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ABSTRACT This paper is concerned with throughput 
enhancement for pipelining and digital signal processing in a 
multiprocessor environment. A common objective in pipelining 
and digital signal processing is the repeated execution of the 
same computational job consisting of a set of computational 
operations with high throughput or sampling rates. For a good 
performance and avoidance of internal conflicts, the concurrent 
computational operations of successive data sets of a 
computational job should be properly scheduled. This 
scheduling problem is known to be intrinsically difficult and a 
member of the NP complete class of problems. In this paper, 
heuristic suboptimal scheduling algorithms are developed whose 
execution time is a polynomial function of the number of items 
to be scheduled. Insertion of delay is used as a basic tool for 
better utilization of hardware and thereby increasing the 
throughput Rescheduling of computational jobs are directed to 
architectures consisting of arbitrary number of processors. 
Simulation results are presented. 

I. INTRODUCTION 
Pipelining is now widely used in the design of high speed 

computers in order to overcome the intrinsic speed limitations 
imposed by the technology [l. 2, 31. A pipeline is defied to 
be a collection of processors or hardware stages which can 
work simultaneously. A Computational job is carried out by 
splitting the job into various operations and executing the 
operations in stages in an ordered sequence. Processors are 
normally special purpose for low cost. A pipeline is efficiently 
used only for repeated execution of a computational job because 
operations for successive data sets can be overlapped. In digital 
signal processing. a number of sensors provide the input data to 
the multiprocessor computer which then analyzes the input data 
by some predefined set of computational operations. Several 
characteristics required of such computers include repeated 
(usually periodic) execution of the same computational job and 
very high sampling rates [4, 5,61. 

The topic of this paper is the data control strategy for 
multiprocessor architectures where only one computational job 
is carried out repeatedly for several consecutive data sets. The 
problem is to adjust the data flow such that the same processor 
(stage) is not accessed by more than one data set 

simultaneously. The data flow pattern for each data set will be 
assumed to be same so that control of hardware is simplified. 
This data flow pauern can be easily represented through the use 
of a reservation table whose rows are labeled with processors 
and columns with time units [7]. Figure 1 shows a typical 
reservation table of a job execution on an architecture with four 
processors Po through P, where the processors can be identical 
or different. They can be special purpose or general purpose 
hardware doing computations at either fme grain or large grain 
level. Also the processors may have the same speed or 
different speed of operations. Each processor may require one 
or more time units to process the operands. The use of a 
processor in any time unit is indicated by marking the 
appropriate cell of the table with a cross. An o p t i o n  on a 
processor at time t can only be done if all the operations on all 
the processors up to time (t-1) are completed for that data set. 
Crosses in the same column indicate parallel computation and 
are therefore independent of each other. Multiple crosses in the 
same row of the reservation table may either indicate a complex 
operation, processor reusage OT a slow processor. The number 
of crosses in each row need not be same. Once assigned, a 
processor completes a computational task without preemption 
or wait so that multiple crosses belonging to the same 
computational operation should always remain consecutive. 

As an example, consider the execution of a polynomial by 
the Central Arithmatic Logic Unit (CALU) of TMS320 series 
of microprocessors as shown in Figure 2 [8]. The architecture 
consists of two processors, namely one 16 x lcbit parallel 
multiplier and one 32-bit arithmatic logic unit The multiplier 
is capable of computing a 32-bit product in one machine cycle. 
The arithmatic logic unit (ALU) can add, subtract, and perform 
logical operations most of which requires only one clock cycle. 
A 32-bit accumulator is always the destination and primary 
operand for all ALU operations. Now suppose a polynomial 
f(z) is to be computed repeatedly in this architecture for 
successive values of z. Let f(z) be a second degree polynomial 
given by 

f(z) = a, + a, z + a, * 22 

As both the multiplier and arithmatic logic unit operates on 
two inputs only, f(z) is reorganized by Horner's rule as follows 
[91, f(z) = (a, * z + a,) * z + a,,. 
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Time units 

b 1 2 3 4 5 6 7  8 

transfer times, It is logical to assume that both multiplication 
and addition requires equal time, say one time unit. For a data 
set, Po multiplies a, with input data z and then the product is 
added to a, by P,. The result is multiplied by z followed by 
addition of a. The reservation table indicates that computation 
in time unit 2 (multiplication by z) cannot be done unless all 
computations for time units 0 and 1 are complete. Both rows 
of reservation table have two crosses. These sequence of 
computation steps are to be followed for every data set. 

