representation

1 1 1 0 1 0 0 0 1 0 .

Step 2
Find all the contiguous horizontal strips. This is done by

breaking up the left substring into contiguous runs of 1’s and
repeating the right substring in each part. For example, the

(C) (d)

Fig. 1. Typical layout partitioned into a grid because of two obstacles.
Layout is shown in (a) and the shaded areas marked A through H in (b), (c),
and (d) denote all the prime convex areas for this layout.

strip of step 1 can be broken into two contiguous horizontal
strips:

1 1 1 0 0 0 0 0 1 0
and

0 0 0 0 1 0 0 0 1 0 .

Step 3

Make a list of all strings generated by Step 2 such that

1) strings are grouped by the strips that generated them;
2) groups are ordered according to the vertical positions of

the generating strips.

Step 4

Generate a new list of strings from the old list of strings
based upon the following rules.

1) The new ith group of strings is generated by combining
each string from the old ith group with each string from
the old i + lth group, i = 1, 2, * a .

2) Two strings are combined by (logically) oRing the right
substrings and (logically) Aiming the left substrings. If
the new string has a null (all zero) left substring, discard
that string. Otherwise, add it to the new list.

3) Every time a string is added to the new list, check off all
the strings from the old lists that are covered by the new
addition. A string SI is said to be covered by a string S2 if
logical oRing of the two strings yields S,.

Step 5

Repeat Step 4 if the new list generated has two or more
groups.

Step 6
A string from any list that is not checked off represents a

prime convex area for the layout.

SINGH AND WAGH: ROBOT PATH PLANNING

List 1 List 3

1 1 1 1 1 1 0 0 0 0 (A) 1 0 0 0 0 1 1 1 0 0

1 0 0 0 0 0 1 0 0 0
0 0 1 1 1 1 1 1 0 0 (D)

0 0 1 1 1 0 1 0 0 0 r/ 1 0 0 0 0 0 1 1 1 0 I/
0 0 1 0 0 0 1 1 1 0

1 1 1 1 1 o o i b o (B) 0 0 0 0 1 0 1 1 1 0

1 1 1 0 0 0 0 0 ' 1 0 v 1 1 1 0 0 0 0 1 1 1 (E)

1 1 1 1 1 0 0 0 0 1 (C)

0 0 0 0 1 0 0 0 1 0 L/ 0 0 0 0 1 0 0 1 1 1 r/

List 2 List 4

1 0 0 0 0 1 1 0 0 0 1 0 0 0 0 1 1 1 1 0
0 0 1 1 1 1 1 0 0 0 v 0 0 1 0 0 1 1 1 1 0 d

1 0 0 0 0 0 1 1 0 0 i/
0 0 0 0 1 1 1 1 1 0

0 0 1 1 1 0 1 1 0 0 /
0 0 1 0 0 0 1 1 1 1 4
1 0 0 0 0 0 1 1 1 1

1 1 1 0 0 0 0 1 1 0 v 0 0 0 0 1 0 1 1 1 1 d
0 0 0 0 1 0 0 1 1 0

1 1 1 0 0 0 0 0 1 1 v List 5
0 0 0 0 1 0 0 0 1 1 /

1 0 0 0 0 1 1 1 1 1 (F)
0 0 1 0 0 1 1 1 1 1 (G)
0 0 0 0 1 1 1 1 1 1 (H)

Fig. 2. Obtaining all prime convex areas for layout of Fig. I(a). Prime
convex areas remain unchecked and are labeled as A through H.

A Quine-McCluskey type of proof [lo] can be constructed
to show that the algorithm described above does indeed
provide all the rectangular prime convex areas. The prime
convex areas corresponding to the layout of Fig. 1, isolated by
this procedure, are listed in Fig. 2.

111. SETTING UP THE GRAPH
The next step in the path planning is the representation of

information about the prime areas (generated in Section 11) in a
usable data structure. In order to facilitate application of
techniques such as orderly graph traversal and backtracking, a
graph is set up where each node represents a prime convex
area. Two nodes are joined by an arc if the areas they
represent intersect and each arc has associated with ' it
information about the geometrical intersection. Fig. 3 shows
such a graph obtained from the layout of Fig. 1.

