
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/authorsrights

http://www.elsevier.com/authorsrights

Author's personal copy

Information and Computation 227 (2013) 84–101

Contents lists available at SciVerse ScienceDirect

Information and Computation

www.elsevier.com/locate/yinco

Decomposition of threshold functions into bounded fan-in
threshold functions ✩

Viswanath Annampedu a, Meghanad D. Wagh b,∗
a Serdes Architecture, LSI Corp., Allentown, PA 18109, United States
b Department of Electrical and Computer Engineering, Lehigh University, Bethelehem, PA 18015, United States

a r t i c l e i n f o a b s t r a c t

Article history:
Received 31 October 2007
Revised 3 March 2011
Available online 10 April 2013

Keywords:
Threshold functions
Decomposition
Bounded fan-in
Majority logic
Comparison function

This paper obtains explicit decomposition of threshold functions into bounded fan-in
threshold functions. A small fan-in is important to satisfy technology constraints for large
scale integration. By employing the concept of error in the threshold function, we are able
to decompose functions in L̂T1 into a network of size O (nc/M2) and depth O (log2 n/ log M)

where n is the number of inputs of the function and M is the fan-in bound. The proposed
construction enables one to trade-off the size and depth of the decomposition with the
fan-in bound. Combined with the work on small weight threshold functions, this implies
polynomial size, log2 depth bounded fan-in decompositions for arbitrary threshold func-
tions in LTd . These results compare favorably with the classical decomposition which has a
size O (2n−M) and depth O (n − M).
We also show that the decomposition size and depth can be significantly reduced by ex-
ploiting the relationships between the input weights. As examples of this strategy, we
demonstrate an O (n2/M) size decomposition of the majority function and, O (n/M) size
decompositions of an error tolerant pattern matching function and the comparison func-
tion. In all these examples, except for the first level, all other levels use only majority
functions.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

1.1. Background

A Boolean function {0,1}n → {0,1} : f (x1, x2, . . . , xn) is called threshold if there exist real numbers w1, w2, . . . , wn and T
such that

f (x1, x2, . . . , xn) =
{

1 if
∑n

i=1 wi xi � T ,

0 otherwise.
(1)

The constants w1, w2, . . . , wn are called the weights of the inputs and T is called the threshold. We denote a threshold
function as TH(x1, x2, . . . , xn; w1, w2, . . . , wn; T). Muroga has shown that any threshold function can be realized using
integer weights and threshold [1]. Therefore our analysis in this paper will only use integer values for these quantities.
A threshold function of n variables with unit weights and a threshold equal to �n/2� + 1 is known as a majority function.
A threshold function with unit weights (but any threshold) is called a generalized majority function. Reader is cautioned that

✩ This work was supported in part by NSF under Grant ECCS-0925890.

* Corresponding author.
E-mail addresses: Vish.Annampedu@lsi.com (V. Annampedu), mdw0@lehigh.edu (M.D. Wagh).

0890-5401/$ – see front matter © 2013 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.ic.2013.04.002

Author's personal copy

V. Annampedu, M.D. Wagh / Information and Computation 227 (2013) 84–101 85

in some literature a threshold function with weights ±1 is referred to as a generalized majority function and sometimes,
even as a majority function. All the results of this paper use the stricter definitions presented here.

As is common with literature in threshold functions, this paper uses equations that mix arithmetic and Boolean variables
(see (1)). The confusion between arithmetic multiplication/addition and identical Boolean AND/OR symbols can generally be
resolved from the context. In particular, when one or more of the operands in an equation is a real number (e.g., the weights
or the threshold), then all operations in that equation are considered arithmetic while if all the operands are Boolean, then
all operations are considered Boolean.

Realizations of threshold functions are called threshold gates. A variety of physical effects can be employed to create a
weighed sum of the inputs and then compare it with a preset threshold. These include voltage or current scaling and sum-
mation using operational amplifiers [1], charge deposition and summation using a parallel capacitance network [2] and more
recently, direct implementation of threshold logic using nanoelectronic devices such as resonant tunneling diodes/transistors
(RTD/RTT) [3], single electron transistors (SET) [4] and quantum-dot cellular automata (QCA) [5].

Threshold functions are often classified based on their implementations as follows. The class of Boolean functions that
can be implemented by single threshold gates with unbounded fan-in1 is known as LT1. In general, Boolean functions
computable by depth d networks of unbounded fan-in threshold gates belong to class LTd . The size (number of threshold
gates) of an LTd implementation is restricted to a polynomial function of the number of inputs. Members of the class
LTd which have weights of polynomial order form a subclass denoted by L̂Td . Clearly functions in L̂Td are more realistic
from the implementation standpoint. The class of Boolean functions which can be realized by constant depth, polynomial
size networks of threshold functions with ±1 weights is denoted by TC0. Since any function in L̂T1 can be converted to
a threshold function with ±1 weights by duplicating inputs, it follows that L̂Td ⊆ TC0 for any constant d [6]. The only
class that uses threshold gates with bounded2 fan-in is the class NCk . This class consists of Boolean functions that can
be implemented as a polynomial size, depth O ((log n)k) network of bounded fan-in AND, OR and NOT gates. It is known
that TC0 ⊆ NC1 [7,8]. Thus any function in L̂T1 can be implemented using a log n depth network of three specific types of
bounded fan-in threshold gates; AND, OR and NOT. However, it is long known that threshold functions are very powerful
and a single threshold gate can often replace a complex network of AND, OR and NOT gates. To exploit the power of
threshold functions, this paper provides explicit decomposition of any member of LTd into a network of arbitrary threshold
gates with bounded fan-in.

A large number of arithmetic circuits including adders, multipliers, dividers, iterated adders and multipliers, powering
circuits and signed digit operations have been realized using networks of threshold gates [9–11]. In addition, many applica-
tions such as counters, comparators and error tolerant pattern matching have been implemented through single threshold
functions [12–14]. Neural networks can also be modeled using threshold gates. Further, recent developments in nanotech-
nology suggest that threshold functions may be the foundation for realizing Boolean functions of the future [3,15]. The
results of this paper are applicable to all these applications and are consistent with the current and future technology
constraints.

When a function is implemented using a network of threshold gates, certain network parameters are crucial in deter-
mining its performance and practicality. The depth of the network directly controls the delay of the final realization. The
total number of threshold gates used in the network determines the cost of the realization. The weights and the threshold
influence the area, power and reliability of the threshold gate. Finally, the fan-in, i.e., the number of inputs to a threshold
gate, determines its suitability for implementation and limits its reliability. It is therefore imperative that all these network
parameters be minimized so as to derive maximum benefit out of these networks.

Since network delay is perceived as the most critical parameter, much of the research in this area is focused on de-
veloping small depth threshold networks for various applications [16–18]. Several important results are also available to
implement any Boolean function in a three level network of generalized majority functions [19,20]. Finally, it has also been
shown that any LTd member function can be decomposed into an L̂Td+1 function [6,21]. In all these studies, the network
size is used as a quality measure.

Converting a network of threshold functions into one that employs threshold functions with bounded fan-in has received
relatively less attention [7]. Generally, the constant depth implementations result in decompositions with fan-ins that are
dependent upon the number of inputs [8]. Unfortunately, threshold gate fan-in is a bigger constraint than the network depth
in the current VLSI and the future nanotechnology implementations of threshold networks [22]. For example, experimental
studies suggest that the reliability considerations of threshold gates based on resonant tunneling devices may force one to
restrict the fan-in to as small a value as 5 or 6 [23,24]. On the other hand, networks based on such gates can be easily
pipelined so that the network throughput is independent of the depth of the network [23].

This paper discusses decomposition of a threshold function into a network of threshold functions, each with a bounded
fan-in. This decomposition employs the novel concept of error of the threshold function. We show that the value of the error
is always non-negative and can be obtained by adding (non-negative) errors due to independent groups of inputs. When the
total error of a threshold function exceeds the critical error, the output of the function is 0, otherwise it is 1. Critical error
is dependent on the weights and the threshold of the function, and plays a central role in the design of our network. The

1 Fan-in of a function or a gate refers to the number of inputs.
2 In this paper, a bounded fan-in always refers to a fan-in bound which is independent of the number of inputs.

Author's personal copy

86 V. Annampedu, M.D. Wagh / Information and Computation 227 (2013) 84–101

network can be visualized as made up of fragments which compute the errors of different groups of inputs and a network
of recombiners which add these errors to eventually compare it to the critical error.

1.2. Contributions of this paper

This paper gives a constructive proof of decomposing any function in L̂T1 into bounded fan-in threshold gates on the
first level (Theorem 1) and bounded fan-in generalized majority gates on the rest (Theorem 4). The decomposition has a
polynomial size and a log2 depth in terms of the number of inputs.

