
Algebraic Models for the Cube Connected Cycles and Shuffle Exchange Graphs

Meghanad D. Wagh and Khadidja Bendjilali

Department of Electrical and Computer Engineering
Lehigh University, Bethlehem, PA 18015, USA

Email: mdw0, khb5@lehigh.edu

Abstract—Interconnection networks often constrain the per-
formance of multi-cores chips or parallel computers. Cube Con-
nected Cycles (CCC) is an attractive interconnection network
because of its symmetry, small constant node degree and a small
diameter. This paper develops an algebraic model for the CCC
using the direct product of a cyclic group and a finite field.
This model allows the use of powerful algebraic techniques
to study the structural properties of the network. This paper
exploits these techniques to find optimal paths in the CCC
and to explore the relationships between the Cube Connected
Cycles, the Shuffle Exchange and the deBruijn networks.

Keywords-Cube Connected Cycles Graph; Interconnection
networks; Routing; Shuffle Exchange.

I. INTRODUCTION

Performance of message passing parallel architectures and

multi-core chips depends, to a large extent, on the underlying

interconnection network. Some of the desirable properties

of such networks include the ability to connect a large

number of nodes, a small node degree, a small diameter

and the symmetry. In addition, the ever increasing demand

for computational throughput has necessitated designs of

scalable architectures, i.e., architectures which can be built

using identical cores or processors irrespective of the size of

the network. This implies that the underlying interconnection

network graphs of such architectures should have a constant

node degree. The prominent networks that have a constant

node degree include the Ring, the Wrapped Around Mesh,

the Tree, the Shuffle Exchange, the deBruijn, the Cube Con-

nected Cycles and the Wrapped Around Butterfly networks.

Of these, Ring and Mesh have a substantially large (O(N))
diameter, where N is the number of processors. Thus they

do not scale well. The Tree, Shuffle Exchange and deBruijn

networks do not possess symmetry, a property that is re-

quired for fault tolerance. As N increases, the probability

of faulty processors and faulty edges also increases. Thus

neither of these two networks are scalable in this context.

The two scalable networks that have symmetry, constant

node degree and acceptable diameter, O(logN), are thus

the Cube Connected Cycles and the Wrapped Butterflies. Of

these, Wrapped Butterflies have been dealt with exhaustively

in literature [1,2]. This paper focuses on the Cube Connected

Cycles (CCC).

Previous work on CCC includes VLSI implementation

and optimal layout [3, 4], load balancing, routing and one-

to-one, one-to-many broadcast strategies [5,6], mappings of

cycles in fault-free and faulty topologies [7] and determina-

tion of the forwarding index of the network [8].

One of the drawbacks of the CCC network is its unwieldy

model which complicates mappings of algorithms on these

architectures. As a result, even though this network is

scalable and has attractive topological properties, its utility

in applications is somewhat constrained. With this in mind,

a new addressing scheme for CCC using Cayley graphs over

permutation groups has recently been proposed [9]. Unfortu-

nately that new model does not provide sufficient insight into

the graph connectivity. This paper provides a new algebraic

model of the cube connected cycles. Our model allows

one to harness powerful algebraic techniques to explore the

topological properties and mappings on the Cube Connected

Cycles graph. It also illuminates the relationships between

graphs as diverse as Shuffle Exchange, deBruijn (both non-

symmetric) and the Cube Connected Cycles.

The Cube Connected Cycles network of degree n, CCCn,

was developed as a hypercube derivative by replacing each

node of a degree n hypercube by a cycle of n nodes [10].

CCCn has n2n nodes, each labeled by a pair (m,V) where

m is an integer 0 ≤ m < n and V is a binary vector of

length n. A node (m,V) of CCC is connected to only three

other nodes: (m + 1, V), (m − 1, V) and (m,V ⊕ 2m),
where V ⊕ 2m is the string V with mth bit complemented.

The diameter of CCC is 6 when n = 3 and 2n+ �n/2�− 2
when n > 3 [11]. This low diameter and the low constant

node degree implies that CCC may be very useful for parallel

architectures.

Unfortunately the connectivity of CCCn using the binary

model is much too complex to obtain many of the useful

properties of the network. In this paper, we propose new

models for the Shuffle Exchange (SEn) and CCCn networks

using cyclic groups and finite fields. With these new models,

one can avail of powerful algebraic techniques to investi-

gate the structure and mappings of these networks. Similar

algebraic models developed previously for the deBruijn

network [12] and the Wrapped Butterflies [2] have allowed

efficient mappings of cycles and trees on the Butterflies and

provided insights into intricate structural properties such as

the automorphisms [13,14]. The new models proposed here

2011 IEEE International Conference on High Performance Computing and Communications

978-0-7695-4538-7/11 $26.00 © 2011 IEEE

DOI 10.1109/HPCC.2011.17

50

help solve similar problems in CCCn. Besides proving this

model, this paper demonstrates its use to obtain paths in

CCCn. Using the new model of SEn, it also explores the

relationship between the Shuffle Exchange and the deBruijn

network.

