
THROUGHPUT ENHANCEMENT IN MULTIPROCESSOR ARCHITECTURES
FOR PIPELINING AND DIGITAL SIGNAL PROCESSING APPLICATIONS

Sukhamoy Som
ECE Department, Old Dominion University

Norfolk, Virginia 23529-0246
and

Meghanad D. Wagh
EE & CS Department, Lehigh University

Bethlehem, PA 18015

ABSTRACT This paper is concerned with throughput
enhancement for pipelining and digital signal processing in a
multiprocessor environment. A common objective in pipelining
and digital signal processing is the repeated execution of the
same computational job consisting of a set of computational
operations with high throughput or sampling rates. For a good
performance and avoidance of internal conflicts, the concurrent
computational operations of successive data sets of a
computational job should be properly scheduled. This
scheduling problem is known to be intrinsically difficult and a
member of the NP complete class of problems. In this paper,
heuristic suboptimal scheduling algorithms are developed whose
execution time is a polynomial function of the number of items
to be scheduled. Insertion of delay is used as a basic tool for
better utilization of hardware and thereby increasing the
throughput Rescheduling of computational jobs are directed to
architectures consisting of arbitrary number of processors.
Simulation results are presented.

I. INTRODUCTION
Pipelining is now widely used in the design of high speed

computers in order to overcome the intrinsic speed limitations
imposed by the technology [l. 2, 31. A pipeline is defied to
be a collection of processors or hardware stages which can
work simultaneously. A Computational job is carried out by
splitting the job into various operations and executing the
operations in stages in an ordered sequence. Processors are
normally special purpose for low cost. A pipeline is efficiently
used only for repeated execution of a computational job because
operations for successive data sets can be overlapped. In digital
signal processing. a number of sensors provide the input data to
the multiprocessor computer which then analyzes the input data
by some predefined set of computational operations. Several
characteristics required of such computers include repeated
(usually periodic) execution of the same computational job and
very high sampling rates [4, 5,61.

The topic of this paper is the data control strategy for
multiprocessor architectures where only one computational job
is carried out repeatedly for several consecutive data sets. The
problem is to adjust the data flow such that the same processor
(stage) is not accessed by more than one data set

simultaneously. The data flow pattern for each data set will be
assumed to be same so that control of hardware is simplified.
This data flow pauern can be easily represented through the use
of a reservation table whose rows are labeled with processors
and columns with time units [7]. Figure 1 shows a typical
reservation table of a job execution on an architecture with four
processors Po through P, where the processors can be identical
or different. They can be special purpose or general purpose
hardware doing computations at either fme grain or large grain
level. Also the processors may have the same speed or
different speed of operations. Each processor may require one
or more time units to process the operands. The use of a
processor in any time unit is indicated by marking the
appropriate cell of the table with a cross. An o p t i o n on a
processor at time t can only be done if all the operations on all
the processors up to time (t-1) are completed for that data set.
Crosses in the same column indicate parallel computation and
are therefore independent of each other. Multiple crosses in the
same row of the reservation table may either indicate a complex
operation, processor reusage OT a slow processor. The number
of crosses in each row need not be same. Once assigned, a
processor completes a computational task without preemption
or wait so that multiple crosses belonging to the same
computational operation should always remain consecutive.

As an example, consider the execution of a polynomial by
the Central Arithmatic Logic Unit (CALU) of TMS320 series
of microprocessors as shown in Figure 2 [8]. The architecture
consists of two processors, namely one 16 x lcbit parallel
multiplier and one 32-bit arithmatic logic unit The multiplier
is capable of computing a 32-bit product in one machine cycle.
The arithmatic logic unit (ALU) can add, subtract, and perform
logical operations most of which requires only one clock cycle.
A 32-bit accumulator is always the destination and primary
operand for all ALU operations. Now suppose a polynomial
f(z) is to be computed repeatedly in this architecture for
successive values of z. Let f(z) be a second degree polynomial
given by

f(z) = a, + a, z + a, * 22

As both the multiplier and arithmatic logic unit operates on
two inputs only, f(z) is reorganized by Horner's rule as follows
[91, f(z) = (a, * z + a,) * z + a,,.