If optimality is not a criterion, traversing the graph is
straightforward. Prime convex areas in which source and
destination points are located may be determined, and the
graph may be traversed from the source node to the destination
node using one of a variety of techniques available [131, [14].
However, the consideration of optimality brings about two
complications.

Both the source and destination points may fall inside
several different nodes (since the convex areas may
intersect). Thus all possible paths originating from valid
starting nodes (forming set S) and terminating on valid
ending nodes (set D) have to be considered.
Arcs cannot have fixed weights attached to them because
any two points in one convex area are not necessarily
equidistant to a point in another convex area. The cost of
traveling from one node to another is dependent on where
the path points are actually located in the convex areas
and 'has to be computed every time an arc between two
nodes is chosen.

103

arc nodes area of intersection

a A - F
b A - G
e A - H
d B - F
e 8 - G
I 8 - H
g A - D
h B - D
I G - D
j H - D

B - E
1 C - E
m F - E " G - E
0 D - E
P C - F
4 C - G ,
r C - H

0 0 1 0 0 1 0 0 0 0
1 0 0 0 0 1 0 0 0 0

O O O O l 1 0 0 0 0

0 0 1 0 0 0 0 1 0 0
1 0 0 0 0 0 0 1 0 0

0 0 1 1 1 1 l l O O O
0 0 0 0 l O O l O O

0 0 1 1 1 0 0 1 0 0
0 0 1 0 0 0 0 1 l 1
0 0 0 0 1 0 0 1 1 1
1 1 1 0 0 O O l O O
1 1 1 0 0 0 0 0 0 1
1 0 0 0 0 0 0 1 1 1
0 0 1 0 0 0 0 1 1 1
0 0 1 0 0 0 0 1 0 0
1 0 0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0 0 1

Fig. 3. Graph of intersecting prime convex areas for layout of Fig. l(a) and
areas of intersection associated with each arc.

It should be noted here that the isolation of prime convex
areas and their representation in a graph needs to be done only
once for a given environment and need not be repeated until it
changes. Section IV describes a strategy. to overcome these
difficulties and to choose an optimal path. Complexity issues
of the associated algorithm are discussed in Section V.

IV. DYNAMIC PATH PLANNING
The basic strategy of robot path planning involves travers-

ing the graph generated in Section I11 from a node containing
the source point to a node containing the destination point, and
finding the optimal path in terms of graph nodes and
consequently a geometric representation of this path. Recall
that nodes are connected if the areas they represent intersect.
Thus moving from one node to another is geometrically
equivalent to choosing a point in the intersection of the two
areas. However, the placement of this point within this
intersection is dependent on where the path will progress next.
A one' node look ahead is used in this work and is found to
provide reasonable results.

Since graph arcs cannot have fixed weights attached to
them, the cost function must dynamically allocate costs to path
segments as the path develops. Fig. 4(a) illustrates graph
traversal from node Xi to Xi+ and'then to either node Xi+2 or
to X;+2. Fig. 4(b) shows the development of the correspond-
ing geometric path. Let a, b, and b' denote areas of
intersection of Xi and Xi+ 1; Xi+ and and Xi+l and
X;+2. Also denote by mid@) and mid(b') midpoints of the
two intersections. Assume that the current path has progressed
till a point C; in node X;.

Assuming that the graph traversal is Xi -+ X j + 1 -+

104 IEEE JOURNAL OF ROBOTICS AND AUTOMATION, VOL. RA-3, NO. 2, APRIL 1987

I I

\
\

r I

(b)

Fig. 4. Development of path segment based upon relative position of a
future node. (a) Graph path. @) Corresponding geometric path.

points Ci and mid(b) are joined by a straight line. If the line
intersects area a, then the next path point chosen is the point
where the line first meets a. On the other hand, if the line does
not intersect a, then the next point chosen on the path is the
corner of a that is closest to the line. This second case is
illustrated by the graph traversal Xi -+ Xi+ I -+ X.' 1+2' The
point chosen is labeled Ci+ and the path segment Ci -+ Cj, 1 is
added to the current path. Since the new point C;, 1 is now in
Xi+ I , a similar procedure could be used to continue path
planning till the destination node is reached.