The decomposition technique developed here allows one to exploit the relationships between weights of inputs to sub-
stantially reduce the size and depth of the decomposition (Theorems 5–10). Applying these results, we show that: 1. An
n-input majority function can be decomposed into a network of bounded fan-in threshold functions with size O (n2/M)

and depth O (log2 n/ log M) where M is the bound on the fan-in (Theorem 11); 2. A network of bounded fan-in threshold
functions of size O (n/M) and depth O (log(n/M)) can realize the n-bit error tolerant pattern matching function for small
error tolerances (Theorem 12); and 3. An n-bit binary number comparison function can be decomposed into a network of
bounded fan-in threshold functions with size O (n/M) and depth O (log(n/M)) (Theorem 13).

Using the decomposition methods developed here, one can trade-off the size and depth of the decomposition with the
bound on the fan-in. In particular, we show that the size decreases as the square of the fan-in and the depth, as the
logarithm of the fan-in.

As an aside, this paper also shows that any threshold function in L̂T1 can be implemented as a depth 2 network which
has bounded fan-in threshold functions (with any chosen fan-in) at the first level and a generalized majority function at the
second level (Theorem 2).

1.3. Organization of the paper

The overview of our general decomposition strategy is presented in Section 2. It shows that each fragment is a collection
of bounded fan-in threshold functions. We also show that an arbitrary threshold function has a two level decomposition
where the first level is made up of bounded fan-in threshold functions and the second level is a generalized majority
function. Section 3 shows that a recombiner is composed of a collection of majority functions, each of which may be
realized through its own network of bounded fan-in threshold functions. The size of our threshold network is generally
dependent on the critical error of the function being decomposed. However, by appropriate grouping of the inputs based
upon their weights, one can often reduce this size significantly. Section 4 provides several theorems which are useful in
reducing the network size based on intelligent grouping of inputs. Section 5 presents three examples to demonstrate the
decomposition and the complexity reduction strategies. Finally the conclusions of this work are provided in Section 6.

2. Decomposition strategy

The classical decomposition of threshold functions exploits the fact that threshold functions are unate.3 A unate function
f (x1, x2, . . . , xn) can be decomposed as [25]

f (x1, x2, . . . , xn) =
{

f1(x2, x3, . . . , xn) + x1 f2(x2, x3, . . . , xn) if x1 is positive,

f1(x2, x3, . . . , xn) + x1 f2(x2, x3, . . . , xn) if x1 is negative.
(2)

If f in (2) is threshold, then so are the n − 1 variable functions f1 and f2. Function f can therefore be decomposed into
three threshold functions, f1, f2 and a 3-input threshold function that combines f1, f2 and x1. Eq. (2) can be employed
repeatedly to reduce the fan-in of the threshold functions to any desired small value M (< n). The final decomposition
results into a binary tree of n − M levels with 2n−M − 1 internal nodes, each representing the 3-input threshold function
and 2n−M leaves representing M-input threshold functions (not necessarily distinct). Clearly, this decomposition has a depth
of (n − M + 1) which is O (n − M) and a size of O (2n−M). In addition to the large size, the classical decomposition also
suffers from the fact that the M inputs xn−M+1 to xn that are not used in the decomposition are potentially used in the
2n−M threshold functions at the tree leaves. Each of the other input variable xi , 1 � i � n − M , is used in 2i−1 threshold
functions. Driving a large number of gates implies excessive load on inputs in practical applications.

In this paper we propose an alternate decomposition of threshold functions into a network of bounded fan-in threshold
functions. Our decomposition has a polynomial size (with respect to n) and each input drives a small number of gates.
Our scheme, shown in Fig. 1, consists of partitioning the inputs into disjoint sets, each of which is processed through an
independent multi-output logic block at the top level. All the outputs of each pair of blocks on any level are combined
by multi-output logic blocks on the next level. We call the top level blocks to which inputs are directly applied as the
Fragments and the blocks on every other level as the Recombiners. We will show later that each output of a fragment
is a threshold function of the inputs to that fragment (Theorem 1). Similarly, each output of a recombiner is a majority

3 A unate function is a Boolean function in which every variable is either positive or negative. A variable (say) x1 is positive in f (x1, x2, . . . , xn) if
f (1, x2, . . . , xn) � f (0, x2, . . . , xn) for all x2, x3, . . . , xn . It is negative, if f (1, x2, . . . , xn) � f (0, x2, . . . , xn).

Author's personal copy

V. Annampedu, M.D. Wagh / Information and Computation 227 (2013) 84–101 87

Fig. 1. The decomposition of a threshold function f (x1, x2, . . . , xn) with weights w1, w2, . . . , wn and threshold T in multi-output logic blocks. Each of the
R + 1 outputs of a block are threshold functions of the inputs to the block. R = (

∑
wi>0 wi) − T .

function of a subset of inputs to that recombiner (Theorem 3). A selected output of the recombiner in the last level gives
the value of the threshold function being decomposed. The output of a threshold function is determined by the comparison
of a weighed sum of its inputs,

∑
wi xi , with the threshold T . One simple way to realize this computation is to let each

fragment calculate the weighed sum of its inputs. The recombiners can then add these sums and compare the total with
the threshold to determine the output value. Unfortunately, the weighed sum of the inputs to a fragment can be as small
as the sum of the negative weights and as large as the sum of the positive weights. Since these sums lie in different ranges,
transmitting and combining them is complicated.

In this paper, we take a different approach. Instead of using the weighed sums of the inputs, we use the error of the
threshold function to determine its output. Error E of a threshold function f (x1, x2, . . . , xn) is defined as

E = K −
n∑

i=1

wixi, where K =
n∑

i=1
wi>0

wi . (3)

Clearly, E � 0 because K is the largest value of
∑

wi xi . Let constant R = K − T , where T is the threshold of the function
being decomposed. It is easy to see that R � 0; otherwise the function would always be 0. Combining (1) and (3) one gets

f (x1, x2, . . . , xn) =
{

1 if E � R,

0 if E > R.
(4)

Eq. (4) gives an alternate way to compute the output of a threshold function. We call R , the critical error of the threshold
function.

In the proposed decomposition, we compute the error of fragment j with inputs xi , i ∈ S j , as

E j = K j −
∑
i∈S j

wixi, where K j =
∑
i∈S j
wi>0

wi . (5)

Note that similar to E , E j is also non-negative. By adding E j s of all the fragments one gets∑
j

E j =
∑

j

K j −
∑

j

∑
i∈S j

wi xi = K −
n∑

i=1

wixi = E. (6)

Our network is designed to add the E j s to obtain E . Further, since one is only interested in comparing E to R , we truncate
the value of error at every stage of calculation at R + 1. Thus the error values within our network lie between 0 and R + 1
(inclusive of both) and are transmitted using R + 1 Boolean variables.

Boolean output pt , 0 � t � R , of a fragment is defined as

pt =
{

1 if error E j in that fragment � t,

0 otherwise.
(7)

Fragment j specifies error E j using its R + 1 outputs, pi , 0 � i � R . An error value e is indicated by setting outputs
p0, p1, . . . , pe−1 to 0 and pe, pe+1, . . . , pR to 1. Note that e > R is indicated by pi = 0, for all i, 0 � i � R . Using (R + 1)

output variables to carry log2(R +2) bits of information seems wasteful, but it allows each of these variables to be threshold
functions of inputs as shown in Theorem 1.

The pt s defined by (7) are related as

pi � p j if i < j. (8)

Author's personal copy

88 V. Annampedu, M.D. Wagh / Information and Computation 227 (2013) 84–101

Eq. (8) has the following implications which are used later:

pi · p j = pi and pi + p j = p j if i < j. (9)

We conclude this section with the following important observation [26] that follows directly from (5) and (7).

Theorem 1 (Fragment outputs). Each output pt of fragment j is a threshold function of inputs xi with weights wi , i ∈ S j , and a thresh-
old of K j − t.

The outputs of all the fragments as defined here may be combined by a single threshold gate to provide a two level
decomposition of any threshold function as given in the following theorem.

Theorem 2 (Two level decomposition). Any threshold function f of n variables may be decomposed into a depth 2 threshold network
such that the first level has threshold gates with fan-in bounded by any M and the second level has a generalized majority gate with
fan-in of (R + 1)�n/M	, where R denotes the critical error of f .

Proof. Function f may be decomposed to use fragments with fan-in M on the first level. Let the output i of the fragment j
be denoted by f (j, i), 1 � j � (n/M), 0 � i � R . We now show that f is obtained by combining all f (j, i) in a generalized
majority gate with a threshold of �n/M	(R + 1) − R . From the definition (7) of the fragment outputs, one can see that
the number of variables in the set { f (j, i) | 0 � i � R} that are equal to 1 is R + 1 − E j where E j is the error in the jth
fragment. (This number is 0 if R + 1 − E j is negative.) Thus the total number of nonzero outputs from all the fragments
equals (at most) �n/M	(R + 1) − E , where E is the total error in the function. But from (4), f = 1 only when E � R . Thus
f = 1 only when at least �n/M	(R + 1) − R of the outputs from all the fragments are 1. Thus the function on the second
level of decomposition is a generalized majority gate with threshold �n/M	(R + 1) − R . �

The size of the decomposition described in Theorem 2 is 1 +�n/M	(R + 1) threshold gates. If the function being decom-
posed is in L̂T1, then R is polynomial in n and therefore so is the size of the decomposition. Yao has previously proved that
functions in ACC0 class4 can be implemented using a two level network of size 2(logn)c

for some constant c [7,27]. The first
level of this decomposition has AND gates of fan-in O ((log n)c) and the second level has a symmetric function gate (which
can be implemented by a two level generalized majority gate network).