0072

1.4.2.1
CH3129-419210000-0072 $3.00 0 1992 IEEE I PCCC '92

Time units

b 1 2 3 4 5 6 7 8

transfer times, It is logical to assume that both multiplication
and addition requires equal time, say one time unit. For a data
set, Po multiplies a, with input data z and then the product is
added to a, by P,. The result is multiplied by z followed by
addition of a. The reservation table indicates that computation
in time unit 2 (multiplication by z) cannot be done unless all
computations for time units 0 and 1 are complete. Both rows
of reservation table have two crosses. These sequence of
computation steps are to be followed for every data set.

Time units

1 2 3
Processors

Figure 1. A typical reservation table.

\
PRWRAMBUS

16 DATA BUS

&I ShiRer (0-16)

.k 16

7 Multiplexer

'Uunatic Logic Unit (32

.1 32 32

Accumulator (32)

16
ShiRer (0,1,4) ShiRer (0,1,4) 6

Figure 2. Central Arithmatic Logic Unit (CALU) for the
TMS320 series of microprocessors.

The corresponding reservation table is shown in Figure 3.
Po and PI are the multiplier and the ALU, respectively. As the
multiplier is as fast as the ALU and assuming equal data

((aiz t a,) * z) t a

Figure 3. Reservation table for a polynomial.

The initiation interval between the successive dam sets
should be such that there is no conflict of hardware requirement
between the data sets. This initiation interval and hence the
interval between successive outputs, is known as latency of a
pipeline or sampling interval in digital signal processing. It is
also known from the work of Shar [lo] that minimum average
latency f a an pipeline is always greater than or qual to the
maximum number of crosses in any single row of the
reseavation table. Patel and Davidson [111 have shown that a
pipeline can achieve minimum average latency and constant
interval between initiations and outputs by inserting delays in
the rows of a reservation table. This is very important for
digital signal processing as external systems usually require

It has been shown in [7] that a reservation table with
constant latency L will not have collision iff the crosses in any
row occur at time units which are distinct modulo L. The basis
for restructuring reservation table is that crosses in a row can be
made to occur at distinct modulo L time by delay insertion
without altering precedence constraints. Patel and Davidson
1111 have obtained a branch and bound algorithm which
optimizes the delay insertion. This minimization of delays is a
known NP complete problem [7]. us their procedure to
achieve the optimum throughput requires a complete search of
all possible solutions. Although the scope of the required
search can be reduced by establishing constraints and bounds,
the branch and bound algorithm 1111 still has a worst case
complexity of the order of P, where N denotes the maximum
number of crosses in any row. However, this level of
complexity for scheduling algorithm is unacceptable for most
run-time or compile-time scheduling. Also, since the added

sampling of inputs at regular intervals.

1.4.2.2
0073

delay does not affect the overall throughput but only worsens
the execution time for any particular data set, it is felt that the
delay minimization could be traded for computational
complexity of the rescheduling. The approach taken in this
paper is therefore based on a search for heuristic procedures to
reschedule a reservation table in polynomial time to achieve
maximum throughput rate by addition of slightly larger delays.
These scheduling algorithms are to be the guiding principles for
the operating system of multiprocessor architectures to allocate
computational operations to processors.

