
SIAM J. COMPUT. c© 2006 Society for Industrial and Applied Mathematics
Vol. 35, No. 3, pp. 741–765

MAPPING CYCLES AND TREES ON WRAP-AROUND
BUTTERFLY GRAPHS∗

MEGHANAD D. WAGH† AND OSMAN GUZIDE‡

Abstract. We give a new algebraic representation for the wrap-around butterfly interconnection
network. This new representation is based on the direct product of groups and finite fields and
allows an algebraic expression of the network connectivity. The abstract algebraic tools may then be
employed to explore the structural properties of the butterfly. In this paper we exploit this model
to map guest graphs on the butterfly. In particular, we provide designs of unit dilation mappings of
all possible length cycles on butterflies. We also map the largest possible binary trees on butterfly
networks with a dilation 2 if the network degree is less than 16, 3 if it is less than 32, and 4 if it is
less than 64. This is a great improvement over previous results.

Key words. butterfly graphs, mathematical model, finite field, mapping, cycles, trees

AMS subject classifications. 68M07, 05C62, 68M10, 05C38

DOI. 10.1137/S0097539799365462

1. Introduction. Distributed memory parallel architectures rely upon intercon-
nection networks to communicate data and intermediate results between processors.
With the rapid advances in semiconductor technology, the computational speeds of
processors have far surpassed the improvements in communication speeds. Conse-
quently, communication between processors is threatening to become a bottleneck in
parallel processing.

Improving the communication characteristics of a parallel machine is a challenging
problem because of the many conflicting demands on the interconnection networks.
For example, scalability and cost issues force one to have a small (and, if possible,
fixed) node degree and a small number of total edges. On the other hand, performance
demands a large number of processors, a small network diameter, symmetry, and the
possibility of mapping of common parallel algorithm skeletons on the architecture.

The wrap-around butterfly network represents a good trade-off between the cost
and the performance of a parallel machine. It has a large number of processors, fixed
node degree, low diameter, symmetry, and ability to support a variety of parallel
algorithms. A wrap-around butterfly network of degree n ≥ 3, Bn, is a graph with
node set Zn ×{0, 1}n [7]. A node (m, V) of Bn is connected to the four nodes shown
in Figure 1.1. Note that in this figure, since m ∈ Zn, m + 1 and m− 1 are evaluated
modulo n. V is an n-bit binary vector vn−1, vn−2, . . . , v0, and 2m refers to a length n
vector with 1 in position m and 0’s everywhere else. Thus an exclusive OR operation
with 2m alters exactly the mth bit of vector V . Bn is often visualized as an n × 2n

array of nodes with node (m,V) located in the mth row and V th column of the array.
Each node is connected only to nodes in the neighboring rows (except for the wrap-
around links between the nodes of the 0th and the (n−1)th rows). The edges between
nodes in the same row (same m) are often called straight edges, and those between
nodes in different rows are the diagonal edges.

∗Received by the editors December 5, 1999; accepted for publication (in revised form) July 21,
2005; published electronically February 3, 2006.

http://www.siam.org/journals/sicomp/35-3/36546.html
†Department of Electrical and Computer Engineering, Lehigh University, Bethlehem, PA 18015

(mdw0@lehigh.edu).
‡Department of Computer and Information Sciences, Shepherd University, Shepherdstown, WV

25443 (oguzide@sheperd.edu).
741

742 MEGHANAD D. WAGH AND OSMAN GUZIDE

(m+1, V)

(m-1, V)
(m, V)

(m-1, V

m
2(m+1, V)

)m-1
2

Fig. 1.1. Connections from node (m, V) in the butterfly network.

The edges in a butterfly network are bidirectional, i.e., corresponding to an edge
from (m1, V1) to (m2, V2), there is also an edge from (m2, V2) to (m1, V1). Bn is
node symmetric and has n2n nodes and n2n+1 edges. Its node degree is 4 and its
diameter is �3n/2�. The degree 4 Cayley graph, proposed recently [13], is identical
to Bn [3]. Cube connected cycles are a subgraph of Bn [4]. Bn supports many parallel
algorithms well [7, 5, 8, 9, 10, 12]. It is shown that one can map cycles and trees on
Bn with relatively low dilation [11, 6, 2].

This paper provides a new model for the wrap-around butterfly graph using a
direct product of groups and finite fields. In this model, node connectivity can be
expressed as an algebraic relationship between the node labels. This allows one to
explore the structural properties of the butterfly network in much more direct fashion
using powerful algebraic techniques. This paper investigates the mapping of guest
graphs of cycles and trees to the butterfly host graph with the help of this new model.
All our mappings have unit load; i.e., each vertex of a guest graph is mapped to
a unique butterfly node. Our mappings also have a low dilation; i.e., neighboring
vertices of the guest graphs are mapped either to neighboring butterfly nodes (unit
dilation) or on nodes between whom paths of relatively small length exists. Unit load
and low dilation characterize an efficient mapping. In the case of constant node degree
networks such as the wrap-around butterflies, unit load and constant dilation imply
a constant congestion. Further, a unit load and unit dilation mapping is a subgraph
of the host graph of butterfly.

The rest of this paper is organized as follows. In section 2, we provide the details
of our new representation of Bn and prove its isomorphism to the binary node labels.
Section 3 is devoted to mapping of cycles to Bn. We enumerate cycles which can never
be subgraphs of a wrap-around butterfly graph and then provide simple procedures
to design all the remaining cycle subgraphs. In particular, we show that barring a
few exceptions, it is possible to map (with unit dilation) an arbitrary length cycle to
Bn when n is odd, and any even length cycle when n is even. Section 4 deals with
mapping trees to Bn. We show that when n is less than 16, one can map the maximal
binary balanced tree to Bn with a dilation of 2. Results for larger size networks are
also provided. Finally, section 5 presents our conclusions.

2. Alternate representation of the butterfly. This section presents a new
model of the wrap-around butterfly using the direct product of finite groups and fields.
We show that in this model, network connectivity is expressed as a simple algebraic
relationship (Theorem 2.1), thereby providing powerful algebraic tools to investigate
its structural properties.

MAPPINGS ON WRAP-AROUND BUTTERFLY GRAPHS 743

In the proposed representation, nodes of Bn are labeled with the elements of
Zn × GF (2n).1 Thus the new node labels would be (m, X), where m ∈ Zn and
X ∈ GF (2n). Integer m and the field element X would be referred to as the first
and second indices of the node, respectively. We will provide the exact equivalence
between the new node labels and the ones using the binary notation later, but first we
summarize important properties of finite fields used in this paper. Reader is referred
to [1] for detailed description of the algebraic notions used here.

The finite field GF (2n) is an extension of GF (2). Similar to GF (2), it uses
modulo 2 addition; i.e., for any X ∈ GF (2n), X + X = 0. Elements of GF (2n)
may be enumerated as {0, 1, α, α2, . . . , α2n−2}, where the element α is known as the
primitive element. α2n−1 = 1 and thus the elements of GF (2n) are closed under
multiplication. The minimum degree polynomial (over GF (2)) of which α is a root,
is called the primitive polynomial. Primitive polynomial has degree n and plays a
central role in the design of GF (2n). Because α is a root of this degree n polynomial,
elements of GF (2n) may also be expressed as polynomials (of degree at most n − 1)
in α over GF (2). One can therefore view GF (2n) as a vector space over GF (2) with
basis 〈αn−1, αn−2, . . . , α, 1〉.

Fields GF (24) and GF (25) are illustrated in Tables 2.1 and 2.2, respectively.
Expressing each element of GF (2n) in basis 〈αn−1, αn−2, . . . , α, 1〉 is fairly straight-
forward. For example, in Table 2.1, elements 1, α, α2, and α3 are already the basis
elements. α4 can be expressed using lower powers of α using the fact that α is the
root of the primitive polynomial x4 + x + 1. Thus α4 + α + 1 = 0, or α4 = α + 1.
(Recall that GF (2n) uses modulo 2 additions.) The expressions for successive higher
powers of α are obtained by multiplying the expressions for lower powers by α and
replacing any α4, thus created, by α+1. Tables 2.1 and 2.2 are important to simplify
additions between field elements. For example, using Table 2.1, one may easily add
α10 and α11 in GF (24) as α10 + α11 = (α2 + α + 1) + (α3 + α2 + α) = α3 + α = α14.

Alternately, the elements of GF (2n) can be expressed over GF (2) using the dual
basis 〈βn−1, βn−2, . . . , β0〉. The dual basis is unique and its component βi is defined
as that element of GF (2n) which satisfies

Tr(αjβi) =

{
1 if j = i,
0 otherwise,

(2.1)

where the Trace function Tr(·) : GF (2n) → GF (2) is computed as [1]

Tr(x) = x + x2 + x22

+ x23

+ · · · + x2n−1

.

Tr(.) is a linear function over GF (2), i.e.,

Tr(aX + bY) = aTr(X) + bTr(Y), a, b ∈ GF (2), X, Y ∈ GF (2n).

Structure of the primitive polynomial governs the relationships between the dual basis
elements. For the purposes of this paper, we will need only the relationship

βn−1 = αβ0.(2.2)

1Here, Zn denotes the set of integers {0, 1, . . . , n− 1} under the operation of addition modulo n
and GF (2n) denotes the finite field of 2n elements with characteristic 2.

744 MEGHANAD D. WAGH AND OSMAN GUZIDE

Table 2.1

Structure of GF (24).

Primitive polynomial: x4 + x + 1
Elements and their relationships:

0 α7 = α3 + α + 1
1 α8 = α2 + 1
α α9 = α3 + α
α2 α10 = α2 + α + 1
α3 α11 = α3 + α2 + α
α4 = α + 1 α12 = α3 + α2 + α + 1
α5 = α2 + α α13 = α3 + α2 + 1
α6 = α3 + α2 α14 = α3 + 1

Dual base 〈β3, β2, β1, β0〉 = 〈1, α, α2, α14〉

Table 2.2

Structure of GF (25).