Time units 

1 2 3 
Processors 

Figure 1. A typical reservation table. 
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Figure 2. Central Arithmatic Logic Unit (CALU) for the 
TMS320 series of microprocessors. 

The corresponding reservation table is shown in Figure 3. 
Po and PI are the multiplier and the ALU, respectively. As the 
multiplier is as fast as the ALU and assuming equal data 

( (aiz t a,) * z) t a  

Figure 3. Reservation table for a polynomial. 

The initiation interval between the successive dam sets 
should be such that there is no conflict of hardware requirement 
between the data sets. This initiation interval and hence the 
interval between successive outputs, is known as latency of a 
pipeline or sampling interval in digital signal processing. It is 
also known from the work of Shar [lo] that minimum average 
latency f a  an pipeline is always greater than or qual to the 
maximum number of crosses in any single row of the 
reseavation table. Patel and Davidson [ 111 have shown that a 
pipeline can achieve minimum average latency and constant 
interval between initiations and outputs by inserting delays in 
the rows of a reservation table. This is very important for 
digital signal processing as external systems usually require 

It has been shown in [7] that a reservation table with 
constant latency L will not have collision iff the crosses in any 
row occur at time units which are distinct modulo L. The basis 
for restructuring reservation table is that crosses in a row can be 
made to occur at distinct modulo L time by delay insertion 
without altering precedence constraints. Patel and Davidson 
1111 have obtained a branch and bound algorithm which 
optimizes the delay insertion. This minimization of delays is a 
known NP complete problem [7].  us their procedure to 
achieve the optimum throughput requires a complete search of 
all possible solutions. Although the scope of the required 
search can be reduced by establishing constraints and bounds, 
the branch and bound algorithm 1111 still has a worst case 
complexity of the order of P, where N denotes the maximum 
number of crosses in any row. However, this level of 
complexity for scheduling algorithm is unacceptable for most 
run-time or compile-time scheduling. Also, since the added 

sampling of inputs at regular intervals. 
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delay does not affect the overall throughput but only worsens 
the execution time for any particular data set, it is felt that the 
delay minimization could be traded for computational 
complexity of the rescheduling. The approach taken in this 
paper is therefore based on a search for heuristic procedures to 
reschedule a reservation table in polynomial time to achieve 
maximum throughput rate by addition of slightly larger delays. 
These scheduling algorithms are to be the guiding principles for 
the operating system of multiprocessor architectures to allocate 
computational operations to processors. 

From Figure 3, as there are two crosses in each row of the 
reservation table, function f(z) has minimum average latency of 
2. To illustrate this, data sets cannot be executed with a 
throughput of 1 as described in Figure 4. Data set 3 cannot be 
started until data time unit 4 as the multiplier is not adlable. 
From the reservation table, the latency value oscillates between 
1 and 3 resulting in an average latency of 2. However, it 
should be possible to achieve a constant latency (L) of 2 with 
a periodic sampling of input signal z at 2 time intervals. But 
the reservation table of Figure 4 contains two multiplications at 
time units 0 and 2 and therefore it is not possible to inject next 
data set at time unit 2. Hence, a one time unit delay is added 
heuristically after computing (h * z + a,) in the reservation 
table as shown in Figure 5. In general, a scheduling algorithm 
is required to determine the proper number and location of 
delays. A constant latency of 2 is now achieved as shown in 
Figure 6. Therefore maximum possible throughput is achieved 
at the expense of increasing computing time for individual data 
sets by one time unit. Also, this may require additional 
registers to hold intermediate results for overlapping data sets. 

1 pa 

Time units 

‘ 0  1 2  3 4 5 6 7  

2 1 3 2 4 3 5 4  

1 2 1 3 2 4 3 5  
/ 

PO 

P1 

Processors Data set 
number 1 1 

1 2 1  2 3  4 3 4 

1 2 1  2 3  4 3  

8 9  

/ \  / \  output 1 output 2 output 3 output 4 

Figure 4. Execution of the polynomial for multiple data sets. 