From Figure 3, as there are two crosses in each row of the
reservation table, function f(z) has minimum average latency of
2. To illustrate this, data sets cannot be executed with a
throughput of 1 as described in Figure 4. Data set 3 cannot be
started until data time unit 4 as the multiplier is not adlable.
From the reservation table, the latency value oscillates between
1 and 3 resulting in an average latency of 2. However, it
should be possible to achieve a constant latency (L) of 2 with
a periodic sampling of input signal z at 2 time intervals. But
the reservation table of Figure 4 contains two multiplications at
time units 0 and 2 and therefore it is not possible to inject next
data set at time unit 2. Hence, a one time unit delay is added
heuristically after computing (h * z + a,) in the reservation
table as shown in Figure 5. In general, a scheduling algorithm
is required to determine the proper number and location of
delays. A constant latency of 2 is now achieved as shown in
Figure 6. Therefore maximum possible throughput is achieved
at the expense of increasing computing time for individual data
sets by one time unit. Also, this may require additional
registers to hold intermediate results for overlapping data sets.

1 pa

Time units

‘ 0 1 2 3 4 5 6 7

2 1 3 2 4 3 5 4

1 2 1 3 2 4 3 5
/

PO

P1

Processors Data set
number 1 1

1 2 1 2 3 4 3 4

1 2 1 2 3 4 3

8 9

/ \ / \ output 1 output 2 output 3 output 4

Figure 4. Execution of the polynomial for multiple data sets.

In Section I1 of the paper, a new concept, Difference
Triangle, is introduced for keeping track of relative distance
between each pair of crosses in the rows of a reservation table.
The Difference Triangle has acted as a basic building block in
all the rescheduling algorithms of this paper. Rescheduling of
pipelines with stages of equal speeds are considered in Section
111. In Section IV, simulation results are discussed.

Time units Delay of 1 time unit

(a2*z t a,) * z

(b p + a, 1 * 4 +a,,

Figure 5. Modified reservation table for polynomial f(z).

Time units

‘ 0 1 2 3 4 5 6 7 8 9

Processors Data set
number 1 1 1

/ I I
output 1 output 2 output 3

Figure 6. Periodic execution at minimum latency.

11. DIFFERENCE TRIANGLE
The basic problem of avoiding collisions in a reservation

table consists of rescheduling the computational job such that
all the crosses in a row are located at time units distinct modulo
L, where L is the latency. In addition, the precedence
constraints in the reservation table shoul,d $so be preserved. In
this section, a new concept, Difference Triangle, is presented
for rescheduling reservation tables in polynomial time. The
objective is to generate heuristic scheduling algorithms which
will optimize throughput by insertion of delays in the
reservation table. The overall execution time of a reservation
table may be suboptimal but the complexity of rescheduling
algorithms has to be a polynomial function of the maximum
number of crosses in any row of the rese.rvation table.

Consider a single row reservation table with N crosses.
Hence the latency is N. In order to avoid collisions and
achieve optimum throughput, the crosses in the reservation table
are to be rescheduled so that no two cfosses are sepamed by a
time interval multiple of N. This is to be done by adding
delays before crosses in the reservation table. Let X(i). i = 0,
1, N - 1 be a sequence of N elements where X(i) indicates
the execution time of the i-th cross. Also, let Y(i). i = 0, 1, ...
N-1 be a sequence of N elements where Y(i) indicates the
added delay before the i-th cross. In order to maintain
precedence constraints in X sequence, Y(i) must be greater than

1.4.2.3
0074

or equal to Y(i) if j > i. Mathematically, this scheduling
problem for a single processor can therefore be srated as
follows. Given a monotonically increasing sequence X(i), i =
0, 1, .. N-1, it is required to modify it by adding a
monotonically nondecreasing sequence Y(i), i = 0, 1, .. N - 1
such that for no i and j, [X(i) + Y(i)l - [Xu) + YQ)] is an
integer multiple of N.

We now define a new concept, Difference Triangle, for
keeping track of relative distance between each pair of sequence
elements. The Difference Triangle D of height as well as
base Of N-1 is defined as

0

/’
X sequence

2 2

6 4 1

D(k. 0) = [X(k + 1) - X(k)] mod N,
D(k, i) = [D(k, 0) + D(k-1, i-l)] mod N, k > 0; i = 1.2, .. k.