3. Recombiner implementation

Neither the symmetric function gate in Yao’s implementation [27] nor the generalized majority gate in the two level
decomposition of Theorem 2 has a bounded fan-in. To achieve the desired fan-in, we use a multistage network using the
recombiner blocks to add E js as shown in Fig. 1.

Recall that each recombiner is a multi-output logic block and uses as its inputs, all the outputs from two blocks (its
parents) on the previous level. The R + 1 outputs of a recombiner denote an error value in a manner similar to the outputs
of a fragment. The error value they indicate equals the sum (truncated at R + 1) of the error values provided by the parents.
This section shows that each output of a recombiner is a majority function of a subset of its inputs and can be easily
decomposed into threshold functions with bounded fan-in.

Let pi,qi , 0 � i � R represent the inputs to a recombiner from its two parents and st , 0 � t � R its outputs. Similar to
the fragment output definition (7), we define output st to be 1 if and only if the sum of the two error values provided by
the parents is t or less. One can then see that the Boolean expression for st is

st =
t∑

i=0

piqt−i, 0 � t � R. (10)

Relation (10) may be justified by noting that the term piqt−i is (logical) 1 if and only if one parent indicates an error
� i and the other, an error � t − i. Thus, each term of the summation (10) accounts for a case when the sum of errors
indicated by parents is � t . Each term of (10) is (logical) 0 if the combined error from the two parents is greater than t . As
an example, consider a case when R = 4, [p0, p1, p2, p3, p4] = [0,1,1,1,1] and [q0,q1,q2,q3,q4] = [0,0,1,1,1]. Note that
these parents are indicating 1 and 2 errors respectively. Eq. (10) then gives [s0, s1, s2, s3, s4] = [0,0,0,1,1] showing that the
total error indicated by the two parents of the recombiner is 3.

Note that because of the way the error values are combined (see Fig. 1), the output of any recombiner provides the total
error indicated by all the fragments of whom it is a descendant.

Theorem 3 describes the threshold nature of each output of a recombiner.

4 Class ACC0 refers to functions realizable as a polynomial size, constant depth network of unbounded fan-in AND, OR, NOT and a finite set of MODm

gates [7].

Author's personal copy

V. Annampedu, M.D. Wagh / Information and Computation 227 (2013) 84–101 89

Theorem 3 (Recombiner outputs). Function st defined by (10) is a majority function.

Proof. Since arguments pi and qi of st satisfy condition (8), there exist integers a and b such that

pi =
{

0 if 0 � i < a,

1 a � i � t,
(11)

and

qi =
{

0 if 0 � i < b,

1 b � i � t.
(12)

Therefore, from the expression (10) of st ,

st =
t∑

i=0

piqt−i =
t∑

i=a

qt−i = qt−a.

The last step of the above equation follows directly from (9). Thus st = 1 if and only if t − a � b, i.e., if (t + 1 − a) + (t + 1 −
b) � t + 2. However, from (11) one can see that (t + 1 − a) is simply the number of pi s in the summand of st that are 1.
Similarly, from (12) (t + 1 − b) represents the number of qi s in the summand of st that are 1. Therefore st = 1 when at
least t + 2 of its inputs (out of a total of 2(t + 1) inputs) are equal to 1 thus showing that st is a majority function. �

Theorem 3 shows that each recombiner output st , 0 � t � R , given by (10) is a threshold (in fact, a majority) function.
However, its fan-in may exceed the fan-in bound. Following corollary helps decompose st into bounded fan-in threshold
functions.

Corollary 1. Let Boolean variables xi , yi , 0 � i � m − 1 be such that

x0 � x1 � · · · � xm−1 and y0 � y1 � · · · � ym−1.

Then

(a)
∑m−1

i=1 xi ym−i is a majority function of 2m − 2 inputs.

(b)
∑m−1

i=1 xi ym−i + y0 is a majority function of 2m − 1 inputs.

(c)
∑m−1

i=1 xi ym−i + x0 + y0 is a threshold function of 2m inputs with unit weights for all inputs and a threshold of m.

Proof. Part (a) of the corollary can be proved similar to Theorem 3.
To prove part (b), consider a majority function with 2m − 1 inputs x1 through xm−1 and y0 through ym−1 with all

weights equal to 1 and threshold equal to m. We will prove that this majority function always gives the same output as the
given Boolean function. If input y0 is 0, then from part (a), the two functions are the same. If y0 = 1, the Boolean function
is 1. But when y0 = 1, so are y1 through ym−1. Since m inputs of the majority function are 1, its output is also equal to 1.
Thus the Boolean function

∑m−1
i=1 xi ym−i + y0 is identical to the majority function constructed.

To prove part (c) in a similar fashion, consider a threshold function with unit weights for all 2m inputs x0 through
xm−1 and y0 through ym−1 and a threshold equal to m. We will prove that it has identical outputs as the Boolean function∑m−1

i=1 xi ym−i + x0 + y0. Note that when x0 = 0, the equality of the two functions is established by part (b). When x0 = 1,
the Boolean function produces a 1. But x0 = 1 also implies that x1 through xm−1 are all 1 and consequently the threshold
function is also 1. Thus the threshold function is the same as the Boolean function. �

To decompose a recombiner output st into bounded fan-in threshold functions, note that st is a function of pi , qi ,
0 � i � t as given in (10). Relation (8) shows that the Boolean variables pi and qi satisfy the conditions on xi s and yi in
the Corollary 1. Thus this corollary can be applied to any subset of pi s and qi s. In particular, when the fan-in bound M
is even, Corollary 1(a) can be applied with m = M/2 + 1 to variables involved in (10) for every consecutive m values of i.
As an example, consider the decomposition of s7 when M = 4. Let m = 3, x1 = p0, x2 = p1 and y1 = q6, y2 = q7. Then
Corollary 1(a) shows that p0q7 + p1q6 is a majority function. Similarly using x1 = p2, x2 = p3 and y1 = q4, y2 = q5 shows
that p2q5 + p3q4 is a majority function. Proceeding in this manner, one also can prove that p4q3 + p5q2 and p6q1 + p7q0 are
also a majority functions. Function s7 given in (10) can then be obtained by ORing these four majority functions as shown
in Fig. 2. Since each gate in this structure combines M operands into a single operand, one needs �(2t + 1)/(M − 1)	 gates
to convert (2t + 2) inputs of st into a single output. It is also easy to see that the depth of the decomposition tree of st is
given by �logM(2t + 2)	. Thus the size (number of threshold gates) of a recombiner computing s0, s1, . . . , sR is given by

R∑
t=0

⌈
(2t + 1)/(M − 1)

⌉
, (13)

Author's personal copy

90 V. Annampedu, M.D. Wagh / Information and Computation 227 (2013) 84–101

Fig. 2. Decomposition of the majority function s7 using majority and OR gates with fan-in bound of 4.

Fig. 3. Decomposition of the majority function s7 using majority gates with fan-in bound of 5.

where M is the fan-in bound. The depth of the recombiner is governed by sR , the most complex of its outputs and is given
by �logM(2R + 2)	.

Corollary 1 is also useful to implement the recombiner output st given by (10) when the fan-in bound M is odd. In
this case, the sum over t + 1 values of index i is partitioned into several sums, each over �M/2	 consecutive i values. Each
of these sub-expressions is evaluated independently by first factoring from it pi with the largest index, something that is
possible because of (9). After removing pi , the remaining sub-expression is a majority function because of Corollary 1(b).
This allows one to replace the complete sub-expression by a product of pi with the output of a majority function. Thus the
number of variables in the expression of st is greatly reduced, but the form of the expression and the relationships between
the remaining variables are similar to the original expression of st . Thus this procedure can be applied recursively till a
complete realization of st is achieved.

The procedure described above is best illustrated by an example. Consider the computation of s7 using majority gates
with a fan-in bound M = 5. In this case,

s7 = (p0q7 + p1q6 + p2q5) + (p3q4 + p4q3 + p5q2) + p6q1 + p7q0

= p2(p0q7 + p1q6 + q5) + p5(p3q4 + p4q3 + q2) + p6q1 + p7q0

= p2u1 + p5u0 + p6q1 + p7q0, (14)

where u1 = p0q7 + p1q6 + q5 and u0 = p3q4 + p4q3 + q2 are majority functions because of Corollary 1(b). Note that the
factoring of p2 from the first three product terms is based on expressing p0 and p1 as p0 = p0 p2 and p1 = p1 p2 using (9).
Factoring of p5 from the second sub-expression uses the same reasoning. It is easy to see that q1 � u0 � u1. Thus the
expression (14) has the same form as the original expression s7 and the variables involved also follow similar conditions,
namely, p2 � p5 � p6 � p7 and q0 � q1 � u0 � u1. Employing a similar procedure to implement (14), one gets

s7 = p6(p2u1 + p5u0 + q1) + p7q0

= p6 v0 + p7q0, (15)

where v0 = p2u1 + p5u0 + q1 is a majority function (Corollary 1(b)). The expression (15) again has the same form as
the original expression for st and the variables involved satisfy p2 � p5 and q0 � v0. Thus (15) is a majority function
(Corollary 1(b)). This decomposition of s7 is shown in Fig. 3.