Primitive polynomial: x5 + x4 + x3 + x2 + 1
Elements and their relationships:

0 α15 = α4 + α3 + α + 1
1 α16 = α3 + α + 1
α α17 = α4 + α2 + α
α2 α18 = α4 + 1
α3 α19 = α4 + α3 + α2 + α + 1
α4 α20 = α + 1
α5 = α4 + α3 + α2 + 1 α21 = α2 + α
α6 = α2 + α + 1 α22 = α3 + α2

α7 = α3 + α2 + α α23 = α4 + α3

α8 = α4 + α3 + α2 α24 = α3 + α2 + 1
α9 = α2 + 1 α25 = α4 + α3 + α
α10 = α3 + α α26 = α3 + 1
α11 = α4 + α2 α27 = α4 + α
α12 = α4 + α2 + 1 α28 = α4 + α3 + 1
α13 = α4 + α2 + α + 1 α29 = α3 + α2 + α + 1
α14 = α4 + α + 1 α30 = α4 + α3 + α2 + α

Dual base 〈β4, β3, β2, β1, β0〉 = 〈α20, α9, α26, α18, α19〉

In order to establish the equivalence between the binary labels used in section 1
and the new labels, we use the mapping ψ : Zn × {0, 1}n → Zn ×GF (2n),

ψ(m, vn−1vn−2 . . . v1v0) =

(
m,

n−1∑
i=0

v(i+m) mod n βi

)
.(2.3)

Mapping ψ is one-to-one and onto because 〈βn−1, βn−2, . . . , β0〉 is a basis of GF (2n).
We will show in Theorem 2.1 that ψ also preserves the connectivity of Bn.

Further, using the properties of βi’s one can show the inverse of ψ to be

ψ−1(m,X) = (m, vn−1vn−2 . . . v1v0),

where

vi = Tr(α(i−m) mod nX).(2.4)

MAPPINGS ON WRAP-AROUND BUTTERFLY GRAPHS 745

Table 2.3

Equivalence between the nodes of B5 and graph Z5 ×GF (25).

Label (m, x)

(0, 00000) (0, 0)
(0, 00001) (0, α19)
(0, 00010) (0, α18)
(0, 00011) (0, α7)
(0, 00100) (0, α26)
(0, 00101) (0, α17)
(0, 00110) (0, α23)
(0, 00111) (0, α6)
(0, 01000) (0, α9)
(0, 01001) (0, α25)
(0, 01010) (0, α11)
(0, 01011) (0, α16)
(0, 01100) (0, α22)
(0, 01101) (0, α14)
(0, 01110) (0, α5)
(0, 01111) (0, α)
(0, 10000) (0, α20)
(0, 10001) (0, α8)
(0, 10010) (0, α27)
(0, 10011) (0, α24)
(0, 10100) (0, α10)
(0, 10101) (0, α12)
(0, 10110) (0, α15)
(0, 10111) (0, α2)
(0, 11000) (0, α21)
(0, 11001) (0, α28)
(0, 11010) (0, α13)
(0, 11011) (0, α3)
(0, 11100) (0, α29)
(0, 11101) (0, α4)
(0, 11110) (0, α30)
(0, 11111) (0, 1)
(1, 00000) (1, 0)
(1, 00001) (1, α20)
(1, 00010) (1, α19)
(1, 00011) (1, α8)
(1, 00100) (1, α18)
(1, 00101) (1, α27)
(1, 00110) (1, α7)
(1, 00111) (1, α24)
(1, 01000) (1, α26)
(1, 01001) (1, α10)
(1, 01010) (1, α17)
(1, 01011) (1, α12)
(1, 01100) (1, α23)
(1, 01101) (1, α15)
(1, 01110) (1, α6)
(1, 01111) (1, α2)
(1, 10000) (1, α9)
(1, 10001) (1, α21)
(1, 10010) (1, α25)
(1, 10011) (1, α28)
(1, 10100) (1, α11)
(1, 10101) (1, α13)

Label (m, x)

(1, 10110) (1, α16)
(1, 10111) (1, α3)
(1, 11000) (1, α22)
(1, 11001) (1, α29)
(1, 11010) (1, α14)
(1, 11011) (1, α4)
(1, 11100) (1, α5)
(1, 11101) (1, α30)
(1, 11110) (1, α)
(1, 11111) (1, 1)
(2, 00000) (2, 0)
(2, 00001) (2, α9)
(2, 00010) (2, α20)
(2, 00011) (2, α21)
(2, 00100) (2, α19)
(2, 00101) (2, α25)
(2, 00110) (2, α8)
(2, 00111) (2, α28)
(2, 01000) (2, α18)
(2, 01001) (2, α11)
(2, 01010) (2, α27)
(2, 01011) (2, α13)
(2, 01100) (2, α7)
(2, 01101) (2, α16)
(2, 01110) (2, α24)
(2, 01111) (2, α3)
(2, 10000) (2, α26)
(2, 10001) (2, α22)
(2, 10010) (2, α10)
(2, 10011) (2, α29)
(2, 10100) (2, α17)
(2, 10101) (2, α14)
(2, 10110) (2, α12)
(2, 10111) (2, α4)
(2, 11000) (2, α23)
(2, 11001) (2, α5)
(2, 11010) (2, α15)
(2, 11011) (2, α30)
(2, 11100) (2, α6)
(2, 11101) (2, α)
(2, 11110) (2, α2)
(2, 11111) (2, 1)
(3, 00000) (3, 0)
(3, 00001) (3, α26)
(3, 00010) (3, α9)
(3, 00011) (3, α22)
(3, 00100) (3, α20)
(3, 00101) (3, α10)
(3, 00110) (3, α21)
(3, 00111) (3, α29)
(3, 01000) (3, α19)
(3, 01001) (3, α17)
(3, 01010) (3, α25)
(3, 01011) (3, α14)

Label (m, x)

(3, 01100) (3, α8)
(3, 01101) (3, α12)
(3, 01110) (3, α28)
(3, 01111) (3, α4)
(3, 10000) (3, α18)
(3, 10001) (3, α23)
(3, 10010) (3, α11)
(3, 10011) (3, α5)
(3, 10100) (3, α27)
(3, 10101) (3, α15)
(3, 10110) (3, α13)
(3, 10111) (3, α30)
(3, 11000) (3, α7)
(3, 11001) (3, α6)
(3, 11010) (3, α16)
(3, 11011) (3, α)
(3, 11100) (3, α24)
(3, 11101) (3, α2)
(3, 11110) (3, α3)
(3, 11111) (3, 1)
(4, 00000) (4, 0)
(4, 00001) (4, α18)
(4, 00010) (4, α26)
(4, 00011) (4, α23)
(4, 00100) (4, α9)
(4, 00101) (4, α11)
(4, 00110) (4, α22)
(4, 00111) (4, α5)
(4, 01000) (4, α20)
(4, 01001) (4, α27)
(4, 01010) (4, α10)
(4, 01011) (4, α15)
(4, 01100) (4, α21)
(4, 01101) (4, α13)
(4, 01110) (4, α29)
(4, 01111) (4, α30)
(4, 10000) (4, α19)
(4, 10001) (4, α7)
(4, 10010) (4, α17)
(4, 10011) (4, α6)
(4, 10100) (4, α25)
(4, 10101) (4, α16)
(4, 10110) (4, α14)
(4, 10111) (4, α)
(4, 11000) (4, α8)
(4, 11001) (4, α24)
(4, 11010) (4, α12)
(4, 11011) (4, α2)
(4, 11100) (4, α28)
(4, 11101) (4, α3)
(4, 11110) (4, α4)
(4, 11111) (4, 1)

Table 2.3 provides the mapping ψ between the two representations of B5. In

746 MEGHANAD D. WAGH AND OSMAN GUZIDE

order to illustrate the entries in this table, consider mapping of a butterfly node
(0, 01011) ∈ Zn × {0, 1}n to its new algebraic setting. The dual basis of GF (25)
given in Table 2.2 is 〈α20, α9, α26, α18, α19〉. Thus

ψ(0, 01011) = (0, α9 + α18 + α19)

= (0, (α2 + 1) + (α4 + 1) + (α4 + α3 + α2 + α + 1))

= (0, α3 + α + 1) = (0, α16).

Thus the butterfly node with binary label (0, 01011) is renamed in the new algebraic
notation as (0, α16).

We now state the central result of this section which expresses the connectivity
of Bn through algebraic relationships between node labels.

Theorem 2.1 (connectivity). In Bn, a graph node (m,X) is connected to the
four nodes (m+1, αX), (m−1, α−1X), (m+1, αX+βn−1), and (m−1, α−1X+β0).

Proof. Let

ψ(m, vn−1vn−2 . . . v1v0) = (m, X) and

ψ(m + 1, v′n−1v
′
n−2 . . . v

′
1v

′
0) = (m + 1, αX).

Components vi of the binary vector are related to m and X as in (2.4). Similar
equation for v′i gives

v′i = Tr(α(i−m−1) mod nαX).(2.5)

Now, if i 	= m, then (i−m−1)mod n < n−1 and consequently α(i−m−1) mod nα =
α(i−m) mod n. On the other hand, if i = m, then α(i−m−1) mod nα = αn. Using this
in (2.5) gives the values of v′i as

v′i =

{
Tr(α(i−m) mod nX) if i 	= m,
Tr(αnX) if i = m.

(2.6)

Comparing (2.4) and (2.6) one now gets

v′i =

{
vi if i 	= m,
vm or vm ⊕ 1 if i = m.

(2.7)

The second line of (2.7) is obtained by noting that the Tr(αnX) is either 0 or 1, and
therefore equals either vm or vm⊕1. Since the binary vectors (vn−1vn−2 . . . v1v0) and
(v′n−1v

′
n−2 . . . v

′
1v

′
0) are equal, except possibly in the mth bit, Figure 1.1 shows that

nodes (m, vn−1vn−2 . . . v1v0) and (m + 1, v′n−1v
′
n−2 . . . v

′
1v

′
0) are connected. Thus

(m, X) is connected to (m, αX).
To show that (m + 1, αX + βn−1) is connected to (m, X), suppose

ψ(m + 1, v′n−1v
′
n−2 . . . v

′
1v

′
0) = (m + 1, αX + βn−1).