This paper is organized as follows. The necessary mathe-

matical background required for the rest of the paper is pre-

sented in Section II. The new algebraic models of the Shuffle

Exchange and the Cube Connected Cycles are defined and

proved in Sections III and IV. Section V provides optimal

path algorithms for the Cube Connected Cycles. Section VI

proves that the Shuffle Exchange network is a subgraph of

the deBruijn network of the same size. Finally Section VII

provides our final remarks.

II. MATHEMATICAL PRELIMINARIES

This section provides the basic mathematical concepts

required in this paper. In particular, we provide the definition

and basic properties of the finite field of characteristic 2. For

more detailed description, reader is referred to [15].

The finite field of 2n elements, denoted by GF (2n),
is an extension of GF (2). Similar to GF (2), GF (2n)
uses modulo 2 addition, i.e, for any X ∈ GF (2n),
X + X = 0. Elements of GF (2n) can be expressed as

{0, 1, α, α2, . . . , α2n−2}, where the element α is known as

the primitive element. Note that α2n−1 = 1 . The minimum

degree polynomial (over GF (2)) of which α is a root, is

called the primitive polynomial. Since α is a root of this

polynomial of degree n , the elements of GF (2n) may also

be expressed as polynomials (of degree at most n − 1) in

α over GF (2). One can therefore view GF (2n) as a vector

space over GF (2) with basis 〈αn−1, αn−2, . . . , α, 1〉.
In this paper the primitive polynomial of GF (2n) is

denoted by p(x). p(x) plays a central role in the design

of GF (2n) and can be expressed as

p(x) = 1 + p1x
1 + p2x

2 + · · ·+ xn =

n∑
i=0

pix
i (1)

Field GF (24) is illustrated in Table I. This table shows ex-

pression of Each element of GF (24) in basis 〈α3, α2, α, 1〉.
The expressions for the successive higher powers of α are

obtained by multiplying the expressions for the lower powers

by α and replacing any α4, thus created, by α + 1. This

is because α being the root of the primitive polynomial,

satisfies α4 + α + 1 = 0, or α4 = α + 1. (Recall

that GF (2n) uses modulo 2 additions.) Table I can be

used for additions between field elements. For example,

α10+α11 = (α2+α+1)+(α3+α2+α) = α3+1 = α14.

One can use an alternate representation for the el-

ements of GF (2n) over GF (2) using the dual basis
〈βn−1, βn−2, . . . , β0〉. The dual basis is unique and its

component βi is defined as that element of GF (2n) which

Table I: Structure of GF (24).

Primitive Polynomial: x4 + x+ 1
Elements and their Relationships:

0 α7 = α3 + α+ 1
1 α8 = α2 + 1
α α9 = α3 + α
α2 α10 = α2 + α+ 1
α3 α11 = α3 + α2 + α
α4 = α+ 1 α12 = α3 + α2 + α+ 1
α5 = α2 + α α13 = α3 + α2 + 1
α6 = α3 + α2 α14 = α3 + 1

Dual Base 〈β3, β2, β1, β0〉 = 〈1, α, α2, α14〉.

satisfies

Tr(αjβi) =

{
1 if j = i,
0 otherwise

(2)

where, the Trace function Tr(·) : GF (2n) → GF (2) is

computed as [15]:

Tr(x) =

n−1∑
i=0

x2
i

, x ∈ GF (2n).

Note that Trace is a linear function. In other words, for any

a, b ∈ GF (2) and X,Y ∈ GF (2n), one has

Tr(aX + bY) = aTr(X) + bTr(Y).

The structure of the primitive polynomial governs the rela-

tionships between the dual basis elements. In particular, the

dual basis elements βi, 0 ≤ i < n of a finite field GF (2n)
are related to each other as given by the following Lemma.

Lemma 1: Let 〈βn−1, βn−2, . . . , β0〉 denote the dual base

of GF(2n). Then

βi =

{
αβ0 if i = n− 1
αβi+1 + pi+1βn−1 otherwise,

(3)

where α is the primitive element of the field and pi is the

coefficient of xi in the primitive polynomial used to generate

the field.

Let σ = (αn + 1). Using the fact that p(α) = 0, σ
can also be expressed as σ =

∑n−1
i=1 piα

i. The interaction

between σ and elements of the dual basis is important to

our representation. It is given by the following Lemma.

Lemma 2: Dual base elements βis and σ are related as

Tr(σβi) =

{
0 if i = 0,
pi otherwise,

and

Tr(α−1σβi) =

{
0 if i = n− 1
pi+1 otherwise.

The proofs of both lemmas are omitted for brevity.

51

III. AN ALGEBRAIC MODEL OF THE

SHUFFLE EXCHANGE NETWORK

Even though non-symmetric, Shuffle Exchange is a pop-

ular interconnection network [16]. A Shuffle Exchange

graph of degree n, SEn has 2n nodes, each with a

maximum node degree of 3. Traditionally, one uses a

set Cn
2 of n-bit binary strings to label the nodes of

SEn. A node 〈vn−1, vn−2, . . . , v0〉 is connected to nodes

〈vn−2, vn−3, . . . , v0, vn−1〉, 〈v0, vn−1, vn−2, . . . , v1〉 (shuf-

fle edges) and 〈vn−1, vn−2, . . . , v0〉 (exchange edge).