The decomposition of st into threshold gates with an odd fan-in M is attractive because it uses only majority gates.
However, these decompositions do not have the optimum depth �logM(2t + 2)	 as in the case of an even M .

Author's personal copy

V. Annampedu, M.D. Wagh / Information and Computation 227 (2013) 84–101 91

The discussion above is summarized as the following theorem.

Theorem 4 (Recombiner output implementation). Each output st defined by (10) can be implemented using a multilevel network of
generalized majority functions with any given bound on the fan-in.

The total size of the network proposed in Fig. 1 is obtained by adding the number of gates in �n/M	 fragments to those
in �n/M	 − 1 recombiners. Each fragment uses (R + 1) threshold gates with a maximum fan-in of M . Thus level 0 of the
decomposition (the fragments) has �n/M	(R + 1) threshold gates and a depth of 1.

The number of gates used in each recombiner is given in (13) and equals

Recombiner size =
R∑

t=0

⌈
(2t + 1)/(M − 1)

⌉
. (16)

We will estimate the complexity of a recombiner by computing (16) exactly in those cases when (R + 1) is a multiple of
(M − 1) and (n/M) is a power of 2. Under this assumption, for the (M/2) values of t satisfying i(M − 1) � t < i(M − 1) +
(M/2), the summation argument in (16) reduces to 2i + 1. Similarly for the (M/2) − 1 values of t satisfying i(M − 1) +
(M/2) � t < (i + 1)(M − 1), it reduces to 2i + 2. Therefore one can rewrite (16) as

Reco. size = (M/2)

(R+1)/(M−1)−1∑
i=0

(2i + 1) + (
(M/2) − 1

) (R+1)/(M−1)−1∑
i=0

(2i + 2)

= (R + 1)
(

R + (M/2)
)
/(M − 1). (17)

Note that there are (n/M)2−l recombiners in level l, 1 � l � log2(n/M) − 1. The recombiner in level log2(n/M) computes
only one output, sR , and therefore has a size �(2R + 1)/(M − 1)	 = 2(R + 1)/(M − 1). Thus the size G of the network (i.e.,
the total number of threshold gates in the implementation) is obtained as:

G = (n/M)(R + 1) +
[

2(R + 1) +
log2(n/M)−1∑

l=1

(R + 1)
(

R + (M/2)
)
(n/M)2−l

]/
(M − 1)

= (n/M)(R + 1) +
(

R + 1

M − 1

)(
M

2
+ R

)(
n

M
− 2

)
+ 2(R + 1)

M − 1
. (18)

Expression (18) shows that the size of the network is O (nR2/M2).
The depth of a network is defined as the maximum length of the path from the root to a leaf. In the case of the network

modeled by Fig. 1, this path passes through a fragment and several levels of recombiners. The maximum path through a
fragment is of length 1 since it passes through only one gate (Theorem 1), while the maximum path through a fragment
is the path from its inputs to its output sR which is a function of 2(R + 1) inputs. To obtain this output with gates with
a fan-in bound M requires an M-ary tree of �logM(2R + 2)	 (for even M) levels (Fig. 2). The depth D of the network can
therefore be obtained by adding the depth of the fragment to the depth of log2(n/M) recombiners to give

D = 1 + log2(n/M)
⌈

logM(2R + 2)
⌉
. (19)

Thus the network depth has order O (log(n/M) log R/ log M).
If the function being decomposed is in L̂T1, then R is O (nδ) for some constant δ. Thus the decomposition size and

depth will be O (n2δ+1/M2) and O (log2 n/ log M) respectively. If the function being decomposed is instead in LTd , then
one can first convert it into L̂Td+1 [6,21] with polynomial number of L̂T1 functions. Each of these functions can then be
decomposed using the strategy described here. The final decomposition will have a polynomial size and the same order of
depth, O (log2 n/ log M).

One should note that in many practical applications, the network size may be reduced considerably from the bounds
presented here using the theorems given in Section 4.

4. Complexity reduction by redundancies in weight distribution

The decomposition presented in earlier sections partitions the inputs into sets, each applied to a different fragment. This
section focuses on reducing the complexity of the network by making intelligent groupings of the inputs based on their
weights. We show that the choice of the partition often affects the complexity of the fragments as well as that of the
recombiners. In particular, if the greatest common divisor (gcd) of the input weights in a fragment is greater than 1, then
some outputs of that fragment and its descendant recombiners may be redundant. Similarly, if the weights in a fragment
are small compared with R , the fragment and its descendant recombiners may have an output redundancy.

Even though the weight constraints discussed in this section may appear artificial, they arise naturally in many real
applications such as the ones discussed in Section 5.

Author's personal copy

92 V. Annampedu, M.D. Wagh / Information and Computation 227 (2013) 84–101

We explore two kinds of redundancies in the fragment and the recombiner outputs. Let the output of a fragment or
a recombiner be denoted by pi , 0 � i � R . We often refer to this entire sequence of outputs simply by p. When every k
consecutive pi s are the same irrespective of the input as in (20) below,

pkt+a = pkt, 0 � a < k, for all t. (20)

we say that p has a block redundancy of k.
The second kind of redundancy arises because of the relationship between pi s given in (8). This equation implies that

when some pi = 1, all subsequent pi s are 1 as well. When pi = 1 for all i � B irrespective of the input, we say that p is
bounded by B .

Theorems in this section explore the conditions under which such redundancies occur.

Theorem 5 (Fragment redundancy-I). If the weights in a fragment have the greatest common divisor of g, then its output p has a block
redundancy of g.

Proof. Let input xi of fragment j have weight wi . Then from the definition (7) of pi , pgt+a , 0 � a < g , is equal to 1 if and
only if

K j −
N∑

i=1

xi wi � gt + a, (21)

where K j , being the sum of all the positive weights of the fragment, is a multiple of g . Thus, Eq. (21) can be written as

(K j/g) −
N∑

i=1

xi(wi/g) � t + (a/g). (22)

Since all the terms except the last in the inequality (22) are integers, (22) is equivalent to(
K j −

N∑
i=1

xi wi

)/
g � t,

showing that pgt+a is independent of a. �
Note that when the output p has a block redundancy of g , the only outputs one needs to compute are pgt , 0 � t <

(R + 1)/g . Each output pgt is a threshold function with threshold K j − gt , where K j is the sum of all the positive weights
of the fragment. Thus all the weights in the fragment as well as its threshold are multiples of g and consequently pgt
can be implemented as a threshold function with weights (wi/g) and a threshold of (K j/g − t). Hence, the conditions of
Theorem 5 not only imply fewer threshold functions, but also threshold functions with smaller weights. To illustrate this
theorem, consider a fragment with inputs x1, . . . , x4 with weights 2, −2, 4 and −6. Since the greatest common divisor of
the weights is 2, the outputs of the fragment can be shown to be

p2t+1 = p2t = TH(x1, x2, x3, x4; 1,−1,2,−3; 3 − t).

The second kind of redundancy shows up in the fragment output when the weights of inputs to a fragment are small
relative to the critical error. In this case, the fragment contributes only small errors leading to the bounds on its output.

Theorem 6 (Fragment redundancy-II). Let wi , i ∈ S j , denote the weights of inputs to the jth fragment. Then the output of the fragment
is bounded by

∑
i∈S j

|wi |.

Proof. The error E j of the jth fragment satisfies

E j =
∑
i∈S j
wi>0

wi −
∑
i∈S j

xi wi �
∑
i∈S j

|wi |.

The result then directly follows from the definition of pt . �
Theorem 6 is important in reducing the complexity of a fragment that has small weights in relation to weights of the

other fragments. To illustrate this theorem, once again consider the fragment with weights 2, −2, 4 and −6. The output of
this fragment is bounded by 14, i.e., output pi = 1, for all i � 14 irrespective of the input. Thus, no matter how large R is,
one need not compute these pi s.

The next three theorems allow us to reduce recombiner complexity using input redundancies.

Author's personal copy

V. Annampedu, M.D. Wagh / Information and Computation 227 (2013) 84–101 93

Theorem 7 (Recombiner redundancy-I). If the input p of a recombiner has a block redundancy of g, then the recombiner outputs can
be expressed as

st =
�t/g�∑
i=0

pgiqt−gi, (23)

where q is its other input.