In this case, v′i is obtained as

v′i = Tr(α(i−m−1) mod n(αX + βn−1)).(2.8)

As before, if i 	= m, (i−m− 1) mod n < n− 1. Using this and the linearity of the
trace function in (2.8) gives

v′i =

{
Tr(α(i−m) mod nX) + Tr(αi−m−1 mod nβn−1) if i 	= m,
Tr(αnX) + Tr(αn−1βn−1) if i = m.

(2.9)

MAPPINGS ON WRAP-AROUND BUTTERFLY GRAPHS 747

(m+1, X)

(m, X)

α

(m-1, X +

(m-1, X)

)

(m+1, X +)α

-1α

-1α

n-1β

β 0

Fig. 2.1. Connections from node (m, X) ∈ Zn ×GF (2n) in the butterfly network.

Employing the definition of βn−1, (see (2.1)), this becomes

v′i =

{
vi if i 	= m,
vm or vm ⊕ 1 if i = m.

As before, Tr(αnX) + 1 in the second line of (2.9) is replaced by vm or vm ⊕
1 because it is either 0 or 1. Therefore from Figure 1.1, (m, X) is connected to
(m, αX + βn−1).

The other two connections specified in the theorem can be proved similarly by
substituting α−1 and β0 in place of α and βn−1, respectively.

The four edges from (m, X) ∈ Zn ×GF (2n) are shown in Figure 2.1. Because of
(2.2), these edges are bidirectional. It should be pointed out here that even though the
four edges in Figure 2.1 map to the four edges in Figure 1.1, the exact correspondence
between them is dependent upon the source node (m, X) and, in particular, on the
equality of Tr(αnX) and the bit vm of binary vector V . An edge from node (m, X) to
(m+1, αX) is sometimes a straight edge and sometimes a diagonal edge. For example,
as can be seen from Table 2.3, the edge between nodes (1, α22) and (2, α23) in B5 is
a straight edge since the binary labels of these nodes are (0, 01100) and (1, 01100),
respectively. On the other hand, the edge between nodes (1, α23) and (2, α24) is a
diagonal edge since the binary labels of these nodes are (1, 01100) and (2, 01110),
respectively. Thus the correspondence between the binary labels and their algebraic
counterparts is more intricate than one might initially suppose.

Redefining Bn in the new algebraic notation allows use of simple but powerful
algebraic techniques to study its structure. Also, unlike the binary representation
(Figure 1.1), in the new algebraic notation (Figure 2.1) the two indices of a node
change independently between connected nodes. This independence further simplifies
our investigation.

3. Mapping cycles on the butterfly. This section provides comprehensive
results about cycles as subgraphs of Bn. We first prove exactly which cycles are not
subgraphs of Bn (Theorem 3.1). Then we provide simple procedures to map to Bn all
the permissible cycles, i.e., those that are not enumerated in Theorem 3.1 (Theorems
3.3, 3.6, and 3.7). Earlier, Rosenberg [11] has given mappings of cycles of lengths
L = n or L = n2n − (n − 2)c, 1 ≤ k ≤ n, 0 ≤ c ≤ 2k, on Bn. His results map
at most n + 2n+1 − 1 cycles of different lengths on Bn when n is even and exactly
n + 2n+1 − 1 cycles when n is odd. On the other hand, we give constructions of all
the cycle subgraphs of Bn that are ever possible. Thus our methods map as many as

748 MEGHANAD D. WAGH AND OSMAN GUZIDE

n2n−(n+5)/2 cycles of different lengths on Bn when n is odd and at least n2n−1−3,
when n is even.

We begin by specifying which cycles can never be subgraphs of Bn.
Theorem 3.1 (impossible cycles). Simple cycles (i.e., cycles with distinct nodes)

of the following lengths L are never subgraphs of Bn:
(a) odd L when n is even,
(b) odd L less than n,
(c) L = 6 when n = 5 or n ≥ 7,
(d) L = 10 when n = 7, n = 9, or n ≥ 11.
Proof. (a). From Figure 2.1, if n is even and (m, X) is connected to (m′, X ′),

then exactly one of m and m′ is odd and the other is even. This implies that for even
n, Bn is a bipartite graph, and therefore an odd-length cycle cannot be its subgraph.

(b). Note that because of the connectivity described in Figure 2.1, the first indices
of all the nodes in the cycle may be translated by the same amount to get another
equivalent cycle. Thus when L < n, the solution can be embedded on a butterfly
without using any wrap-around edges. But an unwrapped butterfly is a bipartite
graph and therefore cannot have an odd-length cycle subgraph.

(c) and (d). These cases may be proved by enumerating all possibilities of mapping
the cycle and then illustrating contradictions in each case. First note that it is impos-
sible to have the first indices of any five consecutive nodes in a cycle to be m, m+1, m,
m+1, and m. Because if (m,X) → (m+1, X1) → (m,X2) → (m+1, X3) → (m,X4)
are the five connected nodes, then from Figure 2.1, X1 = αX + cβn−1, c ∈ {0, 1}.
This gives X2 = X + β0. Clearly, the only choices for X3 are αX + βn−1 and αX,
giving X4 equal to X + β0 or X. Thus node (m,X4) is not distinct and the assumed
chain of five nodes does not exist.

We can now demonstrate the impossibility of cycle mapping for L = 6. The case
of L = 10 can be proved similarly. Let, if possible,

(m0, X0) → (m1, X1) → (m2, X2) → (m3, X3) → (m4, X4) → (m5, X5) → (m0, X0)

denote the length 6 cycle which is a subgraph of Bn, n ≥ 7. Clearly, the first index of
all cycle nodes can be increased or decreased by the same amount, or the direction of
the cycle traversal may be reversed without disturbing the connectivity. Therefore,
without loss of generality, one may choose m0 = 0 and m1 = 1. Clearly m5 = 1 as
well, because one cannot go from m1 = 1 to m5 = n − 1 in only 4 hops since n ≥ 7.
Indices m2, m3, and m4 should satisfy two conditions: (1) cyclically successive values
in the sequence (m0,m1,m2,m3,m4,m5) change only by 1; (2) no five cyclically
consecutive values in the sequence are (m,m + 1,m,m + 1,m). It can be verified
that under these conditions, the only possible set of values for m0 through m5 are
(0, 1, 2, 3, 2, 1). Without loss of generality, let X0 = X, X1 = αX, and X5 = αX +
βn−1. Then for ci ∈ {0, 1}, following successive links, one gets X2 = α2X + c1βn−1,
X3 = α3X + c1αβn−1 + c2βn−1, X4 = α2X + c1βn−1 + c2α

−1βn−1 + c3β0, and
X5 = αX + c1α

−1βn−1 + c2α
−2βn−1 + c3α

−1β0 + c4β0. Equating the two values of
X5 and then using βn−1 = αβ0 give

α2 + (c1 + c4)α + (c2 + c3) = 0.

But this is impossible since α cannot satisfy an equation of degree smaller than n.
When L = 6 and n = 5, the only possible set of values of m0 through m5 that need

to be considered are (0, 1, 2, 3, 2, 1), (0, 1, 0, 4, 3, 4), (0, 1, 2, 1, 0, 4), and (0, 4, 3, 2, 3, 4).
Note that if all the indices in any set are increased by a constant amount, then the

MAPPINGS ON WRAP-AROUND BUTTERFLY GRAPHS 749

set transforms into a rotated version of the first set. For example, by adding 2 to
each index of the second set, one gets set (2, 3, 2, 1, 0, 1), which is simply the first set
rotated left twice. Thus by dealing with only the first set, no generality is lost. But
we demonstrated earlier that this first set does not produce a valid cycle of length 6.
Therefore it is impossible to have a length 6 cycle as a subgraph of Bn when n ≥ 7
or n = 5.

To obtain cycle mappings for lengths not specified in Theorem 3.1 we proceed as
follows. Theorem 3.3 gives the mappings when the cycle length L is divisible by n.2

This also includes the Hamiltonian cycle. For other lengths that may be expressed as
L = Kn+ 2t ≤ n2n, for some K > 0 and 0 ≤ t < n, Theorem 3.6 shows that one can
first design a cycle of length Kn and then attach t pairs of new nodes to it. Finally,
an alternate procedure to map cycles of lengths less than 4n (except 6 and 10) is
provided in Theorem 3.7.

In order to prove the existence of cycles in butterfly networks, we need the fol-
lowing lemma.

Lemma 3.2. n � (2n − 1) for any integer n > 1.
Proof. The lemma is obvious when n is an even integer. Further, when n is an

odd prime, according to Fermat’s little theorem, 2n = 2 mod n which shows that
for prime n, n � (2n − 1). If possible, let n be the smallest odd integer such that
n | (2n − 1). Clearly n must be composite. Let p denote the largest odd prime in n,
i.e., n = ptpt11 pt22 · · · , where p, p1, p2, . . . are distinct primes, p > p1, p2, Consider
the group G of integers less than n and relatively prime to n under the operation of
multiplication modulo n. The Euler phi-function φ(n) which represents the number
of elements in G is given by

φ(n) = (p− 1)pt−1(p1 − 1)pt1−1
1 (p2 − 1)pt2−1

2 · · · .(3.1)

As 2 ∈ G, it satisfies

2φ(n) = 1 mod n.(3.2)

Now, if n | (2n − 1), then

2n = 1 mod n.(3.3)

Equations (3.2) and (3.3) imply that

2gcd(φ(n),n) = 1 mod n.(3.4)

Since p is the largest prime in n, the power of p in φ(n) according to (3.1) is t − 1.
Therefore

gcd(φ(n), n) | (n/p).(3.5)

From (3.4) and (3.5) one gets

2(n/p) = 1 mod n,

and consequently,

2(n/p) = 1 mod (n/p).(3.6)

2We use the notation n|L to indicate that L is a multiple of n, and n � L to indicate that L is
not a multiple of n.