It is obvious from the definition that

k = 0, 1, .. N-2

8 2 1 3

1 2 4 1 0 2

D(k. i) = [X(k + 1) - X(k-i)] mod N, 0 s k 5 N-2,
O i i i k

Thus if all the X components are distinct modulo N, no entry
in D will be zero (0). Figure 7(a) shows an example of
Difference Triangle for the X sequence (0, 2, 5. 7, 11) where
N is 5. Note that the f i t column written here is the X
sequence and is not part of D.

Now if all the modified X sequence components are distinct
modulo N. the Difference Triangle based on modified X
sequence will not have a 0 (zero). So the rescheduling problem
can also be stated as follows. Modify X sequence by
introducing delay between properly chosen X components to
eliminate all the zeros fmm the Difference Triangle. The
elements affected by the introduction of such a delay are
enclosed in a parallelogram bounded by the row and a line
parallel to the diagonal originating at the X component which
is delayed. For example, the zero in the second row of Figure
7(a) can be eliminated by inserling appropriate delay (say 1
unit) before X(2) = 5. This curresponds to the Y sequence (0,
0, 1, 1, 1). The modified X sequence is (0, 2, 6, 8, 12) with
the modified Difference Triangle shown in Figure 7(b).

When the architecture has two or more processors,
precedence constraints between operations on different
processors need to be considered. If a delay o f t time units is
inserted before an operation on a processor, all subsequent
operations on all processors have to be delayed by at least t
time units.

111. SCHEDULING WITH DIFFERJWCE TRIANGLES
In this section, the concept of Difference Triangle is used for

scheduling of Computational operations in multiprocessors. The
treatment of different classes of architectures are divided in
separate sub-sections. For simplicity, processots are assumed
to execute computational operations in equal time which implies
that each computational operation can be expressed by a single
cross in the reservation table with respect to some basic time
unit. Also, this is a realistic assumption for fine-grain dedicated
processors such as the ALU and the multiplier of TMS320.

Portion
affected
by adding 2 F\ X(2)=5 before

4 1 4 1

Difference Triangle
\

(b)

Figure 7. Example of a Difference Triangle.

III.1 Two Processor Scheduling
In this subsection, reservation tables are restricted to two

processors and equal number of operations on each processor.
The rescheduling problem can be mathematically stated as
follows. Given strictly monotonically increasing sequences X
and Y of lengths N (hence latency L = N), it k.required to
modify them by adding monotonically nondecreasing sequences
M. and % such that (1) the relation between X and Y is
maintained (i.e., if X(i) > YO) then X’(i) = X(i) + &(i) > YU)
+ %U) = Y’Q) and if X(i) c YU) then X’(i) c Y’U) for any i.
j pair). (2) All X’(i) mod N are distinct and (3) All Y’(i) mod
N are distinct.

Modified X and Y sequences are collision free and are
obtained by delaying certain operations in the original X and Y
sequences without altering the precedence constraints. An
algorithm is now described which uses properties of Difference
Triangle to restructure the reservation table for two processors.
The p m f of existence and complexity of the algorithm is also
provided.

Algorithm 1.
Step 1. Form the Difference Triangles D. and D, for

sequences X and Y respectively.
Step 2. Find smallest Is, such that D&, i) = 0; 0 1. i

Similarly find $ from the Difference Triangle D,. If no
such Is, and $ exist, the procedure is complete.

Y$ + 1) perform one of the steps 4.5, or 6.

largest nonzero t less than N missing in row k. of Difference
Triangle Da. Modify X and Da as: X(i+l) c- X(i+l) + N-t;

k,,.

Step 3. Depending upon the relation between X(k, + 1) and

Step 4. If X(k, + 1) c Y& + 1) or if k, does not exist, find .