Since a one node look ahead is used, path cost assignments
cannot begin until the graph node path progresses at least to
the third node. Similarly, when Xi+ is the final destination
node (and therefore there is no Xi+2 node), the final
destination point itself is used in place of mid(b) in the above
description to compute the last two path segments. Hence the
graph traversal technique used maintains two concurrent
paths, one going through the graph nodes Xi and the other
going through path points Ci. The list of Ci lags behind the list
of Xi by one step for the reason described above.

An exhaustive graph search for optimal path is performed
using a backtracking procedure. It involves extending the path
till either a destination node is reached or till a new node
cannot be found. This may be due to two reasons.

Nodes connected to the current node may already be on

The cost of the path generated so far exceeds the cost of a
the path.

source-to-destination path already established.

If the current path cannot be extended, the algorithm
backtracks by dropping the last node from the current path and
continues moving forward along another arc. Once at least one
path between the source and the destination is established, a
backtrack from a node A to node B implies that all possible

ways of going from A to one of the destination nodes have
been explored. Knowing the costs of these alternatives, it is
possible to obtain the minimum cost of a path from A to a
destination node and, consequently, the minimum cost of a
path from B to a destination node via arc B --t A .

Since an exhaustive search can be immensely time consum-
ing, a parameter P was introduced to dynamically shrink the
graph as the search progresses. Suppose that there are
alternate paths of differing costs to go from an intermediate
node A to the destination node. If the graph arcs had
preassigned weights, one would have been able to eliminate all
but the minimum weight path from all future considerations.
In this case, however, the costs of these paths depend not only
upon the node A but also on the position of the path point in
the large area represented by node A . Since the position of this
point in node A depends upon how one arrived at node A , one
can no longer assume that one would obtain the same path
lengths from A to the destination in the next visit to A . All
those paths whose lengths are within a factor @ (2 1) of the
minimal path length are allowed to survive for future
traversals. The other paths from the particular node A are
deleted by removing appropriate arcs originating from A . Fig.
5 shows the process of links being deleted. If one is
backtracking from node B to node A , then it means that all
possible nonredundant paths from nodes D, E, F, and G to the
destination node have been explored. The minimum cost of
reaching the destination from each of D , E , F, and G are
stored as al , az , a3, and a4, respectively. Note that al, &, &,
and ti4 are the costs of the arcs between B and D , E, F, and G .
The pair a1 + a1 that represents the smallest cost is compared
with other pairs. For all pairs that have a cost that is greater by
a factor 0, the corresponding arcs are deleted. This modifica-
tion is performed while backtracking from node B because that
is the only time when the exploration of all the alternatives of
going from B to the destination is complete.

The considerations outlined above result in the following
graph traversal algorithm.

Dynamic Cost Allocation Graph Traversal Algorithm

initialize
bestcost : = 03, currentcost : = 0
unmark all graph arcs
set tcost for all arcs not emanating from a destination

set tcost for all arcs emanating from a destination node = 0
{tcost associated with an arc X; -+ Xj is the tentative

minimum cost of reaching a destination node via that arc
starting from Xi)

Choose Xi+ 1 such that
an arc exists between X; and Xi, I

and Xi+ is not on current node path
and Xi+ is not in S
and the arc between X; and Xi, is not marked {the arc

node = 03

findnewnode [X;+

has not already been considered and rejected}
moveforward [to Xi+

Add Xi+ to current node path

SINGH AND WAGH: ROBOT PATH PLANNING 105

C f h P

Fig. 5 . Deleting links from graph.

