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from recursive algorithms in the presence of overheads. 
The complexity of such optimal algorithms shows a 
considerable improvement over algorithms using equal 
partitions [5]. But unfortunately, the choice of optimal 
partition sizes is greatly influenced by the nature of the 
overheads. It is therefore imperative to correctly model 
the architectural and algorithmic overheads and then 
efficiently determine the optimal partitions given any 
problem size. This paper develops procedures to obtain 
such optimal partitions for certain special cases. 

Section II of this paper describes me model for 
parallel recursive algorithm incorporating both the 
symmetric and asymmetric overheads inherent in any 
parallel computing environment. A specific case of the 
generalized model is solved in Section III. Section IV 
concludes the paper with some discussions. 

IL PARALLEL R E C U R S I V E M O D E L 
The complexity of a parallel recursive algorithm 

may be described by the following equation. 

where k(r) and X(n,r) represent the partition and 
recombination overheads respectively. The optimal 
partition size (solution to r of the above minmax 
recurrence relation) is nontrivial and is very different 
from the n/2 value conventionally used. Using the 
optimal partitions at every stage of the recursion 
enhances the performance greatly. In this paper we 
solve a challenging case of our parallel recursive 
model where the overhead functions are 
problem—dependent. 

I. INTRODUCTION 
Many parallel processing algorithms are based on 

the recursive paradigm [1]. This technique allows a 
problem to be partitioned into smaller instances of itself, 
and combining the partial results to obtain the final 
solution. Since these smaller instances can themselves 
be recursively partitioned into even smaller sizes, the 
procedure reduces to solving minimal sized problems 
and recombining their results. The recursive technique 
is ideal for parallel processing because the smaller sized 
problems are mutually independent and hence can be 
executed concurrently in different processors. 

The performance of any parallel recursive algorithm 
is greatly affected by the architectural and algorithmic 
overheads inevitable in any realistic parallel computing 
environment. These overheads, among others, include 
the cost of interprocessor communication to distribute 
data and collect results, the cost of combining the partial 
results and the costs associated with converting one or 
both subproblems to conform to the exact form of the 
original problem. Conventionally these overheads are 
neglected in the design of algorithms [2] - [41. This 
leads to ad hoc equal partitioning and nonoptimal 
performance of the recursive technique on real world 
parallel machines. 

It has recently been [51 shown that by proper choice 
of partitions, one may extract optimal performance 

where, T(n) is the complexity of a size n problem, h0 is 
some small problem size below which the recursion is 
not applied and all problems have the same complexity 
to, k(r) is the partition overhead dependent on the 
partition size, and X(n,r) is recombination overhead as 
a function of the problem size and/or the partition size. 

While the symmetric recombination overhead, 
X(n,r) characterizes the costs associated with the 
recombination of me partial results, the asymmetric 
partition overhead k(r) is related to the costs incurred 
during interprocessor communication as well as any 
extra computations one of the partitions may require. 
Note that in some cases both processors participate in 
the communication phase, but such a symmetric cost 
can be easily incorporated in the X(n,r) term. 

The aim of this paper is two-fold. 1) We want to 
determine optimal r values in the solution of (1) for all 
problem sizes of interest. Such r values will be referred 
to as the optimal partitions. It will be shown in this paper 
that that the optimal partitions are very different from 
the ad hoc equal partitions n/2. Note that our model does 
not suggest binary partitioning, but with the help of our 



partitioning algorithms one can easily generate many 
partitions simultaneously. The complexity of such 
algorithms is of little consequence because they are 
going to be used by parallelizing compilers infrequently 
(analogous to time-consuming place-and-route in 
VLSI). Similar partitioning algorithms have been 
previously published by the authors [8]. 2) We want to 
derive either a closed-form or an asymptotic solution of 
the complexity function T(n). Again, we will show that 
the complexity T(n) is far better considering the optimal 
partitions as opposed to the ad hoc equal partitions. 