1.4.2.4
0075

D,Q, i) c- (D,(i, i) - t) mod N Ir, 5 j 5 N-2 j-k, 5 i 5 j.
Find the smallest k, such that Y(k,+l) > X&+l). If no such
k, exists, go to Step 2. Otherwise modify Y and D, as:
Y(k+l) c- Y(k+l) + (N-t); D,(k, i) c- @,(k, i) - t) mod N
k l 5 ks N-2, k - k l 5 i c k. Go to Step 2.

the largest nonzero t less than N missing in row k,. of D,.
Modify Y and D, as Y(i + 1) c- Y(i + 1) + (N - t); D,U, i)
<- @,U, i) - t) mod N k , . s j r N - 2, j - k,.5irj. Find
the smallest k l such that X(k1 + 1) > Y$ + 1). If no such
k l exists, go to Step 2. Otherwise modify X and D, as X(k
+ 1) c- X(k + 1) + N - t ; D,., i) c- @,(k, i) - t) mod N,
k l 5 k 5 N - 2, k - k l t i s k and go to Step 2.

Step 6. If X& + 1) = Y$ + 1). fiid the largest nonzero t less
than N missing in Ir, or k,. rows of D, and D, r&pectively
and carry out following modifications: X(i + 1) c- X(i + 1)
+ N - t, D& i) c- (D,(i. i) - t) mod N, Ir,5 j i N - 2; j - k,
C i 5 j . Y(k+ 1) e- Y(k + 1) + N - t, D,(k. m) c- @,(k, m)
- t) mod N k,. I. k 5 N - 2, k - 4 5 m 5 k. Go to Step 2.

- Proof. A Difference Triangle of N number sequence will
have (N - 1) rows. Each row will have at most (N - 1)
elements. Hence one will always be able to find a nonzero
number t less than N missing from any row which has a zero.
Adding N - t to that row and portions of the following rows
(see Figure 7(a)) eliminates all the zeros in that row and does
not create any new ones in earlier rows. Thus the execution of
Step 4 increases the Is, obtained in Step 2 by at least one.
Similarly Step 5 increases the k,. obtained in Step 2 by at least
one. Step 6 ensures that either Ir, or k,. or both increase by at
least one. A delay insertion in Step 4, 5. or 6 changes in the
order of N2 elements of the Difference Triangles. Since 0 5 4,
k,. 5 N - 2, the algorithm terminates after at most 2 * (N - 1)
cycles. Hence, the Difference Triangles can be made zero free
in the order of N3 computations. The precedence constraints are
maintained by altering both Difference Triangles for every
modification in any one Difference Triangle.

Example. Let the initial X and Y sequences be 0,2,3,5,7
and 0, 1, 4, 6, 10. Clearly N = 5. The corresponding
Difference Triangles are shown in Figure 8(a). The fmt rows
of Difference Triangles having zeros are given by Is, = 2,k,. =
2. Since X& + 1) = 5 and YOC, + 1) = 6, Step 4 of the
algorithm is carried out. Largest nonzero t less than 5 missing
in row k, of D, is 4. The modified difference triangles are
given in Figure 8(b). Now k, = 3, 4 = 3, X(k, + 1) = 8, and
YOC, + 1) = 9. Hence t = 4. Modified D, and D, are shown in
Figure 8(c). D, is now free from zeros and therefore Ir, does
not exist. k,. = 3 and t = 2. As YOC, + 1) > X& + l), only Y
and D, need to be modified. The final zero-free Difference
Triangles are shown in Figure 8(d). The rescheduled X
sequence is 0.2, 3,6, 9 and the Y sequence is 0, 1.4 .7 . 13.

Step 5. If Y$ + 1) c X& + 1) or if Is, does not exist, find

[I

0

111.2 Architectures with Three or More Processors
The attention is now focussed to scheduling a reservation table
with three or more processors with equal number of operations
and equal processing time. The algorithm presented here is

1 1
4 3 4
1 3 1 2

1 1 4 2 0 1

2 2 O I

0

3
6
9

j 5 2 3 0
7 3 1 1 3 2 4 0 2

2 2
1 3
3 4 1
3 1 2 4

2 2 O1

0

+12

: I ; : ,
7 8 2 0 1 3

1 1
4 3 4
7 3 1 2

0 3 1 2

0

3
6
9

2 2
1 3
3 4 1
3 1 2 4

iriangies
<- far X
for Y ->

0
1 1
4 3 4
1 3 1 2

1 3 1 4 2 3

Figure 8. Rescheduling example using Algorithm 1.

basically the extension of Algorithm 1 presented before. Let
the number of processors be m with N operations on each
processor. Minimum latency of the reservation table is N. The
algorithm is presented below.