Determine C; {as explained in text}
Add Ci to current point path
Add cost of segment Cj-l -+ Ci to current cost
i : = i + 1

backtrack [from Xi+ I to X;]
Unmark all arcs originating from X; , I
Mark arc from X ; to Xi+
min : = minimum tcost associated with an arc emanating

if min < co then delete each arc Xi+ + Xj) (j # i)

and set (tcost of X ; -+ Xi+ : = m + cost of segment

Reduce the current cost by the cost of path Ci-, + Ci
Remove Xi+ from current node path
Remove Ci from current point path

from Xi+l (except X;+I 4 X;)

with tcost > /3 emin

ci -+ c i + l

i : = i - 1

path planning (main program}
determine S, D;
if S n D # nil then

compute straight line path

initialize
for every X, E S do

i : = 0; backtrackflag : = false
findnewnode [Xi+
while (newnode exists) or (i >’ 0) do

if backtrackflag = true then

else

backtrack [from Xi+ 1 to Xi]
findnewnode [Xi+

endif
if newnode exists then

moveforward
if (currentcost > bestcost) then

backtrackflag : = true
else

findnewnode [Xi, I]
endif

endif
endwhile

endif

An analysis of the complexity of this algorithm and the
results obtained by its simulation are presented in Section V.

V. ANALYSIS AND SIMULATION OP THE ALGORITHM
Performance of the algorithm presented in Section IV was

evaluated in terms of two characteristics-optimality of the
results and speed of computation. Near optimality is obtained

I , , ,

a 0 10 20 30 ho SO 60 70 80 90 106
, , , / ,

d 9

Fig. 6 . Sample layout with three obstacles partitioned into 7 X 7 grid by
distinct edges of objects and sample paths obtained by procedure of this
paper for 6 = 1.

by taking into consideration all the rectangular prime convex
areas and by conducting a complete search of the graph
obtained. These very same considerations unfortunately also
imply poor execution speed. Since both speed and optimality
may not be realized simultaneously, the parameter /3 is used to
systematically trade off optimality for execution speed.

Recall now that p determines which graph arcs are deleted
while backtracking. If /3 is very large, no arcs are removed and
the search for an optimal path proceeds through all possible
travel patterns. On the other hand, if /3 = 1 at every
backtrack, all but one arc going out from the backtracked node
is deleted. The only arc to survive is the one corresponding to
the minimum length path from that node to the destination.
The computational time in this case is much smaller than in the
first case but the results obtained are suboptimal since a highly
restricted search is performed. ’ The algorithm described in
Section IV was applied to a layout containing three obstacles.
/3 was varied between 1 and 2. Fig. 6 shows the layout and the
paths produced between six pairs of source and destination
points for /3 = 1. Since none of the edges of the different
obstacles coincide, they divide the environment into a 7 x 7
grid (determined by the placement of obstacle edges). Table I
compares the costs of paths obtained by our routine with the
absolute minimum costs of the paths. It also lists the amount of
time required by our algorithm (implemented in Pascal on a
DEC 2065) to compute each path. As can be seen from the
table, the procedure suggested is relatively fast and the paths
produced are very close to optimal. It can also be seen that as /3
increases, paths tend to get closer to optimal but the
computational tiine required increases.

Fig. 7 shows the same paths in a “cluttered” environment
obtained by adding more obstacles to the layout of Fig. 6.

’ Note that the time required to obtain the set of prime convex areas and to
set up the graph need not be considered important since these tasks are
performed only once for any environment and need to be repeated only if the
obstacles are repositioned. The graph search time, on the other hand, is
important since it relates to a repetitive task.

106 IEEE JOURNAL OF ROBOTICS AND AUTOMATION, VOL. RA-3, NO. 2, APRIL 1987

TABLE I
COMPARISON OF PATH LENGTHS OBTAINED BY PROCEDURE OF THIS PAPER WITH OPTIMUM PATH LENGTHS FOR LAYOUT OF

FIG. 6

~~

Sample
Path

Computation Time
Optimal Percent Deviation from Optimality (SI

Path Length p = l p = 1 . 5 p = 2 p = l p = 1 . 5 p = 2

a-I
e-i
c-j

d-f
h-g

b-k

145.64 0.09 0 0 5.09 6.42 7.85
75.97 0.72 0.72 0.72 4.13 4.56 4.92

141.42 1.98 1.98 0.31 3.90 5.21 6.42
104.70 0 0 0 4.97 5.95 7.38
100.00 0 0 0 0.006 0.006 0.006
100.62 0 0 0 4.82 6.18 7.62

Time required to set up the graph and the database was 1.42 s.

