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An expression for the transmitted fraction of the uniform and parallel radiation incident upon the coupler
between two rectangular light pipes of different physical dimensions is derived. It is a function of the pipe
dimension ratio and the angle of the incident radiation. It is shown that for radiation nearly parallel to the
pipe axis, it is possible to design a coupler for any pipe dimension ratio so that all the radiation incident
upon it is transmitted by it. Design curves for various incidence angles and the pipe dimensions are pre-
sented.

I. Introduction

Light pipes with specularly reflecting walls are use-
ful for optical information processing, spatial filter-
ing, and optical communications. The propagation
characteristics of these pipes were first reported by
Poehler' in 1970. His results were later extended by
Powell2 to include the skew rays and by Wagh and
Rao3 to include the right angle bends in these pipes.
In this paper, coupling between two light pipes of dif-
ferent dimensions is investigated. An explicit rela-
tion for the fraction of the incident radiation that is
transmitted by the coupling is derived, assuming per-
fectly reflecting walls.

Long gradual couplers are generally expected to
perform better than short couplers. This is shown to
be true only in the case of incidence radiation nearly
parallel to the optical axis. For large incidence an-
gles, shorter couplings are at times better than the
long ones. Design curves for various light pipe di-
mension ratios and incident radiation angles are pre-
sented.

II. Statement of the Problem

Consider the coupling between two rectangular
light pipes of dimensions 2a X c and 2b X c as shown
in Fig. 1. Both the pipes and the coupling are as-
sumed to have specularly reflecting walls. The open
end of the larger tube is uniformly illuminated with
parallel rays whose direction is defined by angles 0
and as shown in Fig. 1. The coupling is completely
specified by the dimensions 2a, 2b, c and the angle 4'
made by the tilted faces of the coupling with the op-
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tical axis. The problem of coupling design can now
be stated as follows: Given two light pipes of dimen-
sions 2a X c and 2b X c and radiation directions 0
and 0 to find t so that the maximum amount of ra-
diation in the larger tube can go into the smaller
tube.

We define the efficiency of coupling, X as the frac-
tion of the incident radiation transmitted by the cou-
pler. In this paper we want to derive the condition
for -q to be 1.

It is obvious from Fig. 1 that neither the angle 0
nor the reflections from the two parallel faces of the
coupling affect the forward direction of a light ray
from the larger tube to the smaller tube. Similarly
the dimension c and the coordinate along this dimen-
sion of the point of entry of the ray into the tube
merely determine the coordinates of the exit point of
the ray. The angles and 0, the dimensions a and b,
and the entrance coordinate along dimension a of the
ray, on the other hand, decide whether it is going to
pass through the coupling or not. For the purpose of
determining coupling efficiency it is therefore suffi-
cient to deal with the projection of this structure
along dimension c. This projection and the coordi-
nate system used are shown in Fig. 2. Efficiency of
the coupler X is, then, the range of yo, the rays within
which go through the coupler divided by the total
range of yo, 2a.

The length of the light pipe before the coupling is
not a factor that will in any way influence the cou-
pling efficiency. Thus, we shall ignore the light pipe
before the coupling and assume that the z = 0 plane
of the coupling is itself illuminated uniformly by par-
allel rays.

III. Analysis

We denote the angle made by a ray with the z axis
after i reflections in the coupling by i(0 • Xi < r).
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Light pipe Finally, using a standard formula4 for the summa-
tion,

2a cost,

sin(o + 2n + 1,6)

Fig. 1. Coupling between two light pipes of dimensions 2a X c
and 2b X c and the angles 0 and defining the direction of inci-

dent radiation.

Clearly 00 = X and from the geometry of the struc-
ture, i = -(0i-1 + 24). This makes Xi = (-1)i(o +
2io) and gives the maximum number of reflections
nmax of the ray before it is reflected back toward the
larger tube

(from I n--- + 1i > 7T/2, nmj < 7r/2)

as

nmax = [r - 20)/4e], (1)

where [x] denotes the largest integer not larger than
x. Moreover, a ray that has turned toward the larger
tube cannot turn back again because the magnitude
of its angle with the z axis increases at every reflec-
tion by 2 until I il > r - , in which case it will go
out of the larger end of the coupling without any
more reflections if it has not gone out already.

To find out if a ray starting from the z = 0 plane
will be able to cross the coupling, it is therefore suffi-
cient to check the ray's ability to cross the length of
the coupling in nmax reflections.

We now find (Yn+lzn+l) the coordinates of the
point of the (n + 1)th reflection of a ray whose nth
reflection is at (YnZn). If (Yn+i,Zn+l) is on S and
(YnZn) on S2, from the equation of the ray and the
surfaces Si and S2,

(Yn+ - Yn) = tan hn (n+ 1-Zn),

(a - Yn+i) = tanip zn+ ,

and

(Yn + a) = tan4, Zn.