In this section we show that the nodes of SEn may

be labeled with elements of the finite field GF (2n) such

that the node connectivity is expressed through an algebraic

relationship between these labels.

Theorem 1: The nodes of the Shuffle Exchange graph

SEn can be labeled by the elements of the finite field

GF (2n) such that a graph node X is connected to the

nodes (αX+βn−1Tr(σX)), (α−1X+β0Tr(σα
−1X)) and

(X + β0).

Proof. Consider a mapping ψ(·) : Cn
2 → GF (2n) defined

as

ψ(〈vn−1, vn−2, . . . , v0〉) =
n−1∑
i=0

viβi (4)

We now show that the correspondence expressed by (4)

relabels the graph nodes in such a manner that the graph

connectivity is expressed as in the theorem.

Let X denote the algebraic label of the node V =
〈vn−1, vn−2, . . . , v0〉, i.e.,

X = ψ(V) =
n−1∑
i=0

viβi (5)

The neighbors of V are V1 = 〈vn−2, vn−3, . . . , v0, vn−1〉,
V2 = 〈v0, vn−1, vn−2, . . . , v1〉 and V3 =
〈vn−1, vn−2, . . . , v0〉.

The relabeling of node V1 gives

ψ(V1) =

n−1∑
i=0

viβi+1 (6)

where the index of β is considered modulo n. Using Lemma

1, one can write (6) as

ψ(V1) =
n−2∑
i=0

viα
−1(βi + pi+1βn−1) + un−1α

−1βn−1

= α−1X + β0

n−2∑
i=0

pi+1vi. (7)

However, from Lemma 2,

Tr(α−1σX) =
n−1∑
i=0

viTr(α
−1σβi) =

n−2∑
i=0

vipi+1. (8)

Comparing (7) and (8) we get

ψ(V1) = α−1X + β0Tr(α
−1σX).

Similarly, the relabeling of node V2 gives

ψ(V2) =
n−1∑
i=0

viβi−1 (9)

where the index of βi−1 is considered modulo n. Using

Lemma 1, (9) may be rewritten as

ψ(V2) =
n−1∑
i=1

vi(αβi + piβn−1) + v0αβ0

= αX + βn−1

n−1∑
i=1

pivi. (10)

But from Lemma 2,

Tr(σX) =
n−1∑
i=0

viTr(σβi) =
n−1∑
i=1

vipi. (11)

From (10) and (11) one gets

ψ(V2) = αX + βn−1Tr(σX).

Finally, recognizing that the value of v0 can be expressed

in GF (2n) as v0 + 1, the relabeling of V3 gives

ψ(V3) = (v0 + 1)β0 +
n−1∑
i=1

viβi

= β0 +

n−1∑
i=0

viβi = X + β0.

Thus all the three edges of SEn in binary notation may

be expressed in terms of their algebraic relationship.

The translation of binary labels of graph SE4 to their

algebraic values using (4) is illustrated in Table II.

Table II. Equivalence between the binary and the algebraic

labels of SE4.

Binary Algebraic
(0000) 0
(0001) α14

(0010) α2

(0011) α13

Binary Algebraic
(0100) α
(0101) α7

(0110) α5

(0111) α12

Binary Algebraic
(1000) 1
(1001) α3

(1010) α8

(1011) α6

Binary Algebraic

(1100) α4

(1101) α9

(1110) α10

(1111) α11

The connectivity of SE4 using the new algebraic model

is shown in Fig. 1. As indicated in this figure, we will refer

to the three edges as f , f−1 and g in this path. Not only

52

(αX + βn−1Tr(σX))

(X + β0)X

f

f−1

(α−1X + β0Tr(σα−1X))

g

Fig. 1. The connectivity of the Shuffle Exchange graph SEn.

is the connectivity expression in this model is simple, but

because of the linearity of the trace function, one can make

the following interesting observation.

If X1
f−→ Y1 and X2

f−→ Y2, then,

X1 +X2
f−→ Y1 + Y2.

Similarly, If X1
f−1

−→ Y1 and X2
f−1

−→ Y2, then,

X1 +X2
f−1

−→ Y1 + Y2.

We will call this observation as the linearity in source
property of the f and f−1 edges and use it later when we

embed SEn in the deBruijn graph.

IV. AN ALGEBRAIC MODEL OF THE

CUBE CONNECTED CYCLES

The cube connected cycles network of dimension n
(CCCn) has n2n nodes, each of which is labeled by a pair

(m,V) where m ∈ Cn, a group of integers {0, 1, · · · , n−1}
and V ∈ Cn

2 , a set of n bit binary strings. A node (m,V) is

connected to nodes (m+1, V), (m−1, V) and (m,V ⊕2m).
In this section we provide a new model for the CCCn defined

over the structure Cn × GF (2n). In particular, following

theorem shows that if the nodes of CCCn are labeled by the

elements of the structure Cn ×GF (2n), then the edges can

be expressed by a simple algebraic relationship between the

labels.