C f h

k

7 , I I - , . , I I I I I

a 0 10 20 30 40 so 60 70 80 90 100

Fig. 7. Sample cluttered layout partitioned into 7 X 7 grid by distinct edges
of objects and sample paths obtained by procedure of this paper for 6 = 1.

Note, however, that this addition has been done without
changing the grid by aligning the new objects with the objects
already present. Optimality of the resultant paths and the
computational time in this setup are presented in Table 11. It
can be seen that the parameter ,!3 has the same effect in a
cluttered environment. A comparison of Table I1 with Table I
shows that the computational times required in a cluttered
environment are substantially lower than in a simple environ-
ment. This is attributed to a lower number of arcs in the graph.
The graph corresponding to the layout of Fig. 6 has 13 nodes
and 96 directed arcs whereas that of Fig. 7 has 12 nodes and
only 34 directed arcs.

In order to understand the relationship of the computational
time to the problem parameters, four different environments
with five nontrivial paths in each were simulated. The results
shown in Table 111 indicate that the computational time
depends on the number of nodes, the number of arcs, and also
the structure of the graph as in any other backtracking
algorithm [131. It is also clear that the time is more strongly
dependent on the number of nodes than on the number of arcs.

Upper bounds on the number of nodes and arcs in the graph
can be derived as follows. Assume that there are n nonoverlap-
ping objects with no edges aligned. The layout is then

d 9

partitioned by the edges of the objects into a (2n + 1) x (2n
+ 1) grid. If n # 0, each free area is bounded at least on one
side by an obstacle. To estimate the number of prime convex
areas bounded either on the east or the west by an obstacle,
note that for any pair of obstacles, E and W (with E on the east
of W), there can only be one prime convex area that is
bounded by both the west face of E and the east face of W.
This is because if there are two areas A I and A 2 enclosed by
the same pair of objects E and W with the north edge of A I
further north of the north edge of Az, then the object limiting
A2 on the north will be within A , . A , will thus be unable to
qualify as a free convex area. Thus A I and A2 must have the
same north edges. A similar argument shows that their south
edges also coincide. Therefore there is at most one area
bounded by the west face of E and the east face of W. The
number of ways in which n objects and two north-south
boundaries can be paired is (n + 2)(n + 1)/2. However, the
area enclosed by the pair made up of the east-west boundaries
need not be considered since only the areas which are bounded
either on east or west (or both) by obstacles are being counted.
Thus there are only (n + 2)(n + 1)/2 - 1 = n(n + 3)/2
such prime convex areas. The same number of prime convex
areas can be accounted for by a north-south argument. Thus
the number of prime convex areas is bounded above by n(n +
3) and the number of graph nodes is of O(n2). Notice that this
is a loose upper bound since many pairs of faces counted in the
above argument may not indeed give rise to a free convex area
and some areas may be counted twice, once in the east-west
argument and once in the north-south argument.

Suppose now that a new obstacle with all its edges aligned to
earlier edges is added to the setup. It may be paired with all
other obstacles, giving rise to possible new convex areas. At
the same time, however, it prohibits a pair of obstacles, one on
its north-east and the other on south-west, from enclosing a
free convex area. Similarly, pairing of obstacles on its south-
east with those on its north-west is no more possible. This
results in the reduction of many of the free convex areas
counted in the earlier argument. A large number of simula-
tions were carried out to establish the dependence of the
number of graph nodes on the number of objects thus added to
the layout. The results obtained indicate that a random addition
of aligned objects almost always results in a graph with
number of nodes bounded by the limit based on the number of

SINGH AND WAGH: ROBOT PATH PLANNING 107

TABLE I1
COMPARISON OF PATH LENGTHS OBTAINED BY PROCEDURE OF THIS PAPER WITH OPTIMUM PATH LENGTHS FOR LAYOUT OF

FIG. 7

Sample
Path I

Computation Time
Optimal Percent Deviation from Optimality (S)

Path Length p = 1 @ = 1 . 5 p = 2 p = 1 p = 1 . 5 p = 2

a-I
e-i
c-j
b-k
d-f
h-g

152.69 3.60 0.01 0.01 1.95 2.70 3.07
104.53 0.21 0 0 1.29 1.34 1.60
150.74 0 0 0 0.98 1.30 1.91
108.28 0 0 0 2.04 2.86 3.35
123.40 0 0 0 1.80 2.30 2.74
101.49 0 0 0 1.62 1.62 2.06

Time required to set up the graph and the database was 1.85 s.