Table 1. contains a list of all the relevant symbols 
used in this paper and their corresponding definitions. 

Table 1. Symbols and their definitions 
in . SOLUTION OF THE MODEL 

The logarithmic merging or recombination 
overheads occur in many real world algorithms that 
include many parallel sorting and searching problems. 
This scenario is modeled by the following recursion. 

Due to the logarithmic factor in the recombination 
overhead function, one can realize that any problem size 
of the form of a power of 2 is special in the sense that the 
contribution of the recombination part necessarily 
increases mere. This intuitive notion is formalized in 
me following lemma. 

Lemma 3: T(2') - T(2'-l) ≥ A, for any positive i. 

The determination of the optimal partition size 
in recurrence (2) for any n is of utmost importance 
for design and implementation of optimal 
algorithms. In this section, we present relevant 
results to characterize the optimal partition sizes. 
Clearly, T(n) is monotonically increasing with n. 

Lemma 1: T(n) is a monotonically increasing 
function of n. 

Proof: (By induction over n) Trivial. Q 
Note mat although according to (2), any integer 

between 1 to n-1 can be an optimal partition size, the 
search domain for the optimal partition size, is in 
actuality, highly restricted as shown by the following 
result. 

Lemma 2: If p e Rn, Uien T(rt + 1) = mill 

Proof: this result is similar to that of the 
convolution minimization stated by Fredman and Knuth 
in [7]. Please refer to it for the proof. Q 

There may exist more man one optimal partition size 
for any n. But as shown in Theorem 1, it is uniquely 
defined at every r\m, the largest problem size with 
complexity m. 

Theorem 1 The optimum partition set Rr\,„ 



It can be shown that for every ‰ which is not of the 
form 2'-l, rm is the only partition size. For an T‰ of the 
form 2'-l, rm is the smallest possible optimal partition 
size. When the problem size is not an r„„ there may exist 
numerous partition sizes. But, as the following result 
shows, r„, can still be used as an optimal partition size. 

Theorem 2; For any n e S,„, R„ includes r,„. 
Proof: As a consequence of Lemma 4 we know that 

Proof: Let ISm! ≠ 0. This means that there is a 
problem of size T|„, whose complexity is m. Let r e Rf↑m■ 
Clearly then, m = T(‰, r) = max { T(‰ - r) + XLlog‰J, 
T(r) + kr + UlogT]mJ}. 
If m equals the first term of the max function, then the 
size (‰ - r) problem has a complexity (m - X|_l°g‰J 
implying IS(m _ XLlogT)mJ)l ≠ 0. On the other hand if 
the second term was chosen, then T(r) + kr + X[log‰J 
= m, as specified in the statement of the theorem. This 
proves necessity of given conditions for ISml to be ≠ 0. 

We prove sufficiency by showing that either of the 
two conditions implies ISml ≠0. Let's consider first IS(m 
-UiogTimJ>l≠O. We will prove that ISm!=0 is a 
contradiction to this as follows. If ISinl≈0, then there 
exists a problem size n such that T(n)<m and T(n+1) > 
m. Obviously n is the maximum of its complexity class 
and from Theorem 1, if r is its optimum partition size, 

We now investigate the behavior of the complexity 
T(n). First, we look at the allowable complexity values. 

Lemma 4: For any complexity m for which ISml ≠ 
0, g I (m-to), where g = gcd(k,X)■ 

Proof: This result is obvious from the fact that for 
n<rk>, complexity of size n problem is to, and at every 
stage of computation, it differs from an earlier 
complexity by (kr+X Vlogz (‰ ) \ or X Llog2 (r|„,) J. 
both of which are multiples of g. Q 

Lemma 4 shows that the complexity T(n) is not a 
continuous function of the problem size n and the gaps 
in the complexity are at least equal to g. In general, the 
converse of Lemma 4 is not true. The necessary and 
sufficient condition for the a complexity class to be 
nonempty is much more complex and is specified by the 
following theorem. 