In Section I1 of the paper, a new concept, Difference 
Triangle, is introduced for keeping track of relative distance 
between each pair of crosses in the rows of a reservation table. 
The Difference Triangle has acted as a basic building block in 
all the rescheduling algorithms of this paper. Rescheduling of 
pipelines with stages of equal speeds are considered in Section 
111. In Section IV, simulation results are discussed. 

Time units Delay of 1 time unit 

(a2*z t a,)  * z 

( b p  + a, 1 * 4 +a,, 

Figure 5. Modified reservation table for polynomial f(z). 

Time units 

‘ 0 1 2 3 4 5 6 7  8 9  

Processors Data set 
number 1 1 1 

/ I  I 
output 1 output 2 output 3 

Figure 6. Periodic execution at minimum latency. 

11. DIFFERENCE TRIANGLE 
The basic problem of avoiding collisions in a reservation 

table consists of rescheduling the computational job such that 
all the crosses in a row are located at time units distinct modulo 
L, where L is the latency. In addition, the precedence 
constraints in the reservation table shoul,d $so be preserved. In 
this section, a new concept, Difference Triangle, is presented 
for rescheduling reservation tables in polynomial time. The 
objective is to generate heuristic scheduling algorithms which 
will optimize throughput by insertion of delays in the 
reservation table. The overall execution time of a reservation 
table may be suboptimal but the complexity of rescheduling 
algorithms has to be a polynomial function of the maximum 
number of crosses in any row of the rese.rvation table. 

Consider a single row reservation table with N crosses. 
Hence the latency is N. In order to avoid collisions and 
achieve optimum throughput, the crosses in the reservation table 
are to be rescheduled so that no two cfosses are sepamed by a 
time interval multiple of N. This is to be done by adding 
delays before crosses in the reservation table. Let X(i). i = 0, 
1, .... N - 1 be a sequence of N elements where X(i) indicates 
the execution time of the i-th cross. Also, let Y(i). i = 0, 1, ... 
N-1 be a sequence of N elements where Y(i) indicates the 
added delay before the i-th cross. In order to maintain 
precedence constraints in X sequence, Y(i) must be greater than 
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or equal to Y(i) if j > i. Mathematically, this scheduling 
problem for a single processor can therefore be srated as 
follows. Given a monotonically increasing sequence X(i), i = 
0, 1, .. N-1, it is required to modify it by adding a 
monotonically nondecreasing sequence Y(i), i = 0, 1, .. N - 1 
such that for no i and j, [X(i) + Y(i)l - [Xu) + YQ)] is an 
integer multiple of N. 

We now define a new concept, Difference Triangle, for 
keeping track of relative distance between each pair of sequence 
elements. The Difference Triangle D of height as well as 
base Of N-1 is defined as 

0 

/’ 
X sequence 

2 2  

6 4 1  

D(k. 0) = [X(k + 1) - X(k)] mod N, 
D(k, i) = [D(k, 0) + D(k-1, i-l)] mod N, k > 0; i = 1.2, .. k. 

It is obvious from the definition that 

k = 0, 1, .. N-2 

8 2 1 3  

1 2 4 1 0 2  

D(k. i) = [X(k + 1) - X(k-i)] mod N, 0 s k 5 N-2, 
O i i i k  

Thus if all the X components are distinct modulo N, no entry 
in D will be zero (0). Figure 7(a) shows an example of 
Difference Triangle for the X sequence (0, 2, 5. 7, 11) where 
N is 5. Note that the f i t  column written here is the X 
sequence and is not part of D. 