TABLE ILI
DEPENDENCE OF GRAPH PARAMETERS AND PATH COMPUTATION TIME (AVERAGED OVER FIVE NONTRIVIAL PATHS FOR =

1) ON NUMBER OF OBJECTS AND SIZE OF GRID OBTAINED BY DISTINCT EDGES OF OBJECTS

Number of
Objects

Average Path
Number of Number of Computation Time

Grid Size Graph Nodes Graph Arcs (SI

3 7 x 7 13
10 7 x 7 12
10 7 x 7 11
26 11 x 11 30

objects with distinct edges. This is also illustrated by the fourth
row of Table 111. In this layout there are five obstacles with
distinct nonoverlapping edges, and consequently the grid
created by the distinct object edges is 11 X 11. The number of
nodes for this five obstacle layout is bounded by 5(5 + 3) =
40. The table shows that even after adding 21 additional
(aligned) objects to the setup, the graph has only 30 nodes,
well within the five obstacle bound.

The number of arcs in the graph could be bound above (very
loosely as before) by assuming that the graph is a complete
graph, i.e., each prime convex area intersects with every
other. Since it is known that the number of nodes in a layout
partitioned into (2n + 1) x (2n + 1) grid by the distinct
edges of the obstacles is limited to n(n + 3), the number of
directed arcs in the complete graph is bound by n(n + 3)(n2
+ 3n - 1).

VI. CONCLUSION
The path planning procedure outlined in this paper differs

from earlier methods in that it takes advantage of all the free
(rectangular) convex areas in a layout. This allows for most
near-optimal paths made up of straight line segments to be
found efficiently. In addition, if the source and the destination
points belong to the same convex area, the optimal path is
picked trivially. This procedure calls for the representation of
the relationships between convex areas through a graph and
use of a backtrack procedure modified for dynamic cost
allocation. Because overlap of convex areas is permitted, the
graphs generated are a little more complex than the ones used
by previous researchers. However, even in the worst case, the
number of nodes in our graph is O(n2), where n is the number
of obstacles. If obstacle edges line up at all, as in the case of

96 4.60
34 2.27
42 1.59

212 46.85

industrial layouts, the graph complexity decreases drastically.
Simulation of the modified backtrack procedure used here
indicates that most near-optimal paths can be found relatively
quickly. The number of arcs which represent the intersections
of convex areas generally decrease if the setup is cluttered with
aligned objects. This results in a faster search through the
graph and consequently speed improvement for the procedure.

Another advantage of this procedure is the need to maintain
a relatively small database which may be precomputed
(without knowledge of source and destination points) rapidly
from a map of the obstacles. In order to come up with a near-
optimal path, a graph node path as well as a geometric path are
concurrently developed.

While dynamically establishing the geometric path, this
procedure looks ahead only one node in the node path.
Consequently the path segment Ci, 1 -+ Ci+2 is determined
independently of the segment Ci -, Ci+ I. It is therefore
possible in certain cases that the path obtained Ci -+ Ci+ I +

Ci+2 is not the optimal path from Ci -+ Ci,, (in particular
when Ci and CiCz can be joined by a straight line). This
drawback can, however, be overcome by refitting the geomet-
ric path every time a new point is added to the path.

The speed of the algorithm is governed by both the graph
size and the structure. Since the number of graph nodes in an n
obstacle layout is bounded by O(n2), execution speed is
roughly of the same order. However, a much lower bound
generally holds if many of the objects are aligned. This
suggests that the procedure is more suited to situations where
the obstacles are positioned in a somewhat regular fashion.
Further, parameter p, introduced in the backtracking graph
traversal algorithm, allows a systematic trade-off between the
path optimality and the execution time.