Algorithm 2.
Step 1. Form the difference triangles Do+, i), D,(k, i),

... D,,(k, i) corresponding to sequences X,,, X,,

... L,.
c j 5 m-1. If no such kj exists, the procedure is complete.

minimum of them. Let the corresponding j be denoted as s.
If there is more than one such s, go to Step 5.

needs to be eliminated. This can be done similar to
Algorithm 1. Go to Step 2.

Step 5. Find the largest nonzero number t less than N missing
in row k, of Difference Triangle D, for all s. Modify all X,
and D, as in Step 6 of Algorithm 1. Modify the rest of the
sequences and Difference Triangles as follows. Di(k, i) =
@Jk. i) - t) mod N. Q 5 k 5 N - 2; k - Q r i c k, where Q
denotes the smallest integex such that X,(Q + 1) > X,(s+l).
Go to Step 2.
- Proof. The proof and complexity of Algorithm 2 are similar

Step 2. Find smallest kj such that D&, i) = 0; 0 5 i 5 k, 0

Stei 3. Compute Xi@, + 1) for all J if kj exists. Find the

Step 4. If there is only one such s, the zero at row kj of D.

to that of Algorithm 1.

1.4.2.5
0076

Examule. Suppose the given X, X,, and X, sequences are:
&: 0,1,3,6,7,X,: 0,3,5,10,12,andX,: 2,4,8,9,12.
N = 5. The corresponding Difference Triangles are shown in
Figure 9(a). Denoting the row with first zero by 4; k,, = 2, k,
= 1 . k , = 2 , X & + l) = 6 , X (K l + l) = 5 a n d X (k 2 + l) = 9 .
Hence the X, sequence needs to be modified first The largest
nonzero t less than 5 missing in row 1 of D, is 4. The
modified Difference Triangles are shown in Figure 9(b). Now
k ,=3 ,k l=2 .k2= l ,&&+ l)=8.X,(kl+ 1)= 11,X2(k2+
1) = 9. Hence & sequence needs to be modified fmt The
largest nonzero t less than 5 missing in row 3 of Do is 4. The
modified sequences and Difference Triangles are shown in
Figure 9(c). Since now Do and D, are zero-free, k, and k, do
not exist. The only zero in D, is at D2(3, 2). Largest nonzem
t less than 5 missing in row 3 of D, is 1. The modified
sequences and zemfree Difference Triangles are shown in
Figure 9(d). The rescheduled pipeline may be based upon the
sequences & 0, 1, 3, 7, 9, X,: 0, 3.6, 12, 14, and X,: 2.4,
10, 11, 18.

0 0
1 1
3 2 3
6 3 0 1
7 1 4 1 2

3 3
5 2 0

1 0 0 2 0
1 2 2 2 4 2

0 0
1 1
3 2 3
7 4 1 2
8 1 0 2 3

3 3
6 3 1

1 1 0 3 1
1 3 2 2 0 3

111.3 Uneuual Loading of Processors
If the stages in a pipeline are loaded unequally, then the

number of crosses in the corresponding rows of the reservation
table are not the same. In this case, the complete u t i l i o n of

0 0
1 1
3 2 3
7 4 1 2
9 2 1 3 4

all stages is not possible [2]. The best performance is obtained
when at least one stage is fully utilized. Minimum latency
possible is the number of operations of any stage which has the
maximum number of operations compared to all other stages.