To prove the sufficiency of the second condition, 
consider now that IS(„, _ xilogninj)' = 0 o u t f°r some r, 
m = T(r) + kr + X|_logn,mJ∙ Relation IS(m _ xilogt|inJ)l = 
0 implies that there exists a problem size n such thatT(n) 
< m - >■Lk>giliiiJ and T(n + 1) > m - XLlog‰J ■We will 
now show that problem size ni = n + r has complexity 
m, dms proving that ISml ≠ 0. We can write 

We now present an analysis to determine the order 
of complexity. Interestingly enough, this scenario is 
similar to the model solved by us in [X]. By using the 
results derived so far in this section and the results of 
complexity in [8] we now derive the order of T(n). 
Theorem 4: T(n) is of order 0([nlog(n)]°■5). 
Proof: Rewriting recurrence relation in (2) we have, 
T(n)-XUog(n)J =min{max{T(n-r),T(r)+kr}. (22) 
Now add a sufficiently large constant P = Xlog(N) to the 
right hand side of equation (22), where N is the largest 
problem size of interest, and subtract appropriate terms 
from each element of the max function to get T(n) -



B making a simple substitution, f(n) = T(n) - XUog(n) J∙ 
we can transform (23) into 
f (n)≤ min{max{f(n-r),f(r) + kr} + P } . (24) 
Please refer to [10] to find that (24) is similar to the 
recursion solved in that paper for the special case of a 
constant s=l. A similar result has also been derived in 
[6]. So from [6] and [8] we get the order of N, a 
complexity m problem, to be 0((m2)log(N)). (25) 
Note here that N denotes the problem size n and m 
represents the value of the function f(n). Thus (25) is 
interpreted to imply that the order of f(n) is 
0([nlog(n)]°■5). Thus T(n) is of the order 
0(([nlog(n)]°■5) + log(n)) = O([nlog(n)]° 5) . Q 

If n/2 is chosen as the partition size at every stage of 
the recursion (2), then one gets T(n) = T(n/2) + kn/2 + 
XLlog(n) J. Clearly, mis forces the complexity T(n) to be 
0(n + loglog(n)). Thus one of the most significant 
impacts of optimal partitioning as opposed to the 
commonly used equal partitioning is the drastic 
reduction of the overall computational complexity. We 
have succeeded in reducing the complexity from O(n) 
to O([nlog(n)]0■5). 

We now present a generalized algorithm to compute 
the optimal partition size r for any problem size n as a 
solution to (2). The algorithm is sell-explanatory and 
is based on the results derived in mis section. 
Algorithm to compute optimal partition size 
Step 1. (Initialization) 

parallel algorithms based on the principle of recursive 
partitioning. Crucial to the analysis of optimality is the 
development of a well defined analytical model in the 
form of a minmax recurrence relation that incorporates 
the algorithmic and architectural overheads 
encountered in real world parallel computing 
environments. Conventionally researchers have 
ignored these unavoidable overheads in their design and 
analysis of parallel recursive computations and most 
have chosen the equal partition size on an ad hoc basis. 
We have demonstrated a novel technique of including 
these overheads at the outset such mat optimal 
partitioning decisions can be made to mitigate the 
adverse effect of these overheads. Our model does not 
suggest binary partitioning, but with the help of our 

partitioning algorithms one can easily generate many 
partitions simultaneously. 

The case solved in mis paper, deals with the 
recombination overhead as logarithmic function of me 
problem size. We have shown that the order of 
complexity can be significantly reduced from O(n) to 
O([nlog(n)]0■5) by using optimal partitions instead of 
the ad hoc equal partitions at every stage of me 
recursion. We have also designed a generalized 
algorithm to compute these optimal partition sizes. 
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IV. C O N C L U S I O N S 
This paper presents the design and analysis of 