750 MEGHANAD D. WAGH AND OSMAN GUZIDE

But this is contradictory to the assumption that n is the smallest integer satisfying
n | (2n − 1). Hence there is no such n.

We can now state the theorems on cycles in butterfly networks.
Theorem 3.3 (cycles of length divisible by n). Suppose L is an arbitrary multiple

of n and L ≤ n2n. Then cycle of length L can be mapped to Bn with dilation 1.
Proof. Let g = gcd(n, 2n − 1). From Lemma 3.2, one gets n/g ≥ 2. We consider

the following two cases based on the magnitude of L.
Case 1. L ≤ n(2n − 1)/g. If L = n(2n − 1)/g, choose any nonzero X ∈ GF (2n).

Otherwise, αL 	= 1 in GF (2n); choose X as

X = βn−1(1 + αL)−1.(3.7)

The required cycle may then be constructed as

(0, X) → (1, αX) → (2, α2X) → · · · → ((L− 1) mod n, αL−1X) → (0, X).(3.8)

From the graph connectivity described earlier, each node on this cycle is connected to
the next. Observe that (3.7) implies that αLX = X + βn−1, so the last edge in (3.8)
also is valid. Further, the first component of the node label repeats with periodicity
of n and the second, with periodicity (2n − 1). Therefore the same label will repeat
only with a periodicity of n(2n− 1)/g. Thus for L ≤ n(2n− 1)/g, all the nodes in the
cycle are distinct.

Case 2. L > n(2n − 1)/g. Partition L as

L = n + L1 + L2 + · · · + Lt, where (2n − 1) ≤ Li ≤ n(2n − 1)/g and n|Li.(3.9)

One way to achieve this partition is to choose

t =

⌈
g(L− n)

n(2n − 1)

⌉
,(3.10)

set Li = n(2n − 1)/g for 1 ≤ i < t, and adjust Lt to make up the total to L. If this
Lt < 2n − 1, then reduce Lt−1 by some amount and increase Lt by the same amount.
Since n/g ≥ 2, Lt−1 ≥ 2(2n − 1). Therefore, one can always find an appropriate
amount to shift from Lt−1 to Lt so as to make both Lt−1, Lt ≥ 2n − 1.

To build the required cycle, first obtain t disjoint cycles Ci of lengths Li as in
Case 1. Cycles of length n(2n − 1)/g may be constructed by starting from arbitrary
nonzero nodes not used in previous cycles and always going from (m, x) to (m+1, αx).
To create cycles of length less than n(2n − 1)/g, compute the second index X of the
starting node according to (3.7). Use a first index such that the node has not appeared
in previous cycles. Note that this is possible because a node with the same second
index repeats in a cycle only with a period of 2n− 1. In each cycle of length less than
or equal to n(2n − 1)/g, such labels occur at most n/g times. Since the number of
cycles, t, is at most g (see (3.10)), unused labels (m,X) will be available to start new
cycles.

Finally, build a cycle C0 of length n as

(0, 0) → (1, 0) → (2, 0) → · · · → (n− 1, 0) → (0, 0).

It is easy to see that the neighboring nodes in C0 are connected and are distinct from
those in the previous t cycles.

These t + 1 cycles can be merged together to form a single cycle as follows.
Since each Li ≥ 2n − 1, each cycle Ci, 1 ≤ i ≤ t, contains consecutive elements

MAPPINGS ON WRAP-AROUND BUTTERFLY GRAPHS 751

(m , 0) (m +1, 0)
i i

β 0 β n-1i i
(m +1,)(m ,)

β 0 β n-1

C0

j

(0, 0) (1, 0) (m , 0) (m +1, 0)
j j

(n-1, 0)

j j
(m ,) (m +1,)

Ci

C

Fig. 3.1. Merging C0 and Ci’s into a single cycle.

(mi, β0) and (mi + 1, βn−1) for some 0 ≤ mi < n. To combine Ci and C0, add
edges (mi, β0) → (mi + 1, 0) and (mi + 1, βn−1) → (mi, 0) and remove edges
(mi, β0) → (mi + 1, βn−1) and (mi, 0) → (mi + 1, 0). Since the mi for each
Ci is different, each Ci can be joined with C0 at a different place. This process of
cycle merging is sketched in Figure 3.1. The resultant cycle thus has the desired
length L.

Note that for most values of n, we have g = 1. In fact, for n ≤ 20, the only values
of n for which g > 1 are 6, 12, and 18. Case 2 of Theorem 3.3 is mostly useful for
these n’s. Using techniques similar to those of Theorem 3.3, it is also possible to map
many disjoint cycles to Bn simultaneously. This is shown in the following corollary.

Corollary 3.4 (multiple cycles). If n|L and L ≤ t(2n − 1) for some t, 0 < t <
(n/g), one can map g�n/(gt)� disjoint cycles of length L to Bn with dilation 1.

Proof. Obtain X from (3.7) corresponding to the given L. Let h represent (2n −
1) mod n. Begin the required cycles from

(hti1 + i2, X), 0 ≤ i1 < �n/(tg)�, 0 ≤ i2 < g,(3.11)

and use the edges (m, x) → (m + 1, αx) repeatedly until each cycle is complete.
From Theorem 3.3, it is clear that length of each cycle is L. We need only to

prove that the nodes used in each cycle are distinct. Assume that, if possible, the ith
node of the cycle beginning at (hti1 + i2, X) is the same as the i′th node of the cycle
beginning at (hti′1 + i′2, X), i.e.,

(hti1 + i2 + i, αiX) = (hti′1 + i′2 + i′, αi′X).(3.12)

We will show that this implies that the two starting nodes are identical, i.e., i1 = i′1 and
i2 = i′2. This being contradictory to the construction described above, we conclude
that the cycles are disjoint.

By comparing the second indices of the nodes in (3.12) we get

i− i′ = q(2n − 1) for some integer q.(3.13)

Note that since 0 ≤ i, i′ < L = t(2n − 1), one has q < t. Comparison of the first
indices in (3.12) yields

ht(i1 − i′1) + (i2 − i′2) + q(2n − 1) ≡ 0 (mod n)

752 MEGHANAD D. WAGH AND OSMAN GUZIDE

or

h(t(i1 − i′1) + q) + (i2 − i′2) ≡ 0 (mod n).(3.14)

Note now from the definition of h that

g = gcd(2n − 1, n) = gcd((2n − 1) mod n, n) = gcd(h, n).(3.15)

By reducing each term in (3.14) modulo g (a factor of n and h), one gets

i2 ≡ i′2 (mod g).

But since each i2, i′2 < g,

i2 = i′2.(3.16)

Combining this with (3.14) and using (3.15) give

i1t + q ≡ i′1t (mod (n/g)).(3.17)

However, because of the bounds on i1, i
′
1, t, and q, one can verify that i1t+ q < (n/g)

as well as i′1t < (n/g). Therefore,

i1t + q = i′1t.

Since q < t, this gives

i1 = i′1.

Corollary 3.4 allows one to efficiently utilize the butterfly architectures for concur-
rent computation of multiple algorithms, each having a cyclic communication struc-
ture. Thus, for example, in the case of B6, one can have 6 disjoint cycles of any length
(divisible by 6) up to 60, or 3 disjoint cycles of any length (divisible by 6) up to 126.

We illustrate the construction by mapping four length 12 cycles to B4. To do
this, we compute X from (3.7) in field GF (24) as (refer to Table 2.1)

X = 1 · (1 + α12)−1 = α4.

The four disjoint cycles are then directly given by

(0, α4) → (1, α5) → (2, α6) → (3, α7) → (0, α8) → (1, α9) → (2, α10)

→ (3, α11) → (0, α12) → (1, α13) → (2, α14) → (3, 1) → (0, α4).

(3, α4) → (0, α5) → (1, α6) → (2, α7) → (3, α8) → (0, α9) → (1, α10)

→ (2, α11) → (3, α12) → (0, α13) → (1, α14) → (2, 1) → (3, α4).

(2, α4) → (3, α5) → (0, α6) → (1, α7) → (2, α8) → (3, α9) → (0, α10)

→ (1, α11) → (2, α12) → (3, α13) → (0, α14) → (1, 1) → (2, α4).

(1, α4) → (2, α5) → (3, α6) → (0, α7) → (1, α8) → (2, α9) → (3, α10)

→ (0, α11) → (1, α12) → (2, α13) → (3, α14) → (0, 1) → (1, α4).

There is also another simple configuration of multiple cycles on Bn when g = 1.
A cycle of length L < n(2n − 1), n|L, is given by

(0, X) → (1, αX) → (2, α2X) → · · · → ((L− 1), αL−1X) → (0, X),

MAPPINGS ON WRAP-AROUND BUTTERFLY GRAPHS 753

(m, x+)β 0

(m+1, x)α

(m, x) (m, x)

βα n-1(m+1, x+)(m+1, x)α

β 0(m, x+)

βα n-1(m+1, x+)

Fig. 3.2. Two cases of adding a pair of outside nodes to a cycle.

where

X = βn−1(1 + αL)−1.

It is easy to verify that all but n of the remaining nodes in Bn are also linked as a
cycle. This complementary cycle of length n2n − n− L is given by

(L, αLX) → (L + 1, αL+1X) → (L + 2, αL+2X) → · · ·

→ (n(2n − 1) − 1, αn(2n−1)−1X) → (L, αLX).

One should also note that the only nodes which are not part of either the cycle
of length L or its complementary cycle form a third cycle C0 described earlier in
Figure 3.1. Thus, when g = 1, the nodes of Bn can be partitioned into three cycles
of lengths n, L, and n2n − L − n with the only condition on L being that it should
be a multiple of n.

When g > 1 and cycle length L ≤ (2n−1)n/g is a multiple of n, one can similarly
show that the nodes of Bn may be partitioned into g cycles of length L, g cycles of
length (2n − 1)n/g − L, and one cycle of length n.