Algorithm 3.
Step 1. Compute latency L as L = max (NOl N,,NJ where

N, is the number of crosses in the i-th row of an s TOW
reservation table.

Step 2. Add (L - NJ fictitious crosses to the i-th row of the
reservation table following the last cross in any row.

Step 3. Use Difference Triangles to make the crosses in each
row occur at times distinct modulo L while maintaining the
precedence constraints of the reservation table.

Step 4. Remove all fictitious cfosses from the final
reservation table to get the rescheduled reservation table. - Proof. The proof and complexity are similar to that of

Examule. A reservation table with unequally loaded
processors is shown in Figure lO(a). Latency of the reseavation
table is 4. As there is one less operation on Pl processor, one
fictitious cross is added to the corresponding row following the
last cross as shown in Figure’ lO(b). Figure 1O(c) shows the
sequences and Difference Triangles of this table. It is easy to
see thatkx = 2. ky =2, X(kx + I) = 5 and Y(ky + 1) = 6. The
largest nonzero number less than 4 missing in row b of
Difference Triangle Dx is 3. Dx and Dy modified as per
Algorithm 1 are shown in Figure lO(d). Now ky = 2, kx does
not exist Moreover, there are no elements of the current X
sequence which are greater than Y(ky + 1) = 7. Hence the X
sequence need not be modified. The fiial zero-free Dx and Dy
are shown in Figure 1O(e) from which the new schedules are X
0,1,3,6,andY 0,2,3.

Algorithm 1.

3 3
6 3 1

1 2 1 4 2
1 4 2 3 1 4

0 1 2 3 4 5

0

Po
p1

0
1 1 3 3
3 2 3 6 3 1
7 4 1 2 1 2 1 4 2
9 2 1 3 4 1 4 2 3 1 4

0 1 2 3 4 5 6

Po

PI

(b)

Difference
triangles s/: 5 +for X g/: 5 2 0 1 3 for Y - 6 5 0 2

(C> s/: 5
7 0 1 3

SI: 9 2 3 1 5

Figure 10. Rescheduling of a reservation table with unequal
loading of processors.

1.4.2.6
0077

IV. SIMULATION RESULTS
In order to test the effectiveness of the Difference Triangle

concept in developing heuristic suboptimal, polynomial time
scheduling algorithms, simulations are carried out for
multiprocessor architectures with two processors. It is assumed
that both processors require one time unit to do their respective
computations. Reservation tables are generated by a random
number generator and scheduled by Algorithm 1 which has a
complexity of N'. N here denotes the maximum number of
operations required on a processor for a data set. Simulation
software, written in Pascal, uses fiity reservation tables which
are equally loaded in both Po and P,, for number of operations
between 5,7, and 9. All the computations are done on a TI
990 model 26 minicomputer. The average expansion of a
reservation table and average scheduling time for fifty
reservation tables are computed. The results obtained are
tabulated in Table I. As the minimum measurable time on this
computer was one second, total scheduling time for 50
reservation tables with N = 5 could not be measured. From the
results, scheduling time is minimal and appropriate for compile-
time implementation. The reservation table do get extended
resulting in a higher storage requirements and higher execution
time for individual data sets. However, latency is optimal,
constant and both processors are fully utilized.

TABLE I

RESCHEDULING BY ALGORITHM 1

Too small to

be measured

12.47

Too small to

be measured

12.47

CONCLUSIONS
Optimum utilizations of hardware is a basic requirement for

any scheduling algorithm of multiprocessor architectures. One
way of achieving this is insertion of delays at appropriate places
of a reservation table. The scheduling algorithms presented in
this paper are suboptimal in that execution time for a particular
data set is not minimized. On the other hand, this scheduling
can be achieved within a polynomial time of the maximum
number of operations in any processor.