Now if all the modified X sequence components are distinct 
modulo N. the Difference Triangle based on modified X 
sequence will not have a 0 (zero). So the rescheduling problem 
can also be stated as follows. Modify X sequence by 
introducing delay between properly chosen X components to 
eliminate all the zeros fmm the Difference Triangle. The 
elements affected by the introduction of such a delay are 
enclosed in a parallelogram bounded by the row and a line 
parallel to the diagonal originating at the X component which 
is delayed. For example, the zero in the second row of Figure 
7(a) can be eliminated by inserling appropriate delay (say 1 
unit) before X(2) = 5. This curresponds to the Y sequence (0, 
0, 1, 1, 1). The modified X sequence is (0, 2, 6, 8, 12) with 
the modified Difference Triangle shown in Figure 7(b). 

When the architecture has two or more processors, 
precedence constraints between operations on different 
processors need to be considered. If a delay o f t  time units is 
inserted before an operation on a processor, all subsequent 
operations on all processors have to be delayed by at least t 
time units. 

111. SCHEDULING WITH DIFFERJWCE TRIANGLES 
In this section, the concept of Difference Triangle is used for 

scheduling of Computational operations in multiprocessors. The 
treatment of different classes of architectures are divided in 
separate sub-sections. For simplicity, processots are assumed 
to execute computational operations in equal time which implies 
that each computational operation can be expressed by a single 
cross in the reservation table with respect to some basic time 
unit. Also, this is a realistic assumption for fine-grain dedicated 
processors such as the ALU and the multiplier of TMS320. 

Portion 
affected 
by adding 2 F\ X(2)=5 before 

4 1 4 1  

Difference Triangle 
\ 

(b) 

Figure 7. Example of a Difference Triangle. 

III.1 Two Processor Scheduling 
In this subsection, reservation tables are restricted to two 

processors and equal number of operations on each processor. 
The rescheduling problem can be mathematically stated as 
follows. Given strictly monotonically increasing sequences X 
and Y of lengths N (hence latency L = N), it k.required to 
modify them by adding monotonically nondecreasing sequences 
M. and % such that (1) the relation between X and Y is 
maintained (i.e., if X(i) > YO) then X’(i) = X(i) + &(i) > YU) 
+ %U) = Y’Q) and if X(i) c YU) then X’(i) c Y’U) for any i. 
j pair). (2) All X’(i) mod N are distinct and (3) All Y’(i) mod 
N are distinct. 

Modified X and Y sequences are collision free and are 
obtained by delaying certain operations in the original X and Y 
sequences without altering the precedence constraints. An 
algorithm is now described which uses properties of Difference 
Triangle to restructure the reservation table for two processors. 
The p m f  of existence and complexity of the algorithm is also 
provided. 

Algorithm 1. 
Step 1. Form the Difference Triangles D. and D, for 

sequences X and Y respectively. 
Step 2. Find smallest Is, such that D&, i) = 0; 0 1. i 

Similarly find $ from the Difference Triangle D,. If no 
such Is, and $ exist, the procedure is complete. 

Y$ + 1) perform one of the steps 4.5, or 6. 

largest nonzero t less than N missing in row k. of Difference 
Triangle Da. Modify X and Da as: X(i+l) c- X(i+l) + N-t; 

k,,. 

Step 3. Depending upon the relation between X(k, + 1) and 

Step 4. If X(k, + 1) c Y& + 1) or if k, does not exist, find . 
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D,Q, i) c- (D,(i, i) - t) mod N Ir, 5 j 5 N-2 j-k, 5 i 5 j. 
Find the smallest k, such that Y(k,+l) > X&+l). If no such 
k, exists, go to Step 2. Otherwise modify Y and D, as: 
Y(k+l) c- Y(k+l) + (N-t); D,(k, i) c- @,(k, i) - t) mod N 
k l  5 ks N-2, k - k l  5 i c  k. Go to Step 2. 

the largest nonzero t less than N missing in row k,. of D,. 
Modify Y and D, as Y(i + 1) c- Y(i + 1) + (N - t); D,U, i) 
<- @,U, i) - t) mod N k , . s j r N  - 2, j - k,.5irj. Find 
the smallest k l  such that X(k1 + 1) > Y$ + 1). If no such 
k l  exists, go to Step 2. Otherwise modify X and D, as X(k 
+ 1) c- X(k + 1) + N - t ; D,., i) c- @,(k, i) - t) mod N, 
k l  5 k 5 N  - 2, k - k l  t i s  k and go to Step 2. 