Eliminating Yn and Yn+1 from these three equations,
Zn+ can be related to zn as

Zn+1 =
2a + (tann - tant)zn

(tan~n + tan4)

2a cos(o + 2n#6) cost + Zn sin(o + 2n - i)

sin(o + 2n + X)
(2)

When (YnZn) is on S and (Yn+l,Zn+) on S2, the
equation relating the z coordinates of these two
points is identical to Eq. (2) because of the symmetry
of the structure about the z axis. The difference Eq.
(2) is thus valid regardless of whether (Ynzn) is on Si
or on S2, and its solution then gives

2a cosq/ n sin( + )
Zn+ 2 = + 2 _ cos(o + 2io) + z1 i

sink4 + 2n TI,) i=1 sin(o + 2n + 1,

cos() + n + 1,6) * sin(no)
sing

+Z sin 2( + 16)
sin(o + 2n + q/)

The maximum distance traveled by a ray in nmax re-
flections,

Znm- + 1,

can be obtained from Eq. (3). We denote the frac-
tion

sin( + 2nmax + 1t) by T.
sin( + @,

(4)

Since

2 cos(t + n + 1,6) sin(n1) + sin(o + V/) = sin(o + 2n + lip),

we get

Znm + = a (1- 1T) + zT
tan ,6

where T has the same meaning as in Eq. (4).
In turn z1 can be expressed as a function of yo and

the condition for

Zn.- + 1 the length of the coupling

tested for different rays. At this point, two cases of
incidence angle have to be considered separately.

A. Case 1: < 
In this case, a ray starting from (yo,O) in the direc-

tion 0 has its first reflection on surface S if

yo > b - (a - b) tano/tanik. (6)

zi can therefore be obtained from the intersection of
the ray and S1 as

zi = (a - yo)/(tanoi + tang). (7)

From Eqs. (5)-(7), the condition on yo for the ray to
be transmitted by the coupling, i.e.,

Zn.m- + 1 2 length of the coupling = (a - b)/tan,6
is

b(l +R) -aR <yo< bT(l +R) -aR,

where R = tanO/tan4'.

Idb , ,,,

T._6V

(8)

Fig. 2. Coupling projection along the dimension c, the coordinate
frame and the progress of a ray along the coupling.
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Fig. 3. Efficiency of a coupling as a function of the semicoupling
angle iP for various values of incident radiation angles and a fixed

a/b ratio of 4.

b - (a - b) tano/tanO, the rays go through the cou-
pling without any reflection. The efficiency in this
case is therefore obtained as

1
=>, - (max(0, minjbT(1 + R) - aR, a}

2a

- maxi-a,b(1 + R) - aRfl
+ maxI0, minia,b(1 + R) - aRI + a)).

Since in this case, T 2 1 and R > 1, this expression
can be simplified to

(13)77k>,p = max|0, 2 min+ l, - T } _ - 1,
2 m in ai2

where R = tano/tan4. Efficiency of a coupling ex-
pressed by Eqs. (12) and (13) as a function of its
angle 4 is plotted in Fig. 1 for various incident radia-
tion angles 0 and a/b ratio equal to four.

IV. Design of the Coupling for Maximum Efficiency

It can be seen from Eqs. (12) and (13) that regard-
less of the relative magnitudes of 4 and 4, the neces-
sary and sufficient condition for i7 = 1 is

bT a.

The condition on yo such that the first reflection of
the ray is on S2 and

Zn.m + 1 > (a - b)/tano

can be obtained from Eq. (8) merely by replacing 4
by -4' and yo by -yo because of the symmetry of the
structure about the z axis as

b(1-R) + aR <-yo S bT(1-R) + aR. (9)

Finally, rays that do not have first reflections either
on Si or on S2 obviously go through the coupling.
For these rays,

(14)

An ideal coupling, i.e., a coupling that can transfer
all the incident radiation from the larger light pipe
into the smaller light pipe can be designed if condi-
tion (14) can be satisfied for some . Function T
thus plays an important part in the design of a high
efficiency coupling. Some properties of this function
are now investigated. For 4 > 7r/4 - /2, nmax = 0
and T = 1. As 4 is reduced nmax increases. It can be
proved that for nmax > 1, T 1 as follows:

From Eq. (1), max < (7r - 20)/4' < nmax + 1.
Therefore 7r/2 - 4 < 4 + 2nmax + 1 < /2 + .
Moreover, r/2 + > '+ 4. We then get from the
monotonically increasing nature of sine function in
the first quadrant and its symmetry about the value
7r/2,

-b(l-R) -aR <yo<b(l +R)-aR. (10)

The sum of the intervals of yo defined by Eqs.
(8)-(10) for which the ray goes through the coupling
gives the efficiency of the coupling in this case as

's, = - [maxj0, minjbT(1 + R) - aR,al
2a

- maxl-a,b(1 + R) - aRjI + maxtO, minlbT(1 - R) + aR,al
- maxl-a,b(1 - R) + aR11 + 2b]. (11)

The min and max expressions in this equation
arise because -a S yo < a and to take care of the
nonnegativity of each interval. It is shown in the
next section that T 2 1 [Eq. (16)]. Also since 0 < 4,
R S 1. This simplifies Eq. (11) to

no¢s, = mini1, (b/a)TI.