Theorem 2: The nodes of the cube connected cycles

graph CCCn can be labeled by the elements of Cn×GF (2n)
in such a fashion that the graph connectivity can be ex-

pressed as follows. A node (m,X) is connected to the

three nodes (m+1, αX +βn−1Tr(σX)), (m− 1, α−1X +
β0Tr(σα

−1X)) and (m,X + β0).

Proof. Let V = 〈vn−1, vn−2, . . . , v0〉. Consider the map-

ping ψ : Cn × Cn
2 → Cn ×GF (2n) defined by

ψ((m,V)) = (m,X), whereX =

n−1∑
i=0

vm+iβi. (12)

One can now use this ψ function to prove the model in a

fashion similar to the proof of Theorem 1.

Fig. 2 shows the connectivity of the algebraic model

for CCC given by Theorem 2. Note that unlike its binary

(m + 1, αX + βn−1Tr(σX))

(m, X + β0)(m, X)

f

f−1

(m − 1, α−1X + β0Tr(σα−1X))

g

Fig. 2. The connectivity of the Cube Connected Cycles graph

CCCn.

counterpart, this connectivity is amenable to algebraic ma-

nipulation. Recall also that in binary representation, an edge

from node (m,V) ended on node (m,V ⊕ 2m). Thus the

second coordinate of the destination depends on both, the

first and the second, coordinates of the source. On the other

hand, in the new algebraic model, each coordinate of a

destination depends only on the corresponding coordinate

of the source (see Fig. 2). This, in our opinion, would

greatly simplify explorations of the CCCn network. Finally,

note that similar to the Shuffle Exchange graphs, within the

context of the algebraic model of CCCn, one can make the

following observation. If

(m,X1)
f−→ (m+1, Y1) and (m,X2)

f−→ (m+1, Y2),

then, (m,X1 +X2)
f−→ (m+ 1, Y1 + Y2).

Similarly, If

(m,X1)
f−1

−→ (m− 1, Y1) and (m,X2)
f−1

−→ (m− 1, Y2),

then, (m,X1 +X2)
f−1

−→ (m− 1, Y1 + Y2).
We will refer to this observation as the linearity in source
property of the f and f−1 edges of the CCCn graph.

V. PATH ALGORITHMS FOR CUBE

CONNECTED CYCLES

We start by stating a result that will help us minimize the

path length.

Lemma 3: A path with n consecutive f edges forms a

cycle in CCCn.

Proof. By direct computation.

We are now ready to use the algebraic machinery to chart

a path from a node (0, X) to node (a, 0) in CCCn for any

given a ∈ Cn and X ∈ GF (2n). Because of the symmetry

of CCCn, one can transform the problem of finding the path

between any two arbitrary nodes to the one of finding a

path between such a node pair. We develop two strategies

to determine such a path.

53

In our first strategy, we employ the edges f and g only.

Since the g edge is its own inverse, it can be followed

only by an f edge. Thus there are only two possible paths

to go from the mth column of CCCn to the (m + 1)th

column. In first of these paths, (m,D)
f−→ (m + 1, D′),

where D′ = αD + βn−1Tr(σD), while for the second

path, (m,D)
g−→ (m,D +β0)

f−→ (m + 1, D′), where

D′ = αD+βn−1+βn−1Tr(σD +σβ0) = αD+βn−1(1+
Tr(σD)). This last simplification uses Lemma 2. Thus in

both cases, the second coordinate of the destination node,

(m+ 1, D′), can be expressed as

D′ = αD + βn−1(c+ Tr(σD)), (13)

where c is either 0 or 1. We will refer to the path going from

(m,D) to (m+1, D′) as a path segment. Clearly, each path

segment in this strategy is made of either an f edge or a g
edge followed by an f edge.

To express the coordinates of any node along the path,

one can apply (13) repeatedly. We begin by designating the

starting node as (m,D0) and a node reached after i path

segments as (m+ i,Di). Let ci denote the value of binary

constant c used in the ith path segment. From (13) one gets,

D1 = αD0 + βn−1(c0 + Tr(σD0)). (14)

Using (13) repeatedly and simplifying the result each time

using Lemmas 2 and 1 gives the destination (m + k,Dk)
after k path segments as

(m+ k, αkD0 +
k−1∑
j=0

βn−k+j(cj + Tr(αjσD0)). (15)

Assuming the starting node (m,D0) = (0, X) and the

destination node (m+ k,Dk) = (a, 0), then

k = a mod n and

0 = αkX +

k−1∑
j=0

βn−k+j(cj + Tr(αjσX)). (16)

Values of k and cj , 0 ≤ j < k satisfying (16) give the

required path.

To solve (16), first note that for any k ≥ n, the summation

in (16) goes over all the βj , 0 ≤ j < n. Since αkX has a

unique decomposition in the dual basis, one can always find

cis to satisfy (16) in this case. For smallest such k, k = n+a,

(16) becomes

n−1∑
j=0

Tr(αn+a+jX)βj =

n+a−1∑
j=0

β−a+j(cj + Tr(αjσX)),

(17)

where we have expressed αn+aX on the left hand side of

the expression in its dual basis. Comparing the coefficients

of βj , 0 ≤ j < n− a, on both sides of (17) gives

Tr(αn+a+jX) = cj+a + Tr(αj+aσX).