Step 6. If X& + 1) = Y$ + 1). fiid the largest nonzero t less 
than N missing in Ir, or k,. rows of D, and D, r&pectively 
and carry out following modifications: X(i + 1) c- X(i + 1) 
+ N - t, D& i) c- (D,(i. i) - t) mod N, Ir,5 j i N  - 2; j - k, 
C i 5 j .  Y(k+ 1) e- Y(k + 1) + N - t, D,(k. m) c- @,(k, m) 
- t ) mod N k,. I. k 5 N - 2, k - 4 5 m 5 k. Go to Step 2. 

- Proof. A Difference Triangle of N number sequence will 
have (N - 1) rows. Each row will have at most (N - 1) 
elements. Hence one will always be able to find a nonzero 
number t less than N missing from any row which has a zero. 
Adding N - t to that row and portions of the following rows 
(see Figure 7(a)) eliminates all the zeros in that row and does 
not create any new ones in earlier rows. Thus the execution of 
Step 4 increases the Is, obtained in Step 2 by at least one. 
Similarly Step 5 increases the k,. obtained in Step 2 by at least 
one. Step 6 ensures that either Ir, or k,. or both increase by at 
least one. A delay insertion in Step 4, 5. or 6 changes in the 
order of N2 elements of the Difference Triangles. Since 0 5 4, 
k,. 5 N - 2, the algorithm terminates after at most 2 * (N - 1) 
cycles. Hence, the Difference Triangles can be made zero free 
in the order of N3 computations. The precedence constraints are 
maintained by altering both Difference Triangles for every 
modification in any one Difference Triangle. 

Example. Let the initial X and Y sequences be 0,2,3,5,7 
and 0, 1, 4, 6, 10. Clearly N = 5. The corresponding 
Difference Triangles are shown in Figure 8(a). The fmt rows 
of Difference Triangles having zeros are given by Is, = 2,k,. = 
2. Since X& + 1) = 5 and YOC, + 1) = 6, Step 4 of the 
algorithm is carried out. Largest nonzero t less than 5 missing 
in row k, of D, is 4. The modified difference triangles are 
given in Figure 8(b). Now k, = 3, 4 = 3, X(k, + 1) = 8, and 
YOC, + 1) = 9. Hence t = 4. Modified D, and D, are shown in 
Figure 8(c). D, is now free from zeros and therefore Ir, does 
not exist. k,. = 3 and t = 2. As YOC, + 1) > X& + l), only Y 
and D, need to be modified. The final zero-free Difference 
Triangles are shown in Figure 8(d). The rescheduled X 
sequence is 0.2, 3,6, 9 and the Y sequence is 0, 1.4 .7 .  13. 

Step 5. If Y$ + 1) c X& + 1) or if Is, does not exist, find 

[I 

0 

111.2 Architectures with Three or More Processors 
The attention is now focussed to scheduling a reservation table 
with three or more processors with equal number of operations 
and equal processing time. The algorithm presented here is 

1 1  
4 3 4  
1 3 1 2  

1 1 4 2 0 1  

2 2  O I  

0 

3 
6 
9 

j 5  2 3 0  
7 3 1 1 3  2 4 0 2  

2 2  
1 3  
3 4 1  
3 1 2 4  

2 2  O1 

0 

+12 

: I ; : ,  
7 8  2 0 1 3  

1 1  
4 3 4  
7 3 1 2  

0 3 1 2 

0 

3 
6 
9 

2 2  
1 3  
3 4 1  
3 1 2 4  

iriangies 
<- far X 
for Y -> 

0 
1 1  
4 3 4  
1 3 1 2  

1 3 1 4 2 3  

Figure 8. Rescheduling example using Algorithm 1. 

basically the extension of Algorithm 1 presented before. Let 
the number of processors be m with N operations on each 
processor. Minimum latency of the reservation table is N. The 
algorithm is presented below. 

Algorithm 2. 
Step 1. Form the difference triangles Do+, i), D,(k, i), 

... D,,(k, i) corresponding to sequences X,,, X,, 

... L,. 
c j 5 m-1. If no such kj exists, the procedure is complete. 

minimum of them. Let the corresponding j be denoted as s. 
If there is more than one such s, go to Step 5. 

needs to be eliminated. This can be done similar to 
Algorithm 1. Go to Step 2. 