In the various algorithms presented in this paper, Difference
Triangle concept has acted as a basic building black.
Difference Triangle is simply a straight forward approach of
keeping track of relative distances between operations in a

processor. Delay insertion is used to avoid collisions in the
architecture. All the algorithms obtained are heuristic in nature
but are proved to yield an optimum throughput in an
architecture. They have a complexity of the order of N' and
therefore execute much faster than those suggested in earlier
literature. N here denotes the maximum number of operations
required on a processor for a data set.

A number of other heuristic scheduling algorithms are
developed [13]. The Difference Triangle concept also is
applied on architectures with processors requiring unequal time
for operations [13]. Several topics can be the subject of
continuing and/or future research. To name a few interesting
problems, scheduling multiple computational jobs concurrently,
timing and control requirements for insertion of delays, a
trade-off between delay insertion and rescheduling time, and
more studies on architectures with processors of unequal speed
of operations deserve attention.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

REFERENCES
Hui Cheng, "Vector Pipelining, Chaining, and Speed on
the IBM 3090 and C i y X-MP," Computer, pp. 3146,
September 1989.
George M. Papadopoulos and David E. Culler "Monsoon:
an Explicit Token-Store Architecture," Proceedings of the
17th Annual International Symosium on Computer
Architecture, IEEE Computer Society Press, pp. 82-91,

L. E. Shar and E. S. Davidson. "A Multiminiprocessor
System Implemented Through Pipelining," Computer, pp.
42-51, February, 1974.
S. Som, R. R. Mielke, and J. W. Stoughton, "Strategies
for Predictability in Real-Time Data-Flow Architectures."
Presented at the 11th IEEE Real-Time System
Symposium, Orlando, Florida, December 5-7, 1990.
Kesab. K. Parhi and David G. Messerschmitt, "Static
Rate-Optimal Scheduling of Iterative Data-Flow Programs
via Optimum Unfolding," IEEE Transactions on
Computers, pp. 178-195, vol. 40, No. 2, February 1991.
E. A. Lee and D. G. Messerschmitt, "Static Scheduling of
Synchronous Data Flow Programs for Digital Signal
Processing," IEEE Transactions on Computers, vol. 36,

P. M. Kogge, The Architecture of Pipelined Computers,
Advanced Computer Science Series, McGraw-Hill Book
Company, 198 1.
Texas Instruments, "First-Generation TMS3u) User's
Guide," April 1988.
E. Horowitz and S. Sahni, "Fundamentals of Computer
Algorithms," Computer Science Pres, pp. 426428,1978.
L. E. Shar, "Design and Scheduling of Statically
Configured Pipelines," Digital Systems, Lab Report,
Stanford University, California, September, 1972.
1. H. Pate1 and E. S. Davidson. "Improving the
Throughput of a Pipeline by Insertion of Delays,"
IEEE/ACM 3rd Annual Symposium on Computer
Architecture, pp. 159-163, 1976.

May 1990.

pp. 24-35, January 1987.

1.4.2.7
0078

12. J. D. Ulman. "NP-Complete Scheduling Problems,"
Journal of Computer and System Sciences, vol. 10, pp.

13. Sukhamoy Som. "Suboptimal Algorithms for
Improvement of Pipeline Through Insertion of Delays,"
M.E. Thesis, Old Dominion University, Norfolk, VA,
August 1984.

14. C. V. Ramamoorthy and H. F. Li, "Some Problems in
Parallel and Pipeline Processing," Proc. Compcon, IEFE,

15. J. H. Pate1 "Pipelines with Internal Buffers," Proc. of the
5th Annual Svmuosium on Computer Architecture. pp.

16. David Bemstein, Michael Rodeh, and Izidor Geper, "On
the Complexity of Scheduling Problems for
ParalleI/Pipelined Machines," IEFE Transactions on
Computers, vol. 38, September 1989.

17. Sukhamoy Som. "Performance Modeling and
Enhancement for the ATAMM Data Flow Architecture,"
Ph.D. Dissertation, Old Dominion University, Norfolk,
VA, May 1989.

384-393, 1975.

pp. 177-180. 1975.

249-254, April 1978.

1.4.2.8
0079