We now present the result about mapping cycles of lengths that are not multiples
of n. Our methodology is rather simple. We first form a cycle of a smaller length
which is a multiple of n. Then we attach appropriately chosen pairs of outside nodes
to this cycle. This process is illustrated in Figure 3.2. As shown in the figure, if
the cycle link shown by the dashed line is removed and three new links are added,
then the outside pair of nodes can be incorporated in the cycle. We will refer to
this process as attaching a node pair at (m,x). Further, the pair of nodes, (m, x)
and (m, x + β0), which plays a crucial role in this process, will be called the pair of
companion nodes. Note that the companion node labels have the same first index,
and their second indices differ by β0.

For this method to succeed, it is necessary to find enough nodes in the cycle with
their companion nodes outside the cycle. Lemma 3.5, to be presented later, will help
us count (or in some cases, bound) the number of companion node pairs. This lemma
will then be used to prove Theorem 3.6, which guarantees that there are, indeed, the
required number of companion node pairs to construct cycles of any length.

For any (m,X) ∈ Zn × GF (2n), X 	= 0, define a chain starting from (m,X) to
mean a set of distinct nodes

{(m,X), (m + 1, αX), (m + 2, α2X), . . . , (m + T − 1, αT−1X)}.

The number of nodes in the chain, T , will be called the length of the chain. The
maximum value of T is (2n − 1)n/g. Butterfly connectivity described in Figure 2.1
shows that the consecutive nodes in a chain are connected.

754 MEGHANAD D. WAGH AND OSMAN GUZIDE

Let (m, αi) be any node of Bn. We refer to the quantity (i −m) mod g as the
partition index of that node. Clearly, all the nodes (mi, α

i) of a chain have the same
partition index. This is because from one node to the next, mi increases by 1 mod n
and the power of α, by 1 mod (2n − 1). The n(2n − 1) nodes of Bn with nonzero
second index may be separated into g partitions based on their partition index. Each
partition has exactly n(2n − 1)/g nodes. Each chain is confined to a single partition.
Chains of length n(2n − 1)/g occupy a complete partition.

In the light of this new terminology, one can see that when g = 1, a cycle formed
as in (3.8) is also a chain. Further, for g 	= 1, cycles C1, C2, . . . , Ct described in
Theorem 3.3 can also be viewed as chains in distinct partitions. Therefore, the number
of companion node pairs that may be used to extend the cycle length can be obtained
by studying companion node pairs in relation to chains. We call a companion node
pair to be within a chain if both its nodes are in the same chain. If the two nodes
are in different chains, we call that companion node pair to be across chains. The
following lemma explores the bounds on these numbers.

Lemma 3.5 (companion node pairs within and across chains).
(a) The number of companion node pairs, Γ(T), confined to a chain of length T

satisfies

Γ(T) ≤
{

�(T − 1)/n� if T ≤ 2n − 1,
�(T − 1)/n� + Γ(T − (2n − 1)) otherwise.

(3.18)

(b) The number of companion node pairs across two disjoint chains of lengths
T1, T2 ≤ 2n − 1 is at most �(T1 + T2)/n� + 1.

(c) The number of companion pairs across the two chains (not necessarily dis-
joint) of lengths T1 = 2n − 1 and T2 = (2n − 1)n/g, is exactly (2n − 1)/g or
[(2n − 1)/g] − 1.

Proof. (a) Let the chain begin at (m,X). Consider a companion pair (m+i, αiX)
and (m + j, αjX), i < j. By distance between the nodes of a companion pair we will
mean the quantity j − i. Because these nodes are companions,

i ≡ j (mod n)(3.19)

and

αiX + αjX = β0.(3.20)

From (3.20) one gets

αj−iX + X = α−iβ0.(3.21)

Consider now another distinct companion node pair (m+i′, αi′X) and (m+j′, αj′X),
i′ < j′. For this pair, one could similarly show that

αj′−i′X + X = α−i′β0.(3.22)

If i, i′ < 2n−1, then (3.21) and (3.22) imply that the distance j′− i′ must be different
from j − i; or else αi would equal αi′ , which is impossible for i, i′ < 2n − 1. Further,
from (3.19), the distances must always take values that are multiples of n. Therefore
there are at most �(T − 1)/n� companion node pairs when T ≤ 2n − 1.

For larger values of T , either the first node of the pair is within the first 2n − 1
nodes of the chain, or the pair is entirely confined to the last T − (2n − 1) elements of

MAPPINGS ON WRAP-AROUND BUTTERFLY GRAPHS 755

the chain. Since the number of companion node pairs of these two kinds are at most
�(T − 1)/n�) and Γ(T − (2n − 1)), respectively, we get the stated bound.

(b) Let the two chains begin at (m,X) and (m′, X ′). Consider a companion pair
(m+ i, αiX) and (m′ + j, αjX ′) across the chains. By arguments similar to part (a),
j − i must be a multiple of n. Since −T1 ≤ j − i ≤ T2, we get the specified bound on
the number of pairs.

(c) Let T1 = 2n − 1 and T2 = (2n − 1)n/g. Denote by g1 and g2, the partition
indices of the nodes in the two chains. Let (m,αi) be a typical node of the first chain,
0 ≤ i ≤ 2n − 2. We want to determine if its companion (m,αj) is in the second
chain. Since the second chain occupies a whole partition, the companion will belong
to it if its partition index is g2. When αi = β0, the companion, (m, 0), is clearly
not a member of the second chain. When αi 	= β0, from the companion relationship
between nodes (m, αi) and (m, αj), one gets αj−i = 1+α−iβ0. Thus for each of the
2n − 2 values of i (excluding the one corresponding to αi = β0), j − i mod (2n − 1)
takes a different value. Consequently it assumes all the values from 0 to 2n−2 except
one. Now, one has

partition index of (m,αj) = j −m mod g

= ((j − i) mod (2n − 1) + g1) mod g.

Since (j − i) mod (2n − 1) takes all values from 0 to 2n − 2 except one, the partition
index of (m,αj) will assume value g2 exactly (2n − 1)/g or [(2n − 1)/g] − 1 times,
showing that there exist exactly these many companion node pairs between the two
chains.

Note that the two chains of part (c) of Lemma 3.5 may overlap, unlike those of
part (b).

We now state Theorem 3.6 relating to mapping cycles of all allowed lengths larger
than 2n to Bn. (Actually, odd lengths between n and 2n are also covered by this
result.) Because of Lemma 3.5, this theorem only needs to prove the existence of
sufficient number of external node pairs to attach to the cycle constructed as per
Theorem 3.3.

Theorem 3.6 (arbitrary length cycles of lengths ≥ n).

(a) For odd n, a cycle of any length L, n ≤ L ≤ n2n, excluding even values of L
less than 2n, can be mapped to Bn with dilation 1.

(b) For even n, a cycle of any even length L, n ≤ L ≤ n2n, can be mapped to Bn

with dilation 1.
Proof. If n|L, the desired cycle is already addressed in Theorem 3.3. For other

L values, first form a cycle of length Kn using Theorem 3.3, where K is the largest
possible number such that Kn < L and L −Kn is even. We will call this cycle the
primary cycle. By adding up to n− 1 pairs of outside nodes to the primary cycle we
get the required cycle of length L. (If K = 2n − 1, one needs to add only up to �n/2�
pairs to get the largest required length.)

We will show that there are sufficient number of nodes in the primary cycle
without their companion nodes. Following the method of Figure 3.2, one can attach a
pair of external nodes at each of these nodes. We first prove the theorem when g = 1
(Case 1). Cases 2, 3, and 4 deal with g > 1, and assume n ≥ 6 since it is the smallest
n for which g 	= 1. The parameter that distinguishes these cases is t, the number of
smaller cycles C1, C2, . . . , Ct that are merged as in Theorem 3.3 to obtain the primary
cycle.

756 MEGHANAD D. WAGH AND OSMAN GUZIDE

Case 1. g = 1. If K = 1, then each node of the primary cycle is without its
companion node, and each new added node pair is distinct. The first part of this is
true because companion node pairs must have a distance of at least n. To see the
second part, compare the pairs added at two consecutive cycle nodes, say, (m,X) and
(m+1, αX). The outside pair added at the first node is (m,X +β0) → (m+1, αX +
βn−1), and the one added at the second node is (m+1, αX+β0) → (m+2, α2X+βn−1).
Clearly all these four new nodes are distinct. In a similar fashion, one can show that
up to n− 1 new distinct pairs of nodes may be added to the cycle.

When K = 2n−1, the primary cycle consists of all the nodes (m,X), 0 ≤ m < n,
X ∈ GF (2n), X 	= 0. In this case, at each node (m,β0) in the cycle, one can attach
an outside pair (m, 0) → (m + 1, 0). Distinctness of the new pairs can be ensured by
using only even values of m. In this manner, up to �n/2� pairs of outside nodes may
be attached to the cycle to achieve the required length.

Unfortunately, when 2 ≤ K ≤ 2n − 2, the second node of a pair may, at times,
turn out to be the same as the first node of another pair. We therefore would not
be able to add both these pairs to the cycle at the same time. However, if we have
2(n− 1) nodes without their companion nodes, we can guarantee adding at least half
of the outside node pairs, i.e., (n−1) pairs. We will now show that the primary cycle,
indeed, contains 2(n−1) nodes without their companion nodes. We will prove this for
Kn ≤ n(2n − 1)/2 only. For larger Kn values, one may consider the complementary
cycle of length n(2n − 1) −Kn and prove similarly the existence of at least 2(n− 1)
nodes therein, which have their companion nodes outside, i.e., in the original cycle of
length Kn.

Using Lemma 3.5(a) we can find the maximum number of companion node pairs
within the cycle of length Kn. Subtracting these nodes from the total number of
nodes in the cycle, we find that at least

Kn− 2Γ(Kn)(3.23)

cycle nodes have companion nodes outside the cycle. For Kn ≤ 2n−1, use of Lemma
3.5(a) in (3.23) gives

number of nodes with external companions ≥ Kn− 2(K − 1)

= (2n− 2) + (n− 2)(K − 2)

> 2n− 2.

