
Implementation of Comparison Function Using Quantum-Dot Cellular
Automata

Meghanad D. Wagh*, Yichun Sun* and Viswanath Annampedu**

*Department of ECE, Lehigh University, Bethlehem, PA 18015, mdw0, yis205@Lehigh.Edu
** Storage Peripherals Group, LSI Corp., Allentown, PA 18109, Vish.Annampedu@lsi.com

ABSTRACT

A comparison function is important to implement
arbitrary large Boolean functions. In this paper we
show that a comparison function can be directly and
efficiently implemented using QCA. The resultant archi-
tecture of an n bit comparator has a delay of dlog2ne+1
and a complexity of O(n) gates. By duplicating certain
majority gates, all crossing wires in the implementation
except those at the input level can be eliminated.

Keywords: quantum-dot cellular automata, majority
logic, comparison function

1 INTRODUCTION

Comparison is one of the common function used in
many important applications including realization of ar-
bitrary Boolean functions. In CMOS technology, one
can easily realize an n bit comparison with a carry prop-
agation subtractor having O(n) delay. This speed can
be improved to O(log n) by using a more complex block
carry look-ahead subtractor. However, a further dra-
matic improvement in speed is only possible through use
of nanoelectronic technologies such as the Quantum-dot
cellular automata (QCA) [1].

QCA can be implemented in many technologies in-
cluding ferromagnetic and molecular. The molecular
QCA is particularly interesting because of its projected
density of up to 1 × 1012 devices per cm2 [2]. A ma-
jor advantage of QCA over other nanoelectronic archi-
tectural styles is that the same cells that are used for
making logic gates can be used to build wires carrying
logic signals. However, QCA architectures have to rely
upon only two basic building blocks, namely a three in-
put majority gate and an inverter. As a result, QCA
implementations of only a few logic circuits such as bi-
nary adders, multipliers, barrel shifters, serial/parallel
converters are currently available [3]–[5].

This paper describes an efficient implementation of
the comparison function using QCA. The resultant ar-
chitecture has optimal delay O(log n) and a low gate
complexity O(n) for an n bit comparison. The architec-
ture can be easily pipelined to improve its throughput.

2 QUANTUM-DOT CELLULAR

AUTOMATA

A basic QCA building block can be described as a
cell with four quantum dots and two charged particles
which occupy the dots. The charged particles can mi-
grate between quantum dots when the barriers between
them are lowered by an external clock. When the barri-
ers are raised by removing the clock, the particles settle
into two possible stable (polarized) positions because of
electrostatic forces. These stable states represent logic
0 and 1 as shown in Fig. 1.

(b)(a) (c)

Figure 1: (a) The basic QCA cell (b) a polarized QCA
cell representing logic 1 and (c) a polarized QCA cell
representing logic 0.

When the clock to a QCA cell is reduced, the polar-
ization state of its surrounding cells determines its own
polarization state. This allows conduction of logic val-
ues along wires made of QCA cells as well as the design
of logic elements such as an inverter and a three input
majority gate. The two logic blocks made with QCA
cells are illustrated in Figs. 2 and 3.

A A

Figure 2: An inverter implementation in QCA.

A three input majority gate outputs a logic 1 when
2 or more of its inputs are 1. By fixing one of the inputs
to the majority gate at 1, one can convert the majority
gate into a 2-input OR gate. Similarly by fixing one
of the inputs to 0, one can turn it into a 2-input AND

NSTI-Nanotech 2008, www.nsti.org, ISBN 978-1-4200-8505-1 Vol. 376

A

C MAJ(A, B, C)

B

B

MAJ(A, B, C)

MAJ

A C

Figure 3: A 3-input majority gate implementation in
QCA and its symbol.

gate. It therefore appears that it should be possible
to implement any Boolean function in the QCA archi-
tecture. Unfortunately use of 2-input ANDs and ORs
results in highly inefficient realizations since about 33%
of the gate inputs are tied to constant values. Further,
the large number of gates makes the circuit layout dif-
ficult. It is therefore important to develop designs that
allow one to fully utilize the capabilities of the 3-input
majority gates.