Step 5. Find the largest nonzero number t less than N missing 
in row k, of Difference Triangle D, for all s. Modify all X, 
and D, as in Step 6 of Algorithm 1. Modify the rest of the 
sequences and Difference Triangles as follows. Di(k, i) = 
@Jk. i) - t) mod N. Q 5  k 5 N  - 2; k - Q r i c  k, where Q 
denotes the smallest integex such that X,(Q + 1) > X,(s+l). 
Go to Step 2. 
- Proof. The proof and complexity of Algorithm 2 are similar 

Step 2. Find smallest kj such that D&, i) = 0; 0 5 i 5 k, 0 

Stei 3. Compute Xi@, + 1) for all J if kj exists. Find the 

Step 4. If there is only one such s, the zero at row kj of D. 

to that of Algorithm 1. 
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Examule. Suppose the given X,  X,, and X, sequences are: 
&: 0,1,3,6,7,X,: 0,3,5,10,12,andX,: 2,4,8,9,12. 
N = 5. The corresponding Difference Triangles are shown in 
Figure 9(a). Denoting the row with first zero by 4; k,, = 2, k, 
= 1 . k , = 2 , X & + l ) = 6 , X ( K l + l ) = 5 a n d X ( k 2 + l ) = 9 .  
Hence the X, sequence needs to be modified first The largest 
nonzero t less than 5 missing in row 1 of D, is 4. The 
modified Difference Triangles are shown in Figure 9(b). Now 
k ,=3 ,k l=2 .k2= l ,&&+ l)=8.X,(kl+ 1)= 11,X2(k2+ 
1) = 9. Hence & sequence needs to be modified fmt The 
largest nonzero t less than 5 missing in row 3 of Do is 4. The 
modified sequences and Difference Triangles are shown in 
Figure 9(c). Since now Do and D, are zero-free, k, and k, do 
not exist. The only zero in D, is at D2(3, 2). Largest nonzem 
t less than 5 missing in row 3 of D, is 1. The modified 
sequences and zemfree Difference Triangles are shown in 
Figure 9(d). The rescheduled pipeline may be based upon the 
sequences & 0, 1, 3, 7, 9, X,: 0, 3.6, 12, 14, and X,: 2.4, 
10, 11, 18. 

0 0 
1 1  
3 2 3  
6 3 0 1  
7 1 4 1 2  

3 3  
5 2 0  

1 0 0 2 0  
1 2 2 2 4 2  

0 0 
1 1  
3 2 3  
7 4 1 2  
8 1 0 2 3  

3 3  
6 3 1  

1 1 0 3 1  
1 3 2 2 0 3  

111.3 Uneuual Loading of Processors 
If the stages in a pipeline are loaded unequally, then the 

number of crosses in the corresponding rows of the reservation 
table are not the same. In this case, the complete u t i l i o n  of 

0 0 
1 1  
3 2 3  
7 4 1 2  
9 2 1 3 4  

all stages is not possible [2]. The best performance is obtained 
when at least one stage is fully utilized. Minimum latency 
possible is the number of operations of any stage which has the 
maximum number of operations compared to all other stages. 

Algorithm 3. 
Step 1. Compute latency L as L = max (NOl N,, ....NJ where 

N, is the number of crosses in the i-th row of an s TOW 
reservation table. 

Step 2. Add (L - NJ fictitious crosses to the i-th row of the 
reservation table following the last cross in any row. 

Step 3. Use Difference Triangles to make the crosses in each 
row occur at times distinct modulo L while maintaining the 
precedence constraints of the reservation table. 