This proves that there are sufficient number of companion node pairs in the primary
cycle where new node pairs may be attached.

To prove the result for Kn > 2n− 1 by mathematical induction, assume its truth
for length Kn− (2n − 1); i.e., assume that

[Kn− (2n − 1)] − 2Γ(Kn− (2n − 1)) ≥ 2n− 2.

Recall that we need only to prove the result for Kn ≤ n(2n − 1)/2. One now gets for
the primary cycle of length Kn,

no. of nodes with external companions ≥ Kn− 2[�(Kn− 1)/n� + Γ(Kn− (2n − 1))]

≥ (2n− 2) + (2n − 1) − 2(K − 1)

≥ (2n− 2) + 2

> 2n− 2.

MAPPINGS ON WRAP-AROUND BUTTERFLY GRAPHS 757

Case 2. g > 1 and t < g. If the primary cycle length Kn ≤ 2n − 1, the situation
is similar to that of Case 1. For Kn > 2n − 1, we proceed as follows. Since t < g,
at least one partition representing a chain of length n(2n − 1)/g is not used in the
primary cycle. Consider this chain and a chain of length 2n−1 in C1 of nodes used in
the primary cycle. From Lemma 3.5(c), there are at least [(2n − 1)/g]− 1 companion
node pairs across them. But note that for n ≥ 6, 2n − 1 > n2. Further, g ≤ n/2.
Therefore [(2n−1)/g]−1 > 2n−2 showing that at least 2n−2 companion node pairs
exist between the primary cycle and the remaining nodes.

Case 3. g > 1, t = g and cycles C1, C2, . . . , Ct−1 have lengths n(2n − 1)/g. If the
number of nodes left out of the primary cycle is less than or equal to 2n− 1, then one
can prove this case in a manner similar to Case 1 except that the focus will now be
on the nodes that are not in the cycle rather than those that are part of the cycle.
But the final consequence is the same: there are enough companion pairs between
the nodes in the cycle and those outside. If the number of nodes outside the primary
cycle is more than 2n − 1, then a chain of length 2n − 1 of these outside elements
will have at least [(2n − 1)/g]− 1 companion nodes within C1. (Lemma 3.5(c)). This
number is greater than 2n− 2 (for n ≥ 6) showing that there are enough companion
node pairs between the primary cycle and the outside nodes.

Case 4. g > 1, t = g and cycles C1, C2, . . . , Ct−2 have lengths n(2n − 1)/g. First
note that because g is odd, when g 	= 1, g ≥ 3. Thus, in this case, cycle C1 of
n(2n − 1)/g nodes is part of the primary cycle. Further, from the construction in
Theorem 3.3, for this case to exist, the number of unused nodes in partitions of Ct−1

and Ct—call them R1 and R2, respectively—must satisfy

R1 + R2 > (2n − 1)(n/g − 1).(3.24)

Without loss of generality, let R1 ≤ R2. Clearly, both these sets of unused elements
form chains. If either of these chains has at least 2n − 1 elements, then at least
(2n − 1)/g of them will have companion nodes in C1. Thus as in Case 3, there are
enough companion node pairs between the nodes of the companion cycle and those
outside. On the other hand, if both R1, R2 < 2n−1, then from Lemma 3.5(a) and (b),
one can see that there are at most �(R1−1)/n� and �(R2−1)/n� companion node pairs
within these chains and �(R1+R2)/n�+1 across the two chains. Since there are a total
of R1 +R2 nodes in these two chains, the rest of their nodes must have companions in
the primary cycle. Since R1 and R2 are multiples of n, �(R1−1)/n� = (R1/n)−1 and
�(R2−1)/n� = (R2/n)−1. Using (3.24) one thus gets that the number of companion
node pairs between the primary cycle and those outside to be at least

(R1 + R2) − 2[R1/n− 1 + R2/n− 1 + (R1 + R2)/n + 1] = (R1 + R2)(1 − 4/n) + 2

> (2n − 1)(n/g − 1)(1 − 4/n) + 2

≥ (2n − 1)/3 + 2

> (2n− 2).(3.25)

The simplification in the third line of (3.25) is based on the fact that (n/g) ≥ 2 and
(1 − 4/n) ≥ 1/3 for n ≥ 6, while last line of (3.25) is true for any n ≥ 6.

Theorem 3.6 proves that there are sufficient number of nodes in the primary cycle
where one can attach outside node pairs to obtain any desired length cycle as long
as this length can be expressed as Kn + 2t. Construction of such a cycle is rather
straightforward; once the primary cycle is obtained as per Theorem 3.3, one only
needs to identify the required number of cycle nodes whose companions are outside

758 MEGHANAD D. WAGH AND OSMAN GUZIDE

6

12

7 84 5

13 910

2526

11

(4, α)(2, α) (3, α)

(0, α)(1, α)(2, α)(3, α)(4, α)

(0, α) (1, α)

(1, α) (0, α)

Fig. 3.3. A length 12 cycle mapped to Z5 ×GF (25) with dilation 1.

7 8

34

6 9

28 292726 30

5

18

23 24

19

21

2

20

(2, α)

(3, α)

(4, α)(0, α)

(2, α)

(2, α) (0, 1)(1, α)(4, α) (3, α)

(1, α)

(1, α) (2, α)

(3, α)

(3, α)

(4, α)

(4, α)(0, α)

(1, α) (3, α)(2, α)

Fig. 3.4. A length 21 cycle mapped to Z5 ×GF (25) with dilation 1.

(0, 11101) → (1, 11100) → (2, 11100) → (3, 00011) →
(4, 11000) → (0, 01000) → (1, 01000) → (0, 01001) →
(1, 01001) → (2, 01001) → (3, 01101) → (4, 01101) → (0, 11101)

(0, 00100) → (1, 00101) → (2, 00111) → (3, 00111) → (4, 01111) →
(0, 11111) → (1, 11110) → (2, 11110) → (3, 11110) → (4, 11110) →
(0, 01110) → (1, 01110) → (2, 01110) → (1, 01100) → (2, 01100) →
(3, 01000) → (2, 01000) → (3, 01100) → (4, 01100) → (3, 00100) →
(4, 00100) → (0, 00100)

Fig. 3.5. Cycles of length 12 and 21 in B5.

the cycle. Finding a small number of these nodes is a relatively simple process. New
node pairs may be attached at these nodes as in Figure 3.2 to get the desired cycle.

We illustrate this process by constructing length 12 and 21 cycles in B5. The final
construction is shown in Figures 3.3 and 3.4. To construct the cycle of length 12, one
first uses Theorem 3.3 to create a primary cycle of length 10 (beginning at (0, α4)).
Since (0, α9) belongs to the cycle, but not its companion (0, α9 + β0) = (0, α25), we
add the indicated pair to get length 12 cycle. (Note that companions of none of the
nodes in this length 10 cycle are present in it. Thus one could have added a new node
pair at any of these nodes.) Similarly, a length 21 cycle is obtained by first creating
a primary cycle of length 15 (beginning at (0, α26)) and then adding pairs of new
nodes at (1, α6), (2, α7), and (3, α8). These cycles translated to binary notation
using Table 2.3 are shown in Figure 3.5.

MAPPINGS ON WRAP-AROUND BUTTERFLY GRAPHS 759

(0, 0) → (1, 0) · · · → (K, 0) →

(K − 1, β0) → (K − 2, β0(α
−1 + 1)) · · · → (0, β0

∑K−1
i=0 α−i) →

(1, β0

∑K−2
i=−1 α

−i) → (2, β0

∑K−3
i=−2 α

−i) · · · → (K,β0

∑−1
i=−K α−i) →

(K − 1, β0

∑−1
i=−(K−1) α

−i)→ (K − 2, β0

∑−1
i=−(K−2) α

−i) · · · → (1, β0

∑−1
i=−1 α

−i) → (0, 0)

Fig. 3.6. Length 4K cycle mapping to Bn (K < n).

Unfortunately, Theorem 3.6 does not cover all the cycles that can possibly be
mapped to Bn. Particularly, when n is odd, Theorem 3.6 does not provide construc-
tions of cycles of even lengths less than 2n and when n is even, it excludes even lengths
less than n. We now illustrate a technique to cover these cases. Using this technique,
one can easily map cycles of even lengths less than 4n (except possibly lengths 6
and 10) to Bn with dilation 1. This implies that all the cycles that are not proved to
be impossible in Theorem 3.1 can indeed be mapped to Bn. This final result about
cycles is stated in Theorem 3.7.

Theorem 3.7 (comprehensive cycle mapping). One can map to Bn all cycles,
except those identified in Theorem 3.1, with dilation 1.

Proof. Because of Theorem 3.6, the only cycles we need to map to Bn are those
with even lengths less than 2n. We can use the following construction for even lengths
less than 4n.

If L = 4K, K < n, construct the cycle as follows.
Start from node (0, 0). Let (m,X) denote the current node on the cycle. Use K

times link (m,X) → (m+1, αX). Then use K times link (m,X) → (m−1, α−1X+β0).
Follow it K times with link (m,X) → (m + 1, αX). Finally, K times, travel along
(m,X) → (m − 1, α−1X + β0). This will bring you back to the starting node 0, 0).
Figure 3.6 shows this length 4K cycle.

One can see from the connectivity of Bn, shown in Figure 2.1, that the consecutive
nodes in the cycle above are indeed connected. We need only to show that they are dis-
tinct. The only two nodes in the cycle with the first index of the label 0 are (0, 0) and

(0, β0

∑K−1
i=0 α−i). Clearly these are not the same since K < n. For the same reason,

the two nodes with the first index of label being K, (K, 0) and (K,β0

∑−1
i=−K α−i) are

distinct. The four cycle nodes with the same first index m, 0 < m < K, are (m, 0),

(m,β0

∑K−1−m
i=0 α−i), (m,β0

∑K−1−m
i=−m α−i), and (m,β0

∑−1
i=−m α−i). One can see

that the second indices of these four nodes are distinct because K < n and α, being a
primitive element of GF (2n), cannot satisfy any equation of degree less than n. Thus
one can map all cycles of length 4K, K < n, to Bn with dilation 1.