By using the linearity of the trace function and the fact that

σ = 1 + αn gives

cj+a = Tr(αj+aX), 0 ≤ j < n− a or,

cj = Tr(αjX), a ≤ j < n. (18)

Similarly, comparing the coefficients of βj , n− a ≤ j < n,

in (17) gives

Tr(αn+a+jX) = cj+a + Tr(αj+aσX) + cj−n+a +

Tr(αj−n+aσX).

Simplifying this as before gives

cj+a + cj+a−n = Tr(αj+a−nX), n− a ≤ j < n or

cj + cn+j = Tr(αjX), 0 ≤ j < a. (19)

For a smaller k = a, the summation in (16) does not span

all the βj , 0 ≤ j < n of the dual basis. Therefore all X
values may not yield a solution to (16). In particular, with

k = a, (16) becomes

n−1∑
j=0

Tr(αa+jX)βj =

a−1∑
j=0

β−a+j(cj + Tr(αjσX)). (20)

All the path segments as described here end with an f edge.

In order to provide a greater flexibility at designing the path,

we allow a last g edge (if required) after the a path segments

to reach the destination node. Using the last g edge has the

effect of adding β0 to the expression on the right hand side

of (20). By comparing the coefficients of various βjs on

both sides of this equation as before, one gets

cj = Tr(αjX), 0 ≤ j < a,

last g edge to be used if Tr(αaX) = 1 and

Tr(αjX) = 0, a < j < n. (21)

The discussion above, including the computation of cis
from (18), (19) and (21), provide the following path algo-

rithm.

Algorithm 1: (Path to go from (0,X) to (a,0) in
CCCn using edges f and g.
If Tr(αiX) = 0, for all a < i < n, then

Set PathSegments to a, LastGEdge = Tr(αaX) and

choose binary values ci = Tr(αiX), 0 ≤ i < a.

Else Set PathSegments to a+ n,

choose binary values ci, 0 ≤ i < a+ n, as

ci + ci+n = Tr(αiX), 0 ≤ i < a and

ci = Tr(αiX), a ≤ i < n.

(Note: ci, ci+n, 0 ≤ i < a are not unique.)

Start from the node (0, X).
For i from 0 to PathSegments do

If ci = 1, proceed along a g followed an f edge.

If ci = 0, proceed along an f edge.

If PathSegments = a and LastGEdge = 1,

proceed along the g edge.

54

Note that the path obtained by this algorithm can some-

times be shortened. Because of Lemma 3, any time t >
�n/2� consecutive f edges are indicated by the algorithm,

they can be replaced by n− t f−1 edges.

We illustrate the algorithm with the following examples.

Example 1. (path from (0, α7) to (2, 0) in CCC4).

In this case, Tr(α3α7) = 0. Therefore one needs only 2 path

segments in this path. By using appropriate traces, one has:

c0 = Tr(α0α7) = 1, c1 = Tr(αα7) = 0 and the last g edge

is to be used because Tr(α2α7) = 1. The required path then

uses the edge sequence gf, f, g (We have separated path seg-

ments by commas for clarity). The actual path is given by:

(0, α7)
g−→ (0, α)

f−→ (1, α2)
f−→ (2, α14)

g−→ (2, 0).
Example 2. (path from (0, α6) to (2, 0) in CCC4).

In this case, one needs 6 path segments. By following the

procedure of the algorithm, c0+c4 = 1, c1+c5 = 1, c2 = 0
and c3 = 1. To satisfy the first two of these equations, we

choose c0 = c1 = 1 and c4 = c5 = 0. The path will then use

the edge sequence gf, gf, f, gf, f, f . Since in CCC4, four

consecutive f edges from any node return one to the same

node, fff ≡ f−1. Thus, in this case, a shorter path to the

destination is given by the edge sequence gf, gf, f, gf−1.

The actual path is given by:

(0, α6)
g−→ (0, α8)

f−→ (1, α7)
g−→ (1, α)

f−→
(2, α2)

f−→ (3, α14)
g−→ (3, 0)

f−1

−→ (2, 0)
We can also create a path from (0, X) to (a, 0) using the

f−1 and g edges. As before, since g edges cannot follow

each other, the path segments going from a column m to

a column m − 1 will be made up of edges f−1 or gf−1.

Let the starting node be (m,D). The destination of the first

path segment can be computed to be the node (m− 1, D′),
where D′ = α−1D + β0Tr(α

−1σD) + c0β1, where the

binary value c0 equals 0 if the path segment is f−1 and 1,

if it is gf−1. The node on the path after going through k
such path segments is given by

(m−k, α−kD+

k∑
j=1

βk−jTr(α
−jσD)+

k−1∑
j=0

cjβk−j), (22)

where cj , 0 ≤ j < k, is the binary constant used in the jth
path segment.

With the starting node (0, X), (22) will give the destina-

tion node (a, 0) after k path segments if

a = −k mod n and

0 = αkX +

k∑
j=1

βk−jTr(α
−jσX) +

k−1∑
j=0

cjβk−j).(23)

As before, we need to consider only two cases; k = (n−
a) mod n and k = (n− a) mod n+ n.