Proof. The recombiner output is given by

st =
t∑

j=0

p jqt− j . (24)

Let index j = gi + i′ , 0 � i′ < g . Because p has a block redundancy of g , p j = pgi . Eq. (24) can then be rewritten as

st =
�t/g�∑
i=0

pgi

(g−1∑
i′=0

qt−gi−i′

)
. (25)

In (25) several qi s are being added (using Boolean OR). But since qi s satisfy (8), their sum equals the qi amongst them with
the largest index. In (25) this corresponds to the smallest i′ , i.e., qt−gi . �

Note that st expressed as in (23) is still a majority logic function because of Corollary 1(a). However, as shown in
Theorem 7, the block redundancy g of its input reduces it from a majority function of 2t + 2 variables to a majority
function of only 2�t/g� + 2 variables. Clearly, if both inputs of a recombiner have block redundancies, one should use the
larger of the two redundancies to reduce the recombiner complexity to the maximum extent possible. When the two block
redundancies have a common factor, the recombiner complexity can be further reduced as stated in the following theorem.

Theorem 8 (Recombiner redundancy-II). Let inputs p and q of a recombiner have block redundancies of g1 and g2 respectively. Then
its output s has a block redundancy of g = gcd(g1, g2).

Proof. We will show that the recombiner output sgt+a , 0 � a < g , is independent of a. Since, the block redundancy g1 of p
is a multiple of g , Theorem 7 gives

sgt+a =
t∑

i=0

pgiqg(t−i)+a. (26)

The block redundancy g2 of q, also being a multiple of g gives

qg(t−i)+a = qg(t−i), 0 � a < g. (27)

Combining (26) and (27) shows that sgt+a is independent of a. �
Theorems 7 and 8 play an important role in minimizing the recombiner architecture when both its inputs have block

redundancies. Theorem 8 shows that one only needs to compute every gth output of such a combiner where g is the gcd
of the two block redundancies. Theorem 7 shows that the architecture for each of these outputs can be reduced by a factor
equal to the larger of the two redundancies. Thus if the two inputs of a recombiner have block redundancies of 4 and 6, the
recombiner size complexity can be reduced by approximately a factor of 12.

We next explore the bounds on the output of a recombiner.

Theorem 9 (Recombiner redundancy-III). Let p and q denote the inputs of a recombiner and g, the block redundancy of its output.
Also, let pgi = 1 if i � P and qgi = 1 if i � Q . Then the output of the recombiner satisfies

sgt = 1, if t � P + Q . (28)

Proof. From the definition of a recombiner output, one has

sgt =
gt∑

i=0

piqgt−i . (29)

If t � P + Q , then there exists an index i = g P in (29) such that gt − i � g Q . For this i, pi = 1 and qgt−i = 1 implying that
at least one term in the Boolean summation (29) is 1. This reduces the entire sum to 1. �

Author's personal copy

94 V. Annampedu, M.D. Wagh / Information and Computation 227 (2013) 84–101

Note that Theorems 6 and 9 together imply that a recombiner output is bounded by the sum of absolute values of the
weights within all the fragments of whom it is a descendant.

Finally we present a theorem that exploits the input block redundancies together with their bounds.

Theorem 10 (Recombiner redundancy-IV). Let inputs p and q of a recombiner have block redundancies g1 and g2 respectively with
g = gcd(g1, g2). Further, let p and q be bounded such that pug = 1 for u � P and qvg = 1 for v � Q . Then, the output of the
recombiner is given by

sgt = p(t−Q)g + q�(t−P)g/g2�g2 +
Q g/g2−1∑

i=�(t−P)g/g2�+1

pgt−ig2 qig2 . (30)

Proof. From Theorem 7 one gets

sgt =
�gt/g2�∑

i=0

pgt−ig2 qig2 . (31)

We shall evaluate (31) by partitioning index i into three non-overlapping ranges.
If i � Q g/g2, one has qg2 i = 1 from the bound on q. Thus, for this range of i values, the summation in (31) reduces to

�gt/g2�∑
i=Q g/g2

pgt−ig2 = p(t−Q)g . (32)

Similarly, for i � �(t − P)g/g2�, one has gt − ig2 � P g and therefore pgt−ig2 = 1. For this range of i, the summation
in (31) reduces to

�(t−P)g/g2�∑
i=0

qig2 = q�(t−P)g/g2�g2 . (33)

Finally, for the remaining i values, the product pgt−ig2 qig2 will have to be summed as in (31). �
One should note that terms pi and qi in (30) are considered valid only if their index i is non-negative. Thus even though

the theorem gives a general expression for sgt , for specific values of t , some of the terms in the expression may be absent.

5. Examples

To illustrate the decomposition and complexity reduction methodology developed here, we now provide three examples,
namely the decomposition of the majority function, the error tolerant pattern matching function and the comparison func-
tion. Let N denote the number of inputs. For the first of these examples, the critical error is about N/2, for the second, it is
generally very small compared to N , and for the third, it increases exponentially with N .

5.1. Decomposition of a majority function

Majority and generalized majority functions occur in many applications. A monotonically increasing symmetric function
is a generalized majority function. It is also known that any n variable symmetric function can be implemented in a two
layered structure of at most n + 1 generalized majority functions [1]. Further, any threshold logic function can be imple-
mented in a three level network of generalized majority functions [12,20]. Finally, Theorem 2 in this paper shows that any
arbitrary threshold function can be decomposed into a two level network with bounded fan-in threshold functions at the
first level and a generalized majority function at the second level.

Recall that an n input majority function is a threshold function with unit weights of all the inputs and a threshold of
exactly �n/2�+1. A generalized majority function of inputs x1, . . . , xn with a threshold T > �n/2�+1 can always be realized
as a majority function with 2T − 2 inputs x1, . . . , xn , 0, . . . ,0 and a threshold T . Similarly, a generalized majority function
with a threshold T < �n/2� + 1 can be realized as a majority function with 2n − 2T + 1 inputs x1, . . . , xn , 1, . . . ,1 and a
threshold n − T + 1. We therefore focus on the decomposition of a majority rather than a generalized majority function in
this subsection.

Theorem 11 (Decomposition of a majority function). A majority function with N inputs can be decomposed into a network of threshold
functions with maximum fan-in of M such that the network size is O (N2/M) and the network depth is O (log2 N/ log M).

Author's personal copy

V. Annampedu, M.D. Wagh / Information and Computation 227 (2013) 84–101 95

Proof. For convenience we will assume that N = 2n and M = 2m (m < n). Because the threshold in this application is
(N/2) + 1, the critical error R = (N/2) − 1.

We follow the decomposition strategy described in Section 2. As in Theorem 6, the output of each fragment is bounded
by M . Clearly, one needs to compute only M outputs from each of the (N/M) fragments. Thus, level 0 of the decomposition
(comprising of fragments) has a size of N and a depth of 1.

The inputs p and q to recombiners in level 1 are the outputs of the fragments and are therefore bounded by M . Further,
since all the weights in the majority function are 1, the greatest common divisor of any subset of these, g = 1. Theorem 9
then implies that the outputs of the recombiners in level 1 are bounded by 2M . Since these outputs become inputs to the
recombiners in level 2, Theorem 9 shows that the outputs of these recombiners are bounded by 22M . Proceeding in this
manner, it is clear that the inputs of a recombiner in level l, 1 � l � n − m − 1, are bounded by P = 2l−1 M and its output is
bounded by 2P . Since 2P � R + 1, one only needs to compute outputs s0 through s2P−1 of this recombiner. Consider now
the computation of a typical output st , 0 � t < 2P of a recombiner in level l. Because of the bounds on the inputs of the
recombiner, the function st can be expressed from Theorem 10 as

st = pt−P + qt−P +
P−1∑

i=t−P+1

pt−iqi . (34)

The pi s and qis in (34) are valid only if their indices are non-negative. Thus the number of terms pt−iqi in the summation
in (34) equals

min{P − 1, t} − max{t − P + 1,0} + 1.

Further, terms pt−P and qt−P contribute to st in (34) only if t � P . Thus,

The total number of inputs of st =
{

2(t + 1) if 0 � t < P ,

2(2P − t) if P � t < 2P .
(35)

Eq. (35) shows that the number of inputs to s2P−1−t is the same as the number of inputs of st , 0 � t < P . The complexity
of s2P−1−t and st being the same, the size (number of gates) Gl of a recombiner at level l, 1 � l � n − m − 1, is obtained by
summing the number of gates in each st as:

Gl = 2
P−1∑
t=0

⌈
(2t + 1)/(M − 1)

⌉
, (36)

where P = 2l−1 M .
Note that the argument of the summation in (36) evaluates to 1 for the first M/2 values of t , 2 for the next M/2 − 1,

3 for the next M/2, 4 for the following M/2 − 1, etc. Clearly, for i(M − 1) � t < i(M − 1)+ (M/2), the summation argument
is 2i + 1 and for i(M − 1) + (M/2) � t < (i + 1)(M − 1), it is 2i + 2. To take advantage of this, first define K (l) as

K (l) = (
P − P mod (M − 1)

)
/(M − 1)

= (
2l−1M − 2(l−1) modm)

/(M − 1). (37)

The complexity of each recombiner Gl in level l, 1 � l � n − m − 1, can now be rewritten as

Gl = 2

(
2(l−1) modm(

2K (l) + 1
) +

2K (l)∑
i=1

(M/2)i −
K (l)∑
i=1

2i

)
= (2M − 2)K 2(l) + (M − 2)K (l) + 2(l−1) mod m(

4K (l) + 2
)
. (38)

Depth d(l) of the recombiner in level l, 1 � l � n − m − 1, is given by

dl = ⌈
logM 2l M

⌉
. (39)

The recombiner in level n − m has to compute only sR . Since each parent of this recombiner provides exactly 2n−m =
(R + 1) outputs, sR has (2R + 2) inputs. Its size is therefore �(2R + 1)/(M − 1)	 = �(N − 1)/(M − 1)	 threshold gates and
its depth is logM(2R + 2).