If L = 4K + 2 and K > 2, one can add a pair (2, βn−1) → (1, β0) of new nodes
between the cycle nodes (1, 0) → (2, 0) as in Figure 3.2. Thus, replacing the first three
elements in the cycle of Figure 3.6 by the five elements: (0, 0) → (1, 0) → (2, βn−1) →
(1, β0) → (2, 0), one gets a new cycle of length 4K+2. It is easy to verify that the new
elements were indeed absent from the original cycle when K > 2. Thus one can map
all cycles of length 4K + 2, 2 < K < n, to Bn with dilation 1. The only even-length
cycles less than 4n excluded by this procedure have lengths 6 and 10.

The construction of Theorem 3.7 may be illustrated by mapping a cycle of length 14
to B5. Since 14 = 12 + 2, we first construct a cycle of length 12 and then add a new
pair to it. The final cycle and its binary translation are shown in Figures 3.7 and 3.8.

760 MEGHANAD D. WAGH AND OSMAN GUZIDE

25 2426
23

19

19

7

20

9

20

(3, α)

(2, α)

(1, α)(2, α)

(1, α)(2, α)

(1, α) (2, α)

(0, α)

(2, 0)(1, 0) (3, 0)(0, 0)

(1, α)

Fig. 3.7. A length 14 cycle mapped to Z5 ×GF (25).

(0, 00000) → (1, 00000) → (2, 00010) → (1, 00010) → (2, 00000) →
(3, 00000) → (2, 00100) → (1, 00110) → (0, 00110) → (1, 00111) →
(2, 00101) → (3, 00001) → (2, 00001) → (1, 00001) → (0, 00000)

Fig. 3.8. A length 14 cycle in B5.

4. Mapping binary trees on the butterfly. This section presents two results
about mapping trees to Bn. We first show that it is possible to map multiple nonover-
lapping balanced binary trees with dilation 1 to this network (Theorem 4.1). Next,
by combining these trees, we show that one can map the largest possible binary tree
to Bn with a slightly higher dilation (Theorem 4.3). With the new model for Bn,
both these tasks are relatively simple.

In the discussion that follows, we restrict ourselves to balanced binary trees. By
level of a node in the tree we will mean its distance from the root. An m-level tree
has nodes in levels 0, 1, . . . ,m − 1. Each parent has exactly two children. Thus the
m-level tree has 2m−1 leaves and 2m − 1 total nodes. All the logarithms are assumed
to be base 2.

Theorem 4.1 (multiple trees). One can map n nonoverlapping n-level binary
trees to Bn with dilation 1.

Proof. Choose node (i, βn−1) to be the root of the ith tree, 0 ≤ i < n. Construct
each tree by the simple rule that the children of any node (j, x) are nodes (j+1, αx)
and (j + 1, αx + βn−1).

Clearly, both the children in each tree node are connected to the parent by a
direct edge (see Figure 2.1). We need only to prove that all the nodes in these trees
are distinct. Note that, because of the way the trees are constructed, the nodes in
level j of ith tree have labels ((i + j)mod n, βn−1f(α)) where f(α) are distinct
binary polynomials of α of degree j. Clearly, nodes on different levels of a tree are
distinct since their first indices are unequal. Similarly, all nodes on the same level
of a tree are also distinct; otherwise, their second indices, βn−1f1(α) and βn−1f2(α)
will be equal, implying that f1(α) − f2(α), a polynomial in α of degree less than n,
equals zero. This is impossible since α is a primitive element of GF (2n). Finally,
suppose a node ((i1 + j1)mod n, βn−1f1(α)) of tree i1 is identical to the node ((i2 +
j2)mod n, βn−1f2(α)) of a different tree i2. Since the first indices of the two nodes
are the same, j1 	= j2. Thus, equality of the second index implies two polynomials

MAPPINGS ON WRAP-AROUND BUTTERFLY GRAPHS 761

(2,
12

α)

(1, α)

11
(2, α)

13
(2, α)

5
(1, α)

2

(0, α)

8
(1, α)

10
(1, α)

6

(1, α)
4

(2,
3

2
(2, α)

8
(2, α)

α) (2, α)
7

(2, α)
9

(2, α)
14

(2, α)

4

(0, α)
8

(0, α)
10

(0, α)
5

(0, α)
2

(3, 1)

(0, 1)

(1, α)

(3, α)

(2, 1)

(1, 1)

(3, α)
4

(2, α)

(0, α)

α)(1, α)
9

(1, α)
14

(1,
3

α) (1, α)
7

(1, α)
11

(1,
1213

(1, α)
6

(1, α)

10

α) (0, α)
14

(0,
3

(0, α)
6

(0, α)
13

(0,α)
9

(0, α)
7

(0, α)(3, α)
6

(3, α)
7

(3, α)
9

(3, α)
13

(2, α)
5

(2, α)

α)(3, α)
11

(3,
1214

5
(3, α)

10
(3, α)

11
(0,

12
α)

(3,α)

(3,
3

α) (3, α)

4

8
α)

2

(2, α)

Fig. 4.1. Four nonoverlapping 4-level trees mapped to B4 with dilation 1.

f1(α) and f2(α) of unequal degrees (and each less than n) are equal. This is again
impossible in GF (2n). Therefore all nodes in all trees are distinct.

Bhatt et al. [2] have previously proved the same result stated in Theorem 4.1.
However, our construction is based on the butterfly modeled as Zn ×GF (2n) and is
necessary to obtain the mapping of the largest tree as given in Theorem 4.3.

Note that the mapping given in Theorem 4.1 is optimum in the sense that it
describes the maximum number of nonoverlapping n-level binary trees that may be
mapped to Bn. Clearly the unused n nodes, {(i, 0) | 0 ≤ i < n}, do not support
another n-level tree. Figure 4.1 shows mapping of four disjoint trees to B4.

We now focus on mapping the single largest binary tree to Bn. Such a tree would
have n + �log n� levels and would use 2�logn�2n − 1 nodes of Bn. For n values which
are powers of 2, such a tree would span all but one node of Bn. For other values of
n, this is the largest tree that may be mapped to Bn, because increasing the number
of tree levels even by 1 will imply more nodes than the number of nodes of Bn.

We create this tree by first designing the top �log n� levels using nodes unused in
Theorem 4.1. Then two n-level trees generated as in Theorem 4.1 are attached at each
leaf of this tree. Since a �log n�-level tree has at most n/2 leaves, the n nonoverlapping
trees obtained in Theorem 4.1 suffice. The top tree, however, needs to be designed
carefully since its leaves should be able to connect (with low dilation) to the roots of
the lower n-level trees which are very specific. Recall that the only nodes unused in
Theorem 4.1 are (i, 0), 0 ≤ i < n. Lemma 4.2 provides the required mapping of the
�log n�-level tree to these nodes.

Lemma 4.2. One can map a �log n�-level binary tree to nodes (i, 0), 0 ≤ i < n,
of Bn such that all its leaves are mapped to (i, 0) with odd i. Further, the dilation of
this mapping is 2�log n�/4.

Proof. Let n′ denote �log n�. Number the tree levels 0 through �log n� − 1 with
the root at level 0. Map the tree root to node (2n

′−1, 0). Map the children of a parent
(i, 0) at level l of the tree to nodes (i− 2n

′−2−l, 0) and (i + 2n
′−2−l, 0).

One can verify that this procedure maps 2l tree vertices at level l to nodes
(2n

′−1−lp, 0), with odd p, 1 ≤ p ≤ 2l+1 − 1. Thus all tree nodes are mapped to
distinct nodes of Bn. The leaves of this tree are mapped to (p, 0) as specified.

762 MEGHANAD D. WAGH AND OSMAN GUZIDE

(6) (7) (8)*

1

(4)

(1, 0) (3, 0) (5, 0) (7, 0)

(3)

1

1

2

21

1

21122

(6, 0)

(5)(2)(1)

(2, 0)

1

(4, 0)

2

Fig. 4.2. The top of the tree in Bn, 8 ≤ n < 16 (with dilation marked on each edge). The last
row contains the roots of n-level trees. (For brevity, a root (i, βn−1) is shown only as (i). Further,
(8)∗ denotes root (0, βn−1) when n = 8.)

Further, the paths from the image of a parent at level l to images of its children
are of length 2n

′−2−l. The longest of these paths gives the specified dilation of the
mapping.

The mapping of Lemma 4.2 exhibits a congestion of (n′ − 1); i.e., (n′ − 1) paths
corresponding to tree edges pass through a single edge Bn. To see this, first note that
all the paths in Bn corresponding to edges of any single tree level are disjoint. Thus
the congestion cannot exceed (n′ − 1). One can also show that the Bn edge between
nodes (�2n′

/3�, 0) and (�2n′
/3�+ 1, 0) carries paths corresponding to a tree edge at

every level. Thus this Bn edge has a congestion of (n′ − 1).
We now combine Theorem 4.1 and Lemma 4.2 to derive the central result of this

section.
Theorem 4.3 (tree mapping). One can map a binary tree of n + �log n� levels

to Bn with dilation 2 if n < 16, 3 if 16 ≤ n < 32, 4 if 32 ≤ n < 64, and 2�log n�/4 if
n ≥ 64.

Proof. We map the top �log n� levels of the tree as in Lemma 4.2. Note that the
leaves of this �log n�-level tree are mapped to (i, 0) for odd i. At each leaf (i, 0) we
attach two n-level trees generated according to Theorem 4.1 with roots at (i, βn−1)
and (i + 1, βn−1). Obviously all the nodes in the resultant (n + �log n�)-level tree
are distinct.