When k = n + (n − a) mod n, (23) has a solution for

every X because all the basis vectors of the dual base, βi,
0 ≤ i < n are available on the right hand side. By matching

the coefficients of each βi on both the sides of (23), one can

obtain relationships between cjs. Comparing coefficients of

β0, one gets

Tr(α−kX) = Tr(α−kσX) + Tr(αn−kσX) + ck−n.

On simplification, this yields

cn−a = Tr(αaX). (24)

Similarly, coefficients of βi, 1 ≤ i < k − n, one gets

Tr(αi−kX) = Tr(αi−kσX) + Tr(αi−k+nσX) +

ck−i + ck−i−n.

This equation can be simplified to yield

ci + c+ i+ n = Tr(αn−iX), 0 < i < n− a. (25)

Similarly, comparing coefficients of βk−n, one gets

Tr(α−nX) = Tr(αnσX) + c0 + cn,

which simplifies to

c0 + c+ n = Tr(X). (26)

Finally, comparing coefficients of βi, k − n < i < n, one

gets

Tr(αi−kX) = Tr(αi−kσX) + ck−i,

which gives

ci = Tr(αn−iX), n− a < i < n. (27)

When k = (n−a) mod n, (23) may not have a solution

for all x values. In this case, a > 0 as is obvious from (23).

For this k = n− a, (23) becomes

n−1∑
j=0

Tr(αn−a+jX)βj =

n−a∑
j=1

βn−a−jTr(α
−jσX)

+

n−a−1∑
j=0

cjβk−j . (28)

The path described here necessarily ends in an f−1 edge. To

make the strategy more flexible, we allow for a last g edge

which may reach the destination node in the same column,

a. With this, the expression on the right hand side of (28)

gets added with an additional β0. Solution of this equation

gives

c0 = Tr(X),

cj = Tr(αn−jX), 1 ≤ j < n− a,
last g edge to be used if Tr(αaX) = 1 and

Tr(αjX) = 0, n− a < j < n. (29)

This discussion gives the following path algorithm using

f−1 and g edges.

Algorithm 2: (Path to go from (0,X) to (a,0) in
CCCn using edges f−1 and g).

55

If a = 0, Set PathSegments to n− a,

choose binary values c0 = Tr(X) and

ci = Tr(αn−iX), 1 ≤ i < n− a.

Else If a > 0 and Tr(αiX) = 0, for all 0 < i < a, then

Set PathSegments to n− a, LastGEdge = Tr(αaX)
and choose binary values c0 = Tr(X),
ci = Tr(αn−iX), 1 ≤ i < n− a.

Else Set PathSegments to n+ (n− a) mod n,

choose binary values ci, 0 ≤ i < a+ n, as

c0 + cn = Tr(X), ci + ci+n = Tr(αn−iX),
0 < i < n− a and ci = Tr(αn−iX), n− a ≤ i < n.

(Note: ci, ci+n, 0 ≤ i < n− a are not unique.)

Start from node (0, X).
For i from 0 to PathSegments do

If ci = 1, proceed along a g followed by an f−1 edge.

If ci = 0, proceed along an f−1 edge.

If PathSegments = n− a and LastGEdge = 1,

proceed along the g edge.

Note that, as in the case of the first algorithm, the path

obtained by this algorithm can sometimes be shortened using

Lemma 3. Any time t > �n/2� consecutive f−1 edges are

indicated by this algorithm, they can be replaced by n − t
f edges.

Following example illustrates the algorithm.

Example 3. (path from (0, α5) to (2, 0) in CCC4).

In this case, one has c0 + c4 = Tr(α5) = 0, c1 +
c5 = Tr(α8) = 0, c2 = Tr(α7) = 1 and c3 =
Tr(α6) = 1 , We use c0 = c4 = c1 = c5 = 0
to satisfy the relationships between cis. Thus the edge

sequence of the path is f−1, f−1, gf−1, gf−1, f−1, f−1.

Since f−1, f−1, f−1 = f in CCC4, one can use a shorter

edge sequence f−1f−1, gf−1, gf . The corresponding path

is

(0, α5)
f−1

−→ (3, α4)
f−1

−→ (2, α3)
g−→ (2, 1)

f−1

−→
(1, α14)

g−→ (1, 0)
f−→ (2, 0).

Algorithms 1 and 2 are also useful to compute the

diameter of the cube connected cycles graph.

Theorem 3: The diameter of CCCn is 6 if n = 3 and

2n+ �n/2� − 2 if n > 3.

Proof. Because of symmetry of CCCn, the path between

any pair of nodes in CCCn is isomorphic to a path between

(0, X) and (a, 0) with appropriately chosen a ∈ Cn and

X ∈ GF (2n). We therefore only focus on these paths using

algorithms 1 and 2.