The total size G of the decomposition is therefore given by

G = N + ⌈
(N − 1)/(M − 1)

⌉ +
n−m−1∑

l=1

2n−m−lGl. (40)

By combining (37), (38) and (40) and simplifying, one gets

G = N +
⌈

N − 1

M − 1

⌉
+ N

2(M − 1)

(
N + M(n − m) + δ

)
, (41)

Author's personal copy

96 V. Annampedu, M.D. Wagh / Information and Computation 227 (2013) 84–101

Table 1
Size of our decomposition of an N-input majority function into threshold functions with fan-in � M . Results of [29,30] are shown in parenthesis for
comparison.

No. of
inputs N

Fan-in M

2 4 8 16 32 64 128

4 7
(7)

8 31 11
(31) (13)

16 127 49 19
(511) (77) (25)

32 511 195 89 35
(16 383) (2493) (217) (49)

64 2047 753 353 169 67
(1.05E6) (1.60E5) (13 945) (689) (97)

128 8191 2915 1347 673 329 131
(1.34E8) (2.0E7) (1.79E6) (88 305) (2401) (193)

256 32 767 11 377 5145 2561 1313 649 259
(3.43E10) (5.23E9) (4.57E8) (2.26E7) (614 881) (8897) (385)

where δ gives the less significant terms as

δ = M

(
m

M − 1
− 3

)
− 2(n − m) + c

(
(2 − m)M2 − 2

M(M − 1)
+ (n − 1)mod m

)
− Nc2

M2

and

c = 2−m�(n−m−1)/m�.

Eq. (41) shows that this decomposition has a size O (N2/M).
The depth d of the decomposition can be obtained by finding the maximum length of a path from an input to the final

output. This path goes through a fragment and n − m recombiners. The depth d is therefore obtained as

d = 1 +
n−m∑
l=1

⌈
logM 2l M

⌉ = 1 + (n − m) +
n−m∑
l=1

⌈
logM 2l⌉. (42)

Note that for all the ls satisfying im < l � (i + 1)m, the argument of the summation in (41) becomes (i + 1). Thus the
network depth may be simplified as

d = 1 + (n − m) +
K∑

l=1

lm + (n − m − Km)(K + 1)

= 1 + (K + 2)(n − m) − K (K + 1)m/2, (43)

where K = �(n − m)/m�. Thus the decomposition depth is of order O (n2/m). �
Two values of M merit further discussion. When M = 2, the only threshold functions used in the decomposition are the

2-input Boolean AND and OR functions. Eqs. (41) and (43) show that in this case, the decomposition size is N2/2 − 1 and
the depth is n(n + 1)/2. When M = N/2, the decomposition size is N + 3 gates and its depth is 3.

Previous work on symmetric functions has shown that the size of a symmetric function implemented by (2-input) AND
and OR is O (N2) gates [28]. Note however that monotonically increasing symmetric functions are generalized majority func-
tions and 2-input Boolean ANDs and ORs are threshold functions. Thus Theorem 11 can be considered as a generalization
of [28] to multiple input threshold gates.

The results of this subsection can be directly compared with the earlier work on majority decomposition reported in
[29,30]. The decompositions obtained in [29,30] have a size of O (N log N) and a depth of O (log2(N/M)) whereas our decom-
positions have a size O (N2/M) and a depth of O (log2 N/ log M). The size and depth of our decomposition given by (41)
and (42) are compared with those of [29,30] in Tables 1 and 2.

5.2. Threshold logic for error tolerant pattern matching

In many quality control and robotics applications, one has to compare a pattern captured by sensors with a stored
template. In most of these applications the comparison needs to allow for a certain number of sensor errors. It is known
that this problem of error tolerant pattern matching for binary patterns can be solved by a single threshold logic circuit [13,
31]. Let binary vectors x and y denote the input and the template respectively. The weight vector is created from y by

Author's personal copy

V. Annampedu, M.D. Wagh / Information and Computation 227 (2013) 84–101 97

Table 2
Depth of our decomposition of an N-input majority function into threshold functions with fan-in � M . Results of [29,30] are shown in parenthesis for
comparison.

No. of
inputs N

Fan-in M

2 4 8 16 32 64 128

4 3
(3)

8 6 3
(6) (3)

16 10 5 3
(10) (6) (3)

32 15 8 5 3
(15) (10) (6) (3)

64 21 11 7 5 3
(21) (15) (10) (6) (3)

128 28 15 10 7 5 3
(28) (21) (15) (10) (6) (3)

256 36 19 13 9 7 5 3
(36) (28) (21) (15) (10) (6) (3)

replacing all the zeros in it by −1s. The threshold is chosen to be wt(y) − ε , where ε is the error tolerance and wt(y)

denotes the weight of the y. For example, the threshold function

TH(x; 1,1,1,−1,−1,1,−1,1; 2)

will output a 1 if the 8-bit input vector x matches with the pattern 〈1,1,1,0,0,1,0,1〉 with three or less errors.
In most applications, the number of inputs to this threshold function may get very large, rendering the threshold function

impractical. In such cases, the methods of this paper can be used to decompose the function into smaller threshold functions
as described by the following theorem.

Theorem 12 (Decomposition of the error tolerant pattern matching function). The error tolerant pattern matching threshold function
with N inputs and an error tolerance of ε can be decomposed into a network of threshold functions with maximum fan-in of M such
that

1. the network size is O (εN/M) and the network depth is O (log(N/M)) for small ε satisfying 2(ε + 1) � M and
2. the network size is O (ε2N/M2) and the network depth is O (log(N/M) logε/ log M) for larger ε .

Proof. In the case of this threshold function, the sum of positive weights of inputs equals wt(y) where t(y) is the target
pattern and the threshold equals wt(y)−ε . Thus the critical error R = ε . As shown in Fig. 1, the decomposition uses (N/M)

fragments and (N/M) − 1 recombiners.
Except for the last recombiner which has only one output, all the other recombiners as well as the fragments have

R + 1 outputs, each of which is a function of at most 2(R + 1) inputs. Thus if 2(R + 1) � M , then each of these outputs
can be computed by a single threshold gate with fan-in M . Therefore the network has a size of (2(N/M) − 2)(R + 1) + 1
threshold gates and a depth of 1 + log2(N/M).

When M < 2(R + 1), an output from a recombiner is not computable by a single threshold gate with a fan-in of M .
One may then use the fact that the outputs of the fragments are bounded by M because of Theorem 6. Further, because of
Theorem 9, the outputs of recombiners in level l are bounded by 2l M as long as 2l M � R + 1. One can thus compute the
complexity of the recombiners in these levels in a manner similar to the one used to determine the complexity of a majority
gate in Section 5.1. However, this complexity is still bounded above by the complexity obtained without using Theorem 9.
We therefore can use the general expressions in (18) and (19) to express this bound on the complexity. �

In Theorem 12 we have opted not to apply complexity reduction Theorem 9 when M < 2(R + 1). This may be justified
by noting that the number of levels to which this complexity reduction applies depends on the value of ε relative to M and
could be a small number for realistic values of ε and M . For example, consider a 128-bit error tolerant pattern matching
circuit with 5% error tolerance of 7 bits realized using threshold gates with a fan-in bound 4. One can see that in this case,
the complexity reduction is not possible in any recombiner level.

Decomposition of an error tolerant pattern matching network is shown in Fig. 4. We assume a 32-bit input vector x is
being matched with a 32-bit pattern with an error tolerance ε = 1. The threshold functions Ai and Bi in Fig. 4 represent the
outputs p0 and p1 from fragment i and are given by

Ai : TH(x4i+3, . . . , x4i; w4i+3, . . . , w4i; Ki),

Bi : TH(x4i+3, . . . , x4i; w4i+3, . . . , w4i; Ki − 1), (44)

Author's personal copy

98 V. Annampedu, M.D. Wagh / Information and Computation 227 (2013) 84–101

Fig. 4. The decomposition of a 32-bit pattern matching threshold function with error tolerance of 1 bit into a network of threshold functions with fan-in
of 4 or less. Ai and Bi are threshold functions given in (44) and the rest are majority functions. Note that the shaded threshold function need not be
implemented.

where w j = 1 if the jth bit of the target pattern is 1, and −1 otherwise. Ki is the number of 1s in 〈w4i+3, . . . , w4i〉. Thresh-
old functions in each recombiner provide outputs s0 and s1 and are therefore majority functions as shown in Theorem 3.