Step 4. Remove all fictitious cfosses from the final 
reservation table to get the rescheduled reservation table. - Proof. The proof and complexity are similar to that of 

Examule. A reservation table with unequally loaded 
processors is shown in Figure lO(a). Latency of the reseavation 
table is 4. As there is one less operation on Pl processor, one 
fictitious cross is added to the corresponding row following the 
last cross as shown in Figure’ lO(b). Figure 1O(c) shows the 
sequences and Difference Triangles of this table. It is easy to 
see thatkx = 2. ky =2, X(kx + I) = 5 and Y(ky + 1) = 6. The 
largest nonzero number less than 4 missing in row b of 
Difference Triangle Dx is 3. Dx and Dy modified as per 
Algorithm 1 are shown in Figure lO(d). Now ky = 2, kx does 
not exist Moreover, there are no elements of the current X 
sequence which are greater than Y(ky + 1) = 7. Hence the X 
sequence need not be modified. The fiial zero-free Dx and Dy 
are shown in Figure 1O(e) from which the new schedules are X 
0,1,3,6,andY 0,2,3. 

Algorithm 1. 

3 3  
6 3 1  

1 2 1 4 2  
1 4 2 3 1 4  

0 1 2 3 4 5  

0 

Po 
p1 

0 
1 1  3 3  
3 2 3  6 3 1  
7 4 1 2  1 2 1 4 2  
9 2 1 3 4  1 4 2 3 1 4  

0 1 2 3 4 5 6  

Po 

PI 

(b) 

Difference 
triangles s/: 5 +for  X g/: 5 2 0 1  3 for Y -  6 5 0 2  

(C> s/: 5 
7 0 1 3  

SI:  9 2 3 1  5 

Figure 10. Rescheduling of a reservation table with unequal 
loading of processors. 
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IV. SIMULATION RESULTS 
In order to test the effectiveness of the Difference Triangle 

concept in developing heuristic suboptimal, polynomial time 
scheduling algorithms, simulations are carried out for 
multiprocessor architectures with two processors. It is assumed 
that both processors require one time unit to do their respective 
computations. Reservation tables are generated by a random 
number generator and scheduled by Algorithm 1 which has a 
complexity of N'. N here denotes the maximum number of 
operations required on a processor for a data set. Simulation 
software, written in Pascal, uses fiity reservation tables which 
are equally loaded in both Po and P,, for number of operations 
between 5,7, and 9. All the computations are done on a TI 
990 model 26 minicomputer. The average expansion of a 
reservation table and average scheduling time for fifty 
reservation tables are computed. The results obtained are 
tabulated in Table I. As the minimum measurable time on this 
computer was one second, total scheduling time for 50 
reservation tables with N = 5 could not be measured. From the 
results, scheduling time is minimal and appropriate for compile- 
time implementation. The reservation table do get extended 
resulting in a higher storage requirements and higher execution 
time for individual data sets. However, latency is optimal, 
constant and both processors are fully utilized. 

TABLE I 

RESCHEDULING BY ALGORITHM 1 

Too small to 

be measured 

12.47 

Too small to 

be measured 

12.47 

CONCLUSIONS 
Optimum utilizations of hardware is a basic requirement for 

any scheduling algorithm of multiprocessor architectures. One 
way of achieving this is insertion of delays at appropriate places 
of a reservation table. The scheduling algorithms presented in 
this paper are suboptimal in that execution time for a particular 
data set is not minimized. On the other hand, this scheduling 
can be achieved within a polynomial time of the maximum 
number of operations in any processor. 

In the various algorithms presented in this paper, Difference 
Triangle concept has acted as a basic building black. 
Difference Triangle is simply a straight forward approach of 
keeping track of relative distances between operations in a 

processor. Delay insertion is used to avoid collisions in the 
architecture. All the algorithms obtained are heuristic in nature 
but are proved to yield an optimum throughput in an 
architecture. They have a complexity of the order of N' and 
therefore execute much faster than those suggested in earlier 
literature. N here denotes the maximum number of operations 
required on a processor for a data set. 

A number of other heuristic scheduling algorithms are 
developed [13]. The Difference Triangle concept also is 
applied on architectures with processors requiring unequal time 
for operations [13]. Several topics can be the subject of 
continuing and/or future research. To name a few interesting 
problems, scheduling multiple computational jobs concurrently, 
timing and control requirements for insertion of delays, a 
trade-off between delay insertion and rescheduling time, and 
more studies on architectures with processors of unequal speed 
of operations deserve attention. 
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