The theorem for n = 3 can be proved from algorithm 1

rather easily. for a = 0, the constants c0, c1 and c2 are either

0 or 1. Since ci = 0 implies an f edge and ci = 1, an edge

sequence gf , even when each ci is 1, the path length is at

most 6. For a = 1, even if all traces that give the cis are 1,

one can choose c0 = c1 = c2 = 1 and c3 = 0. This results

in the edge sequence gf, gf, gf, f , which, from Lemma 3

equals gfgfgf−1, a path of length 6. Finally, when a = 2,

in the worst case (of all trace functions are 1), one can

choose c0 = c1 = c2 = 1 and c3 = c4 = 0, giving the edge

sequence gf, gf, gf, f, f = gfgfg, a path of length 5.

When a > 3, the choice of algorithm can be based on a
(for the purpose of this proof). If �n/2 ≤ a < n, one can

use algorithm 1. If the number of path segments equals a,

then the path length is at most 2a ≤ 2(n−1). If the number

of path segments equal a+n, then ci+ ci+n, 0 ≤ i < a are

fixed, but individual ci, ci+n ∈ GF (2) are not. We choose

cn = cn+1 = · · · = cn+a−1 = 0. Value cn−1 may be either

a 0 or a 1. Since each 0 value of ci implies an f edge,

while a 1, gf edges, at least a + 1 edges at the end of the

path are f edges. Using Lemma 3, these consecutive a+ 1
f edges can be replaced with (n − a − 1) f−1 edges. The

path length is then given by the number of edges due to

ci, 0 ≤ i < n − 1, at most one g edge due to cn−1 and

(n − a − 1) f−1 edges at the end. We therefore have path

length ≤ 2(n− 1) + 1 + (n− a− 1) ≤ 2n+ �n/2� − 2.

On the other hand, if 0 ≤ a < �n/2, we use algorithm

2. If the number of path segments equals n − a, then the

path length is at most 2(n − a) ≤ 2n because each path

segment is made up of at most two edges, This also covers

the case when a = 0. If a �= 0 and the number of path

segments equal (2n− a), then ci + ci+n, 0 ≤ i < n− a are

fixed, but individual ci, ci+n ∈ GF (2) are not. As before,

we choose cn = cn+1 = · · · = c2n−a−1 = 0. Value cn−1

may be either a 0 or a 1. Since each 0 value of ci implies an

f−1 edge, while a 1, gf−1 edges, at least (n−a+1) edges

at the end of the path are f−1 edges. Using Lemma 3 again,

these consecutive n−a+1 f−1 edges can be replaced with

(a − 1) f edges. Thus the path length in this case satisfies

path length ≤ 2(n− 1) + 1 + (a− 1) ≤ 2n+ �n/2� = 2.

Finally, when X = β0 + β1 + · · ·+ βn−1, Tr(αiX) = 1,

0 ≤ i < n. If a = �n/2�, then using similar arguments, it

can be shown that either of the two algorithms give the min-

imum path length from (X, 0) to (a, 0) to be 2n+�n/2�−2.

Therefore this is the diameter of CCCn.

VI. RELATIONS BETWEEN INTERCONNECTION

NETWORKS

We now show that using the new model, the Shuffle

Exchange network SEn can be easily embedded in the

deBruijn network DBn.

We use an algebraic model for DBn [12] which labels the

nodes of DBn with the elements of GF (2n). A node with

label X ∈ GF (2n) is connected to nodes αX , αX +βn−1,

α−1X and α−1X + β0. Theorem 4 states the main result

of this section.

Theorem 4: SEn is a subgraph of DBn.

Proof. Use the mapping φ(·) : SEn → DBn defined as

φ(X) = αb(X)X + b(X)βn−1Tr(σX), X ∈ GF (2n),
where, the binary function b(X) = Tr(σ(1 + α)−1X). To

show that φ(·) is one-to-one, assume to the contrary that

56

φ(X) = φ(Y) for some X,Y ∈ GF (2n). If b(X) = b(Y) =
0, then X = Y . If b(X) = b(Y) = 1, then φ(X) = φ(Y)
leads to α(X+Y)+βn−1Tr(σ(X+Y)) = 0. However, we

know from the SEn connectivity (see Fig. 1) that α(X +
Y) + βn−1Tr(σ(X + Y)) is the destination of (X + Y)
along the f edge. Since this destination is 0, the source

X+Y = 0 as well. Thus, again we have X = Y . Finally, if

b(X) and b(Y) are different, say, b(X) = 1 and b(Y) = 0,

then φ(X) = φ(Y) gives αX + βn−1Tr(σX) = Y . This

gives b(Y) = b(X), which is a contradiction. Thus any time

φ(X) = φ(Y), X = Y , i.e., function φ(·) is one-to-one.

We now prove that the edges of SEn are preserved by φ(·).
Because of the linearity in source property of the f edges

of SEn, one only needs to show the preservation of f and

f−1 edges starting from βi, 0 ≤ i < n. Consider the edge

βi
f−→ βi−1. One can show that b(βi) = b(βi−1) = 1.

Thus φ(βi) = αβi + βn−1Tr(σβi). From Lemmas 1 and 2,

one can then see that φ(βi) = βi−1. Similarly φ(βi−1) =

βi−2. Thus the edge βi
f−→ βi−1 of SEn translates to the

edge βi−1
f−→ βi−2 of DBn.