Further, the roots of the n-level tree are at distances 2 and 1 from the corre-
sponding leaves of the �log n�-level tree. The dilation within the lower n-level trees
is 1. Therefore the overall dilation of the tree is dictated by the dilation within the
top �log n� levels which, according to Lemma 4.2, is 2�log n�/4.

As an example, the �log n�-level tree for 8 ≤ n < 16 is shown in Figure 4.2. The
top three levels of this tree are generated from Lemma 4.2, and the fourth level shows
the roots of n-level trees. When 16 ≤ n < 64, one can use the top trees shown in
Figures 4.3 and 4.4 rather than the ones obtained from Lemma 4.2. These trees are
obtained by shuffling certain nodes of the tree obtained from Lemma 4.2 to reduce the
dilation. Since in the new �log n�-level trees the leaves are not necessarily at (i, 0)
with odd i’s, the choice of the n-level trees attached to each leaf is also different. The
last rows of these figures specify the roots of the n-level trees to be attached to each
leaf.

The tree mapping strategy presented here is interesting because of its extreme
simplicity. The bottom n levels of the tree using 2�log n�(2n−1) nodes are mapped in
a very systematic manner. The top �log n� levels of the tree using fewer than n nodes
may also be algorithmically created using Lemma 4.2. The overall dilation is decided

MAPPINGS ON WRAP-AROUND BUTTERFLY GRAPHS 763

1212

11

(4)(3)(2)(1)

(3, 0)

(2, 0)

(1, 0)

(5, 0)

3 1

12 23

21

31

(12)(11)(10)(9)

(9, 0)

(10, 0)

(12, 0)

(11, 0)

33

(8, 0)

1

2

(8)(7)(6)(5)

(7, 0)

(6, 0)

(4, 0)

1

212

11

(16)*(15)(13) (14)

(15, 0)(13, 0)

(14, 0)

1 2 12

Fig. 4.3. A better top for a tree in Bn, 16 ≤ n < 32 (with dilation marked on each edge). The
last row contains the roots of the n-level trees. (For brevity, a root (i, βn−1) is shown only as (i).
Further, (16)∗ denotes root (0, βn−1) when n = 16.)

1

(9) (10)

22

(5)

2 3

(3) (4)

3 2 3

(15)

2 1

(13)(11) (12)

2 3

(14)

3

(9, 0) (11, 0) (15, 0) (17, 0) (21, 0)(7, 0)

1

(1, 0) (2, 0) (3, 0) (5, 0) (23, 0)

1

(6) (7) (8)

22

(25, 0) (27, 0) (29, 0)

(1) (2) (16)

1

331

2

(30)(29)

3 2

(31)

3

(28, 0)

2 4

(32)*

1

(26, 0)

(30, 0) (31, 0)

2 31

3

(20)(18) (21) (22)

4

(19)

2 1

(17)

4 3 3 4 3

(27) (28)

4

(26)(23) (24)

4 3

(25)

1

1 1 3

(4, 0)

3

(13, 0) (19, 0) (24, 0)

4 2

(6, 0)

3 3 1 3 12

(10, 0) (14, 0) (18, 0) (22, 0)

3

(8, 0)

(12, 0)
(20, 0)

414

4

(16, 0)

4

Fig. 4.4. A better top for a tree in Bn, 32 ≤ n < 64 (with dilation marked on each edge). The
last row contains the roots of the n-level trees. (For brevity, a root (i, βn−1) is shown only as (i).
Further, (32)∗ denotes root (0, βn−1) when n = 32.)

by the dilation within these top levels. The dilation may be reduced by modifying the
top tree. Fortunately, for every set of n values between two consecutive powers of 2,
one needs to design a single top tree. We have altered the top tree to limit dilation
to 3 when 16 ≤ n < 32 and to 4 when 16 ≤ n < 32. Such alterations may sometimes
increase the congestion. The congestions of the top trees of Figures 4.2 and 4.3 are 2
and 3, respectively. These values are identical to the congestions of the same size top
trees built using Lemma 4.2. But for the range 16 ≤ n < 32, the congestion of the
top tree in Figure 4.4 is 6 as against the congestion of 4 for the top tree built using
Lemma 4.2. Note that this increase in congestion yields a decrease of dilation from 8
to 4.

5. Conclusion. This paper has given a new model for the wrap-around butterfly
networks and has demonstrated its utility to obtain mappings of cycles and trees.

Our results about cycle mappings are presented in Table 5.1. We have identified
all cycles that could be subgraphs of butterfly networks and have provided their

764 MEGHANAD D. WAGH AND OSMAN GUZIDE

Table 5.1

The existence of cycles as subgraphs of Bn.

Cycle length L 3 ≤ L < n n ≤ L < 2n 2n ≤ L ≤ n2n

n odd L even Theorem 3.7* Theorem 3.7 * Theorem 3.6
n odd L odd Impossible Theorem 3.6 Theorem 3.6
n even L even Theorem 3.7* Theorem 3.6 Theorem 3.6
n even L odd Impossible Impossible Impossible

* When n = 5 or n ≥ 7, cycle of length 6 is not possible.
When n = 7, 9 or n ≥ 11, cycle of length 10 is not possible.

Table 5.2

Mapping a tree of 2n+�log n� − 1 nodes to a butterfly architecture.

Reference Architecture size Dilation Conditions

Bhatt et al. [2] (n + 3)2n+3 4
Gupta et al. [6] (n + 1)2n+1 4 even n
Gupta et al. [6] (n + 2)2n+2 2 even n

This paper n2n 2 n < 16
This paper n2n 3 16 ≤ n < 32
This paper n2n 4 32 ≤ n < 64

This paper n2n 2�log n�/4

mappings. We give two procedures for mapping cycles to Bn: one that is applicable
to cycles of even lengths less than 4n and the other for larger lengths. In the first
case, the cycle is established directly. In the second, one sets up a cycle of length
divisible by n and then augments it with a small number of node pairs to make up
the required length. Earlier results [11] about cycle mappings on Bn had identified
O(2n) cycle subgraphs each with a different length, whereas we provide O(n2n) cycle
subgraphs of different lengths.

Our results about tree mappings are listed in Table 5.2. Using our methods
one can map the largest possible balanced binary tree to Bn, n < 16, with a small
dilation of 2. One may note that B15, the biggest butterfly network to which this
result applies, has almost half a million nodes. We also give maximal tree mappings
in larger butterflies with bounded dilation. For 16 ≤ n < 32, the dilation is 3, and for
32 ≤ n < 64, it is 4. Thus even though the tree mapping results presented here are
asymptotically poor as compared to the earlier work [2, 6] (dilation and congestion
O(n) as against O(1)), for practical network sizes of up to n = 64, they have low
dilation and congestion. Further, unlike the earlier mappings, ours does not require
a larger size butterfly to ensure the one-to-one (load = 1) mapping. Thus to map the
same tree, we use a butterfly with at most half the nodes as before. Our trees have
unit dilation in their lower n levels. A larger dilation may be present only within the
top �log n� + 1 levels that employ fewer than n nodes.

The simplicity of the mappings obtained here is essentially due to our identifi-
cation of the butterfly network with the direct product of a group and a finite field.
We have shown that in the context of this model, the network connectivity may be
expressed as an algebraic relationship between the node labels. One may then em-
ploy the powerful tools of abstract algebra to explore the structural properties of the
network. Even though we have limited our investigation here to certain mappings, we

MAPPINGS ON WRAP-AROUND BUTTERFLY GRAPHS 765

believe that these methods hold a lot of promise for other aspects of these networks
as well.

Acknowledgment. The authors wish to thank anonymous referees for com-
ments and suggestions that improved the paper tremendously.

REFERENCES

[1] E. R. Berlekamp, Algebraic Coding Theory, McGraw-Hill, New York, 1968.
[2] S. N. Bhatt, F. R. K. Chung, J. Hong, F. T. Leighton, B. Obrenic, A. L. Rosenberg,

and E. J. Schwabe, Optimal emulation by butterfly-like networks, J. ACM, 43 (1996), pp.
293–330.

[3] G. Chen and C. M. Lau, Comments on “A new family of Cayley graph interconnection net-
works of constant degree four”, IEEE Trans. Parallel Distrib. Syst., 8 (1997), pp. 1299–1300.

[4] R. Feldmann and W. Unger, The cube-connected cycle is a subgraph of the butterfly network,
Parallel Process. Lett., 2 (1992), pp. 13–19.

[5] C. T. Gray, W. Liu, T. Hughes, and R. Cavin, The design of a high-performance scalable
architecture for image processing applications, in Proceedings of the 1990 International
Conference on Application Specific Array Processors, IEEE, Piscataway, NJ, 1991, pp. 722–
733.

[6] A. Gupta and S. E. Hambrusch, Embedding complete binary trees into butterfly networks,
IEEE Trans. Comput., 40 (1991), pp. 853–863.

[7] F. T. Leighton, Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hyper-
cubes, Morgan Kaufman, San Mateo, CA, 1992.

[8] W. Lin, T. Sheu, C. R. Das, T. Feng, and C. Wu, Fast data selection and broadcast on
the butterfly network, in Proceedings of the International Workshop on Future Trends of
Distributed Computing Systems in the 1990s, 1998, pp. 65–72.

[9] A. Ranade, Optimal speedup for backtrack search on a butterfly network, Math. Systems The-
ory, 27 (1994), pp. 85–102.

[10] J. H. Reif and S. Sen, Randomized algorithms for binary search and load balancing on
fixed connection networks with geometric applications, SIAM J. Comput., 23 (1994), pp.
633–651.

[11] A. L. Rosenberg, Cycles in Networks, Technical report 91–20, University of Massachusetts,
Amherst, 1993.

[12] E. J. Schwabe, Constant-slowdown simulations of normal hypercube algorithms on the butter-
fly network, Inform. Process. Lett., 45 (1993), pp. 295–301.

[13] P. Vadapalli and K. Srimani, A new family of Cayley graph interconnection networks of
constant degree four, IEEE Trans. Parallel Distrib. Syst., 17 (1996), pp. 26–32.