5.3. Threshold logic for comparison

Two N-bit numbers x = 〈xN−1, . . . , x2, x1, x0〉 and y = 〈yN−1, . . . , y2, y1, y0〉 may be compared by the threshold function

TH(x,y; w,−w; 0), (45)

where vector w = 〈2N−1, . . . ,22,2,1〉. The output of this threshold function is 1 if x � y.
One can see that the comparison threshold function (45) is not a member of L̂T1 since its weights increase exponentially

with n. In fact, it is often used to show that L̂T1 is a proper subset of LT1. This function has attracted quite a bit of attention
[12,19] because the number of inputs and the weights in this function get rather large with an increase in n. To compare
two 32-bit numbers as in (45), one needs a threshold function with 64 inputs and weights as large as 231. In what follows,
we show that the methods of this paper allow one to decompose (45) in a variety of ways.

Without loss of generality, assume that the number of bits, N = 2n . We partition the inputs such that every M = 2m

consecutive bits of x and y are applied to a fragment, i.e., the jth fragment, 0 � j < (N/M) has inputs x jM+i , y jM+i ,
0 � i < M . (Fan-in bound of each gate is assumed to be 2M .) For the threshold function of (45), the critical error R = 2N −1.
Thus a decomposition as in Fig. 1 should require 2N outputs from each fragment and recombiner. However, using the results
of Section 4 one can show that only two outputs from each fragment and recombiner are sufficient as shown in Fig. 5.
Blocks A and B of fragment j in this figure are threshold functions with fan-in bound of 8 and are given by

A: TH(x4 j+3, x4 j+2, x4 j+1, x4 j, y4 j+3, y4 j+2, y4 j+1, y4 j; 8,4,2,1,−8,−4,−2,−1; 0),

B: TH(x4 j+3, x4 j+2, x4 j+1, x4 j, y4 j+3, y4 j+2, y4 j+1, y4 j; 8,4,2,1,−8,−4,−2,−1; 1). (46)

The rest of the functions in the decomposition are majority functions.
Alternately, one can decompose the same comparison function (45) into a network similar to that of Fig. 5, but with

16 fragments and 15 recombiners (arranged in 4 levels), using threshold gates with a fan-in bound of 4. Fragment j of this
network will have two 4-input threshold functions defined as:

A: TH(x2 j+1, x2 j, y2 j+1, y2 j; 2,1,−2,−1; 0),

B: TH(x2 j+1, x2 j, y2 j+1, y2 j; 2,1,−2,−1; 1).

The recombiners will have the same majority gate structure as in Fig. 5. This new design uses 57 gates and has a depth of 5
as against 26 gates and a depth of 4 of the design in Fig. 5. Thus, our decomposition strategy allows a trade-off between
the fan-in bound, the hardware complexity (number of gates) and the time complexity (implementation depth).

Author's personal copy

V. Annampedu, M.D. Wagh / Information and Computation 227 (2013) 84–101 99

Fig. 5. The decomposition of a 32-bit comparison threshold function into a network of threshold functions with fan-in bound of 8. Functions A and B are
given in (46) and the rest are majority functions. Note that the threshold functions along the right edge (shaded) need not be implemented.

The correctness of the decomposition shown in Fig. 5 follows from the following theorem.

Theorem 13 (Decomposition of the comparison function). The (N = 2n)-bit comparison threshold function can be decomposed into a
network of threshold functions with fan-in bound of 2M for any M = 2m, 1 < m � n. This network has a size 4(N/M)− log2(N/M)−3
and a depth d = log2(N/M) + 1.

Proof. Let the levels of the network be numbered from 0 to n − m, where level 0 corresponds to the fragments. Let the
fragments and recombiners at any level be indexed in ascending order with those with index 0 corresponding to the lowest
weight input bits. (See Fig. 5.)

The jth fragment has weights 2 jM+i and −2 jM+i , 0 � i < M . Since these weights have a greatest common divisor of 2 jM ,
the output of this fragment has a block redundancy of 2 jM (Theorem 5). Similarly, by using induction (over the level l) one
can show that the output of the jth recombiner in level l has a block redundancy of 2 jM2l

(Theorem 8). For mathematical
convenience, we will henceforth denote the quantity 2M2l−1

by Gl . Gl has the following property which would be used later.

Gl = (Gl−1)
2. (47)

In this new notation, the output of the jth recombiner in level l has a block redundancy of (Gl)
2 j .

The outputs of some fragments and recombiners are also bounded. In particular, the output of the jth fragment is
bounded as pgt = 1 if t � 2(2M −1), where g = 2 jM represents the block redundancy of the fragment (Theorem 6). Similarly,
by using induction over l, the output of the jth recombiner in the lth level can be shown to be bounded as sgt = 1 if
t � 2((Gl)

2 − 1), where g = (Gl)
2 j is its block redundancy (Theorem 9).

We now use mathematical induction on level l to prove the following statement.

(S) The only outputs st required from the jth recombiner in the lth level are for t = g((Gl)
2 − 1) for any j and t =

g((Gl)
2 − 2) for j
= 0, where g is the block redundancy of the output of that recombiner.

At level l = n − m, there is only one recombiner with index j = 0. The only output required from this recombiner is sR ,
where R = 2N − 1. For this recombiner, g = 1 and Gn−m = 2M2n−m−1 = √

2N . Thus statement (S) is true for l = n − m.
Now assume that (S) is true for the jth recombiner in level l � 2. We prove its validity for its parents in level l − 1

with indices 2 j and 2 j + 1. Let pi and qi denote their outputs. Their block redundancies are g1 = (Gl−1)
4 j = (Gl)

2 j and
g2 = (Gl−1)

4 j+2 = g1Gl . Note that Theorem 8 can be used to relate the block redundancy, g , of the recombiner output to
the block redundancies of its parents’ outputs as g = gcd(g1, g2) = g1.

Because of the assumption, the only outputs required from the jth recombiner in level l are sgt1 , where t1 = (Gl)
2 − 1

and, if j
= 0, also sgt2 , where t2 = (Gl)
2 −2. We use Theorem 10 to obtain these values. The bounds on the outputs pi and qi

of the parents are specified as pg1t,qg2t = 1 if t � 2(G2
l−1 − 1) = 2(Gl − 1). But the block redundancy, g , of the recombiner

output is related to the block redundancies of the parents’ outputs as g1 = g and g2 = gGl . Therefore the bounds on the
two outputs may be expressed (in the language of Theorem 10) as P = 2(Gl − 1) and Q = 2Gl(Gl − 1).

Author's personal copy

100 V. Annampedu, M.D. Wagh / Information and Computation 227 (2013) 84–101

To compute sgt1 , note that t1 − Q < 0 and �(t1 − P)g/g2�g2 = (Gl − 2)g2. Therefore Theorem 10 gives:

sgt1 = sg((Gl)
2−1) = q(Gl−2)g2 +

2Gl−3∑
i=Gl−1

p((Gl)
2−1−iGl)g1

qig2

= q(Gl−2)g2 + p(Gl−1)g1q(Gl−1)g2 . (48)

Note that the summation in the above equation has only one valid term for i = Gl − 1 because for all higher values of i, the
index of p becomes negative.

Similarly, one can show that if j
= 0, then the required sgt2 can be computed as

sgt2 = q(Gl−2)g2 + p(Gl−2)g1 q(Gl−1)g2 . (49)

Eqs. (48) and (49) show that the parent with output pi and index 2 j needs to provide pg1t for t = Gl − 1 = (Gl−1)
2 − 1,

and also t = Gl − 2 = (Gl−1)
2 − 2 if j
= 0. The same equations also show that the parent with output qi and index 2 j + 1

needs to provide qg2t when t = Gl − 1 = (Gl−1)
2 − 1 and t = Gl − 2 = (Gl−1)

2 − 2. Thus statement (S) is true for recombiners
in level l − 1 if it is true for recombiners in level l. From mathematical induction, the statement (S) is therefore true for all
the recombiners in levels 1 � l � n − m. Thus every recombiner except those with index 0 has only two outputs. Further,
from Eqs. (48) and (49) and Theorem 3, these outputs are 3-input majority functions. Thus, each recombiner uses 2 gates if
its index is nonzero and 1 otherwise. Depth of every recombiner is 1.

Since the recombiners in the 1st level need only two inputs from each of its parents, each fragment also needs to
compute only two outputs. In particular, the jth fragment needs to compute outputs with indices (2M − 1)g and (2M − 2)g
where g is its block redundancy. From Theorem 1, these outputs can be computed by threshold functions with thresholds
K j − (2M − 1)g and K j − (2M − 2)g , where K j is the sum of all the positive weights within that fragment. Since K j =
(2M − 1)g , the two threshold functions in the fragment have thresholds 0 and g . By scaling all the weights and threshold
values by g , one can see that the two threshold functions in each fragment will have weights 2i and −2i , 0 � i < M and
thresholds 0 and 1. Thus fragments with nonzero index have a size 2 and the one with index 0 has a size 1.