3 COMPARISON FUNCTION

An n bit comparison function compares two n bit
binary strings and outputs a logic one if the value rep-
resented by the first string is greater than or equal to
that of the second string. The comparison function is
important in its own right. But we illustrate here its use
in implementing an arbitrary Boolean function. Con-
sider a Boolean function f(xn−1, xn−2, . . . , x0) which
outputs a logic one only when the n-bit input string
X = xn−1xn−2 · · ·x0 has a value between X and Y .
Let function C(X) denote a comparison function that
compares value of string X with X and outputs a 1 only
if value of X is greater than or equal to that of X. Since
f is 1 only when X ≥ X is true but x ≥ Y +1 is false, it
can be expressed as f = C(X)C(Y +1). Note that since
an inverter as well as a 2-input AND gate can be realized
in the QCA technology, so can the function f if one can
design the comparison function C(·) in QCA. Similarly
if f is 1 anytime the input string X is either between
X1 and Y1 or between X2 and Y2, then that f may be
described as f = C(X1)C(Y1 +1)+C(X2)C(Y2 +1) and
realized by the QCA. Fig. 4 shows this realization.

It is obvious that any arbitrary Boolean function can
be implemented using the strategy described here. Cre-
ating such an implementation requires one to determine
contiguous groups of 1’s in the truth table of the func-
tion. The end points of each group are then compared
with the input variable string, and the results ANDed.
Finally, outputs of all the ANDs are added together to
get the function. Clearly, All the comparisons can be
done concurrently and all the ANDs evaluate at the
same time. Thus the resultant Boolean function real-
ization may have a fairly small depth provided one can

C Y1+1)(C()X2 C(Y +1)2C()

MAJ MAJ

MAJ

0 0X1

f

1

Figure 4: QCA realization of function f which is 1 only
when its argument is between X1 and Y1 or between X2

and Y2. Note that C(·) is a comparison function.

find a small depth comparison function implementation.
The comparison function C(B) that compares two n

bit strings B = bn−1bn−2 · · · b0 and X = xn−1xn−2 · · ·x0

can be implemented by subtracting B from X while
keeping track of the carry only. Fig. 5 shows a QCA
implementation of this strategy.

......

b b b b

x x x x

C(B)0

0

0 1 2 n−1

1 2 n−1

MAJ MAJ MAJ MAJ

Figure 5: A serial realization of comparison C(B) which
outputs a 1 when xn−1xn−2 · · ·x0 ≥ bn−1bn−2 · · · b0.

Unfortunately, the architecture in Fig. 5 has an O(n)
delay. Minimizing this delay in QCA architectures is im-
portant because even in the combinational logic, unlike
CMOS, all the gates in QCA implementations need to
be clocked. Further, in applications such as the Boolean
function implementation, the comparator delay can di-
rectly impact the delay of the Boolean function.

In order to achieve the optimal delay, we build the
comparison output recursively. Suppose operands X

and B are partitioned as X = [X1|X0] and B = [B1|B0].
X ≥ B is true if X1 > B1 or if (X1 = B1) and simul-
taneously (X0 ≥ B0). However, computing equality of
X1 and B1 requires XOR gates which are expensive in
QCA technology. We therefore define intermediate log-
ical variables pi ≡ (Xi > Bi) and qi ≡ (Xi ≥ Bi),
i = 0 or 1. In this new notation, (X1 = B1) has
the same truth value as (q1p1

). Thus the output of
comparison X ≥ B can be written as a Boolean ex-
pression p1 + (q1p1

)q0 = p1 + q1q0. Further, using the
fact that p1 = 1 implies q1 = 1, one gets p1 = p1q1

and q1 = p1 + q1. Thus p1 + q1q0 can be rewritten as
p1q1 + p1q0 + q1q0, which is precisely the output of a

NSTI-Nanotech 2008, www.nsti.org, ISBN 978-1-4200-8505-1 Vol. 3 77

x x xb b bb
__ __ __ __

1 1 10 0 0 01

MAJ MAJ MAJ MAJ MAJ MAJ MAJ MAJ

MAJ MAJ MAJ

MAJ MAJ

MAJ

3 03 02 1 12x

Figure 6: A 4-bit comparator architecture which produces a 1 when x3x2x1x0 ≥ b3b2b1b0. (The majority gates in gray
need not be implemented.)

x 0x3 b0x2 b3 x3 b3 x 2 b2 b1 x 1x1b2

MAJ MAJ MAJ MAJ MAJ MAJ MAJ MAJ

MAJMAJ MAJ

MAJ

0 1 01 0 11

Figure 7: The same comparator as in Fig. 6 after elimination of wire crossings.