Finally, to see the preservation of the g edge of SEn, con-

sider edge X
g−→ X+β0. One has, b(X+β0) = b(X)+1.

Thus if b(X) = 0, then b(X + β0) = 1. Thus the edge is

transformed by φ(·) to X → α(X + β0) + βn−1Tr(σ(X +
β0)) = αX + βn−1 + βn−1Tr(σX). This is clearly either

edge f or g of DBn. On the other hand, if b(X) = 1,

then b(X + β0) = 0. Thus the SEn edge is transformed to

αX + βn−1Tr(σX)→ X + β0. This is either edge f−1 or

g−1 of DBn.

VII. CONCLUSION

This paper has provided new models for the Shuffle Ex-

change (SEn) and Cube Connected Cycles (CCCn) networks

that are used in parallel architectures. Because of fixed node

degree and small diameter, these networks are scalable.

Our models use finite fields and are much simpler to deal

with than the usual binary models. For example, in case of

CCCn, the nodes in both cases are labeled by pairs. But

in the binary model, the coordinates of an edge destination

node depend on both the coordinates of the source node.

In our new model, each coordinate of the destination node

depends only on the corresponding coordinate of the source

node. This greatly simplifies development of paths and

mappings on these networks. In addition, this new model

allows one to exploit the powerful results in finite fields that

have been developed over a century.

A similar algebraic model for Wrapped Butterflies has

previously allowed highly efficient mappings of cycles and

trees [2] as well as investigations into automorphisms and

fault avoidance [13, 14]. The new models proposed here

can be used to obtain similar results in case of the Cube

Connected Cycles networks.

REFERENCES

[1] C.-H. Tsai, T. Liang, L.-H. Hsu, and M.-Y. Lin, “Cycle
embedding in faulty wrapped butterfly graphs,” Networks,
vol. 42, no. 2, pp. 85–96, 2003.

[2] M. D. Wagh and O. Guzide, “Mapping cycles and trees on
wrap-around butterfly graphs,” SIAM J. on Comput., vol. 35,
pp. 741–765, 2006.

[3] G. Chen and F. C. M. Lau, “Layout of the cube-connected
cycles without long wires,” Comput. J., pp. 374–383, 2001.

[4] Y. Tanaka and Y. Shibata, “On the pagenumber of the cube-
connected cycles,” Math. in CS, vol. 3, pp. 109–117, 2010.

[5] S. Jianping, H. Zifeng, and S. Yuntao, “An optimal multicast
algorithm for cube-connected cycles,” J. Comput. Sci. Tech-
nol., vol. 15, pp. 572–583, November 2000.

[6] G. E. Jan, S. W. Leu, C. H. Li, and X. Dong, “A perfect
load balancing algorithm on cube-connected cycles,” in Proc.
of the 5th WSEAS Int. Conf. on Comp. Intelligence, Man-
Machine Systems and Cybernetics, pp. 345–350, 2006.

[7] A. Germa, M. Heydemann, and D. Sotteau, “Cycles in the
cube-connected cycles graph,” Discrete Appl. Math., vol. 83,
pp. 135–155, March 1998.

[8] J. Yan, J. M. Xu, and C. Yang, “Forwarding index of cube-
connected cycles,” Discrete Appl. Math., vol. 157, pp. 1–7,
January 2009.

[9] L. Peng, W. Wei, and J. Xiang, “A new addressing scheme
for cube-connected cycles network,” in Proc. of the 3rd IEEE
Conf. on Industrial Electronics and Applications, (Singapore),
pp. 586 – 590, June 3-5 2008.

[10] F. P. Preparata and J. Vuillemin, “The cube-connected cycles:
a versatile network for parallel computation,” Communica-
tions of the ACM, vol. 24, pp. 300–309, May 1981.

[11] I. Friš, I. Havel, and P. Liebl, “The diameter of the cube-
connected cycles,” Inf. Process. Lett., vol. 61, no. 3, pp. 157–
160, 1997.

[12] M. D. Wagh and J. C. Mo, “An analytical setting and
mappings on the product of generalized de bruijn graphs,”
in Proc. of the 10th Int. Conf. on Parallel and Dist. Comput.
Sys., (New Orleans), pp. 253–257, October 1–3 1997.

[13] M. D. Wagh and K. Bendjilali, “Butterfly automorphisms and
edge faults,” in Proc. of Int. Symp. on Parallel and Distr.
Comput., (Istanbul, Turkey), July 2010.

[14] M. D. Wagh and K. Bendjilali, “Conquering edge faults
in butterfly with automorphisms,” in Proc. of Int. Conf. on
Theoretical and Mathematical Foundations of Comp. Sc.,
(Orlando, FL), pp. 57–64, July 2010.

[15] E. R. Berlekamp, Algebraic coding theory. New York, NY:
Mc-Graw Hill, 1968.

[16] C. Chen and J.-K. Lou, “An efficient tag-based routing
algorithm for the backward network of a bidirectional general
shuffle-exchange network,” Communications Letters, IEEE,
vol. 10, pp. 296–298, April 2006.

57