The network size as stated in the theorem can be obtained by adding sizes of (N/M) fragments and (N/M) − 1 recom-
biners. Similarly, the stated depth can be obtained by adding the depth of a fragment to the depth of one recombiner in
each level. �

As shown in [19], decomposing the N-bit comparison threshold function to minimize the weights while keeping the
depth small results in a constant depth 2 network, but the network size increases to O (N4 log N). Further, some of the
threshold functions in the network of [19] have a fan-in as large as 2N . In contrast, the decomposition of the same com-
parison function given in Theorem 13 has a size O (N/M) where M is some small number. About half of the threshold
functions in this decomposition have a fan-in of 2M and maximum weight of 2M−1; The rest are 3-input majority func-
tions. The decomposition uses only three different threshold functions and therefore may be attractive for implementation.
It should however be noted that this low fan-in, low weights and low size has been achieved at the cost of the network
depth which has grown to O (log(N/M)).

6. Conclusions

This paper has focused on decomposing any function in L̂T1 into a polynomial size, log2 depth network of threshold
functions with bounded fan-in. However, since LTd ⊆ L̂Td+1, the results here can also be used to decompose any function in
LTd for a constant d into threshold functions with bounded fan-in. This decomposition will also have polynomial size and
log2 depth. Further, our explicit construction of the network allows one to trade-off the size and depth of the network with
the fan-in bound.

Allowing the use of arbitrary threshold functions in the decomposition has helped us reduce the network size substan-
tially as compared to the decompositions in NC1. For example, the classical decomposition restricts the gates in all but the
first level to AND and OR. As a result, this bounded fan-in decomposition of a function with n-inputs yields a network
of size O (2n) and depth O (n). This is strikingly different from our polynomial size and O (log2 n) depth. Similarly, for the
decomposition of a majority function into bounded fan-in gates, Refs. [29,30] use only ANDs in the middle levels and ORs
in the top levels. As a result, their decomposition size is O (nlogn); whereas allowing arbitrary threshold gates at all levels,
we get a decomposition size O (n2).

The combinatorial relationships among the input weights of a threshold function may be exploited using the properties
obtained here to further reduce our decomposition complexity. We demonstrate this by showing, for example, that an n-bit
comparison function can be decomposed into bounded fan-in threshold gates using a network of size O (n) and depth
O (log n). This reduction in complexity is in spite of the fact that the comparison function is in LT1 and not in L̂T1.

Acknowledgments

The authors would like to thank the anonymous reviewers for helpful comments that have greatly improved the quality
of this manuscript.

Author's personal copy

V. Annampedu, M.D. Wagh / Information and Computation 227 (2013) 84–101 101

References

[1] S. Muroga, Threshold Logic and Its Applications, Wiley–Interscience, New York, 1971.
[2] V. Beiu, J.M. Quintana, M.J. Avedillo, VLSI implementations of threshold logic – a comprehensive survey, IEEE Trans. Neural Netw. 14 (5) (2003) 1217–

1243.
[3] C. Pacha, K. Goser, Design of arithmetic circuits using resonant tunneling diodes and threshold logic, in: Proc. of the 2nd Workshop on Innovative

Circuits and Systems for Nanoelectronics, Delft, NL, 1997, pp. 83–93.
[4] C. Lageweg, S. Cotofana, S. Vassiliadis, A linear threshold gate implementation in single electron technology, in: Proc. IEEE-CS Annual Workshop on

VLSI, Orlando, FL, 2001, pp. 93–98.
[5] I. Amlani, A.O. Orlov, G. Toth, G.H. Bernstein, C.S. Lent, G.L. Snider, Digital logic gate using quantum-dot cellular automata, Science 284 (5412) (1999)

289–291.
[6] M. Goldmann, M. Karpinski, Simulating threshold circuits by majority circuits, SIAM J. Comput. 27 (1) (1998) 230–246.
[7] E. Allender, Circuit complexity before the dawn of the new millennium, in: Lecture Notes in Computer Science, vol. 1180, Springer-Verlag, 1996,

pp. 1–18.
[8] A. Maciel, D. Thérien, Threshold circuits of small majority-depth, Inform. and Comput. 146 (1) (1998) 55–83.
[9] S. Cotofana, S. Vassiliadis, Signed digit addition and related operations with threshold logic, IEEE Trans. Comput. 49 (3) (2000) 193–207.

[10] W. Hesse, E. Allender, D. Barrington, Uniform constant-depth threshold circuits for division and iterated multiplication, J. Comput. System Sci. 65 (2002)
695–716.

[11] K.-Y. Siu, V. Rowchowdhury, On optimal depth threshold circuits for multiplication and related problems, SIAM J. Discrete Math. 7 (1994) 284–292.
[12] N. Alon, J. Bruck, Explicit construction of depth-2 majority circuits for comparison and addition, SIAM J. Discrete Math. 7 (1) (1994) 1–8.
[13] V. Annampedu, M.D. Wagh, Approximate pattern matching in nanotechnology, in: Proc. of Nanotech 2006, vol. 3, Boston, MA, 2006, pp. 316–319.
[14] Y. Leblebici, H. Özdemir, A. Kepkep, U. Çilingiroğlu, A compact high-speed (31,5) parallel counter circuit based on capacitive threshold-logic gates,

IEEE J. Solid-State Circuits 31 (8) (1996) 1177–1183.
[15] P. Mazumder, S. Kulkarni, M. Bhattacharya, J.P. Sun, G.I. Haddad, Digital circuit applications of resonant tunneling devices, Proc. IEEE 86 (4) (1998)

664–686.
[16] A. Hajnal, W. Maass, P. Pudlák, M. Szegedy, G. Turán, Threshold circuits of bounded depth, J. Comput. System Sci. 46 (1993) 129–154.
[17] J. Håstad, M. Goldmann, On the power of the small-depth threshold circuits, in: Computational Complexity 1, 1991, pp. 113–129.
[18] A.A. Razborov, On small depth threshold circuits, in: Scandinavian Workshop on Algorithm Theory, 1992, pp. 42–52.
[19] V. Bohossian, M. Riedel, J. Bruck, Trading weight size for circuit depth: An L̂T2 circuit for comparison, Tech. Rep. Paradise, ETR028, California Institute

of Technology, Nov. 1998.
[20] K.-Y. Siu, J. Bruck, On the power of threshold circuits with small weights, SIAM J. Discrete Math. 4 (3) (1991) 423–435.
[21] M. Goldmann, J. Håstad, A. Razborov, Majority gates vs. general weighed threshold gates, Comput. Complexity 2 (1992) 277–300.
[22] V. Beiu, H.E. Makaruk, Small fan-in is beautiful, in: Proc. of 1998 IEEE Int. Joint Conf. on Neural Networks, vol. 2, Anchorage, AK, 1998, pp. 1321–1326.
[23] P. Gupta, N.K. Jha, An algorithm for nano-pipelining of RTD-based circuits and architectures, IEEE Trans. Nanotechnol. 4 (2) (2005) 159–167.
[24] W. Prost, U. Auer, F.-J. Tegude, C. Pacha, K.F. Goser, G. Janssen, T. van der Roer, Manufacturability and robust design of nanoelectronic logic circuits

based on resonant tunnelling diodes, Int. J. Circuit Theory Appl. 28 (2000) 537–552.
[25] G.S. Glinski, C.K. Yue, Decomposition of n-variable threshold function into p-variable threshold functions, where p < n, Tech. Rep. 63-10, Dept. of EE,

Univ. of Ottawa, Canada, June 1963.
[26] V. Annampedu, M.D. Wagh, Building multi-input RTD circuits under reliability constraints, in: Proc. of the 2nd IEEE Int. Workshop on Defect and Fault

Tolerant Nanoscale Architectures, Boston, MA, 2006, pp. 45–52.
[27] A. Yao, On ACC and threshold circuits, in: IEEE Symposium on Foundations of Computer Science (FOCS), 1990, pp. 619–627.
[28] O.N. Muzychenko, Uniform and regular structures for realization of symmetric functions of the algebra of logic, Autom. Remote Control 59 (4) (1998)

581–592.
[29] V. Beiu, J. Peperstraete, R. Lauwereins, Enhanced threshold gate fan-in reduction algorithms, in: ICYCS’93: Proceedings of the Third International

Conference on Young Computer Scientists, Tsinghua University Press, Beijing, China, 1993, pp. 339–342.
[30] V. Beiu, J. Peperstraete, J. Vandewalle, R. Lauwereins, Overview of some efficient threshold gate decomposition algorithms, in: Proc. of 9th Intl. Conf.

Control Systems and Comp. Sci. CSCS’93, Bucharest, Romania, 1993, pp. 458–469.
[31] V. Annampedu, M.D. Wagh, Reconfigurable approximate pattern matching architectures for nanotechnology, Microelectronics 38 (2007) 430–438.