B. Case2: > '

(12)

In this case, as before, if a > yo > b - (a - b)tan4/
tan4, first reflection of the incoming ray is on wall Si,
and the range of yo for which the ray is transmitted
by the coupling is given by Eq. (8). When -a S Yo S

sin(/ + 2nma + 1) > sin(G + ,6). (15)

Therefore,

T 2 1 for all . (16)

We can further show that T is monotonically de-
creasing with 4'.
dTldVI = [2nmax + 1 cos(G + 2nmax + 16) sin(o + iP)

- cos(o + iP) * sin( + 2fnmax + 10)I/sin 2 (0 + P). (17)

If (0 + 2nmax + 14) ,r/2, dT/d4 < 0, and when (' +
2nmax + 10 < 7r/2, the sign of dT/d4 is the same as
that of Q (2nmax + 1) tan(4 + 4 - tan( +
2nma, + 1). It can be shown that

lim Q < 0 and dQ/dp < 0.

Therefore Q < 0 for all values of 4. The function T
is thus monotonically decreasing with 4.

This nature of T indicates that if 4max is a solution
of bT = a, any 4 4max satisfies Eq. (14) and gives a
coupling with = 1. The values of 4 'max for various
incidence angles 0 are plotted in Fig. 4 as a function
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Fig. 4. Maximum semicoupling angle max for perfect coupling
with given a/b ratio and the incident radiation angle /.

of the pipe dimension ratios. For a given a/b ratio
and the angle , these curves can be used to choose a
coupling angle [and thereby a coupling length (a -
b)/tan'] such that efficiency of the coupling is unity.

The monotonically decreasing nature of T also in-
dicates that it is maximum when 4 = 0. This value,
denoted by Tmax, is calculated as follows:

with parallel rays, and this is equivalent to illuminat-
ing the entrance plane of the coupling uniformly with
parallel rays. This is not exactly true as some rays
undergo two extra reflections before they reach the
coupling.2 But if the reflectivity of the walls of the
larger light pipe is high, this should not cause a con-
siderable change in the intensities of different rays.

While calculating i7, it is assumed that the reflec-
tivity of coupling walls is 1. In practice this may not
be true, and the effective coupling efficiency fle can
then be obtained as

w7e = 77 r7r, (21)

where is the efficiency calculated in this paper, and
Olr is the efficiency that depends upon the number of
reflections in the coupling and wall reflectivity. 71r
can be calculated in case of a given coupling by find-
ing the exact number of reflections from the (tilted as
well as parallel) faces of the coupling.

7 is dependent largely upon the function T de-
fined by Eq. (4). Equation (14) gives the condition
for X = 1. It is simple to design couplings with 7 = 1
for small incidence angles using Fig. 4. For large 4
on the other hand, it may not be possible to make =
1. Equation (20) sets a maximum limit on 0 for a
given pipe dimension ratio a/b or vice versa. For 4' =
0, a coupling with 7 = 1 can be designed for any pipe
dimension ratio.

If a coupling has 7 = 1, further increasing its length
(i.e., decreasing 4') does not deteriorate its perfor-
mance. On the other hand, if < 1, increasing the
length does not always improve the coupling perfor-
mance. This is clear from the plots of i7 against 4
(Fig. 3) for 4 = 15° and 300.

Tmax = lim sin(G + 2nmax + )
'A-o sin(/ + I)

(18)

nmax is a discontinuous function of 4. Let x = (7r -
20)/46, a continuous function. Then Ix - nmaj < 1,
and because of this bound,

limx,6 = limnmaxi

The function 2nmax4' in Eq. (18) can therefore be re-
placed by the function 2x4'. The limit can be calcu-
lated after this to give

Tmax = 1/sinP.

The author thanks B. V. Rao of the Indian Insti-
tute of Technology, Bombay for his keen interest in
this work and helpful discussions.

(19)

Combining Eqs. (14) and (19), we can say that if
the pipe dimension ratio a/b and the incidence radia-
tion angle are such that

a sing > b, (20)

no coupling, however long it may be, can be designed
such that its efficiency is unity.

V. Conclusions

The efficiency of a coupling between two rectangu-
lar light pipes with specularly reflecting walls is cal-
culated in this paper. The input end of the larger
light pipe is assumed to be illuminated uniformly
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