NSTI-Nanotech 2008, www.nsti.org, ISBN 978-1-4200-8505-1 Vol. 378

three input majority gate with inputs p1, q1 and q0.
Similarly, the truth value of X > B can also be com-

puted from the intermediate logical variables pi and qi.
In particular, X > B if either X1 > B1 or X1 ≥ B1

and simultaneously X0 > B0. This can be expressed by
the Boolean expression p1 + q1p0. Once again using the
fact that p1 = p1q1 and q1 = p1 + q1, the expression
for X > B can be rewritten as p1q1 + (p1 + q1)p0. But
this says that X > B can be computed with a 3-input
majority gate with inputs p1, p0 and q1.

To compute pi and qi, the operands Xi and Bi can
be partitioned recursively and the same procedure used.
This can be continued till each partition is a single bit.
Fig. 6 shows an implementation of a 4 bit comparator
using only inverters and 3-input majority gates derived
by this strategy. In every pair of majority gates in this
figure, the gate on the left computes qi and the one on
the right, pi.

The number of majority gates used in this realiza-
tion of an n bit comparator is 4n − dlog2ne − 3 and
the delay of the structure is dlog2ne + 1. The tree-like
structure allows for easy separation of clocking zones in
QCA architectures. Further, if one of the strings, say B,
is constant, then all the bi are known in the design and
one can apply 1’s and 0’s, as appropriate at the inputs
that expect bi’s.

A two bit comparator architecture layout is illus-
trated in Fig. 8. It should be noted that for n as small as

Figure 8: Layout of a 2 bit comparator in QCA technol-
ogy.

2, the proposed strategy actually will have the same de-
lay but more gates than the sequential strategy of Fig. 5.
One may note that the advantage of the new architec-
ture in Fig. 6 can be realized only for larger values of n.
It reduces the comparator delay from n to dlog2ne + 1,
while increasing the number of majority gates from n to
4n − dlog2ne − 3.

However, as can be seen from Fig. 6, the tree ar-
chitecture has wire crossings at every level of the tree.
QCA being a planer architecture, minimizing these wire
crossings is important. To achieve this objective, we du-
plicate certain majority gates as shown in Fig. 7. Note
that this conversion does not affect the architecture but
it completely eliminates the crossing of wires from all
tree levels except the first. The resultant comparators
of 2, 4, 8 and 16 bits use only 4, 12, 33 and 89 majority
gates respectively.

4 CONCLUSION

This paper provides a new QCA architecture for the
comparison function with an O(log n) delay and O(n)
gate complexity for an n bit comparator. Using this
comparison realization, one may be able to obtain better
(low depth) implementations of some Boolean functions.

REFERENCES

[1] C. S. Lent, P. D. Tougaw, W. Porod, and G. H.
Bernstein, “Quantum cellular automata,” Nanotech-

nology, vol. 4, pp. 49–57, Jan. 1993.
[2] “The international technology roadmap for

semiconductors: Emerging research devices.”
http://www.itrs.net/, 2005.

[3] K. Walus, G. A. Jullien, and V. S. Dimitrov, “Com-
puter arithmetic structures for quantum cellular au-
tomata,” in Proc. 37th Asilomar Conf. Signals, Sys-

tems and Computers, (Pacific Grove, CA), pp. 9–12,
Nov. 9–12 2003.

[4] I. Hanninen and J. Takala, “Binary multipliers on
quantum-dot cellular automata,” Facta Universi-

tatis Ser.: Elec. Energ., vol. 20, pp. 541–560, Dec.
2007.

[5] H. Cho and E. E. Swartzlander, “Adder designs and
analyses for quantum-dot cellular automata,” IEEE

Trans. Nanotechnology, vol. 6, pp. 374–383, May
2007.

NSTI-Nanotech 2008, www.nsti.org, ISBN 978-1-4200-8505-1 Vol. 3 79