108 IEEE JOURNAL OF ROBOTICS AND AUTOMATION, VOL. RA-3, NO. 2, APRIL 1987

There is no learning capability that is incorporated in the
algorithm as described. However, it can easily be added in the
following manner. Procedure findnewnode can be configured
to look for the best possible next node to approach the present
destination node, rather than the first valid one. This can be
done by keeping track of how many times each link of each
node was chosen in past successful paths on the way to a given
destination. This approach would serve to cut down the graph
search considerably because there would be a greater chance
that the best paths would be found early in the search. Thus
less time would be spent looking at entire paths with costs
greater than the best cost. It should be noted, however, that
even though this learning capability would improve the
computational speed, it would be expensive in terms of its
memory requirements.

REFERENCES
[l] T. Lozano-Perez and M. A. Wesley, “An algorithm for planning

collision-free paths among obstacles,” Commun. ACM, vol. 22, pp.
560-570, Oct. 1979.

[2] L. Guibas and J. Hershberger, “Computing the visibility graph of n
line segments in O(n2) time,” Theoret. Comput. Sc., vol. 26, pp. 13-
20, Sept. 1985.

[3] E. Welzl, ‘‘Constructing the visibility graph of n line segments in
O(n2) time,” Info. Processing Lett., vol. 20, pp. 167-171, Sept.
1985.

[4] C. E. Thorpe, “Path relaxation: Path planning for a mobile robot,”
Carnegie Mellon Univ., Tech. Rep. CMU-RI-TR-84-5. 1984.

[5] J. L. Crowley, “Navigation for an intelligent mobile robot,” Carnegie
Mellon Univ., Tech. Rep. CMU-RI-TR-84-18, Aug. 1984.

[6] R. Chatila, “Path planning and environment learning in a mobile robot
system,” presented at the European Conf. on Artificial Intelligence,
Orsay, France, 1982.

[7] R. A. Brooks, “Solving the find path problem by good representation
of free space,” IEEE Trans. Syst., Man Cybern., vol. SMC-13, pp.
190-197, Mar. 1983.

[8] D. T. Kuan, J. C. Zamiska, and R. A. Brooks, “Natural decomposition
of free space for path planning,” presented at the IEEE Conference on
Robotics and Automation, St. Louis, MO, March 1985.

[9] J. S. Singh, “Path planning and navigation for a mobile robot,”

[IO] E. J. McCluskey, Jr., “Minimization of Boolean functions,” Bell Sysi.

[l l] W. V. Quine, “The problem of simplifying truth functions,” Amer.

1121 -, “A way to simplify truth functions,” Amer. Math. Monthly,

[I31 E. Horowitz and S . Sahni, Fundamentals of Computer Al-

[I41 D. E. Knuth, The Art of Computer Programming: Fundamental

Master’s thesis, Lehigh University, Aug. 1985.

Tech. J. , vol. 35, pp. 1417-1444, Nov. 1956.

Math. Monthly, vol. 59, pp. 521-531, Oct. 1952.

V O ~ . 62, pp. 627-631, NOV. 1955.

gorithms. Rockville, MD: Computer Science, 1984.

Algorithms. Reading, MA: Addison Wesley, 1968.

J. Sanjiv Singh was born in Barrelli, U.P., India,
on March 3, 1962. He received the B.S. degree in
computer science from the University of Denver,
Denver, CO, in 1983 and the M S . degree from
Lehigh University, Bethlehem, PA, in 1985. He
was involved in the development of a mobile factory
robot. His thesis described a method to plan optimal
paths for such a robot.

He is currently employed as a Research Staff
Member at the Construction Robotics Laboratory at
Carnegie Mellon University, Pittsburgh, PA, and is

primarily involved in the development of navigation systems for NavLab, an
autonomous vehicle. His current research interests are in control and artificial
intelligence applications to mobile robots.

tions of abstract algebra

Meghanad D. Wagh (“81) received both the
B.Tech. and Ph.D. degrees in electrical engineering
from the Indian Institute of Technology, Bombay,
India.

Currently, he is an Associate Professor of Com-
puter Science and Electrical Engineering at Lehigh
University, Bethlehem, PA. Prior to that he was an
Assistant Professor of Electrical Engineering at Old
Dominion University, Norfolk, VA. His research
interests include design of architectures and al-
gorithms for digital signal processing and applica-

to problems in electrical engineering.

