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Abstract— With the increasing popularity of MP3 audio, there
is a need to develop cost and power efficient architectures for
the MP3 encoder and decoder. This paper describes dedicated
architectures for computing the modified discrete cosine trans-
form (MDCT) and its inverse (IMDCT). Recent profiling studies
have shown that these operations represent about 30% of the
total MP3 computations. MP3 format defines two frame sizes
that can occur in the same data stream. We have developed the
most efficient algorithms for MDCT and IMDCT suitable for
both sizes. Unlike previous algorithms, our computations can be
unified in a single ASIC architecture. This unified architecture
implemented in 90 nm TSMC library is still 25% smaller and
25% faster than any previous single frame size architectures
designed in the same technology. In addition, at 128 Kbits/sec
data rates, our algorithms save nearly 1800 multiplications per
second (18%) which can help reduce the power consumption.

I. INTRODUCTION

The MPEG-1/2 layer-III (MP3) standard is widely employed
in music industry because of its efficient audio compression. A
key enabler in MP3 coding is the prefect reconstruction (PR)
cosine modulated filter bank based on the concept of time
domain aliasing cancellation (TDAC) [1]. For the encoder,
this analysis filter bank is realized by applying the modified
discrete cosine transform (MDCT) to sliding blocks of data,
while the synthesis filter bank of the decoder uses the inverse
modified discrete cosine transform (IMDCT). Since the MDCT
and IMDCT require intensive computations, fast algorithms
and efficient implementations for theses transforms is im-
portant to the realization of high quality audio compression,
especially when most MP3 audio players are battery operated
[2]–[4].

The N point MDCT of a sequence {x(i)} is defined as

X(k) =

N−1∑
i=0

x(i) cos(
π(2i + 1 + N

2
)(2k + 1)

2N
),

0 ≤ k < N/2.

The inverse MDCT (IMDCT) is defined as

x(i) =
2

N

N

2
−1∑

k=0

X(k) cos(
π(2i + 1 + N

2
)(2k + 1)

2N
),

0 ≤ i < N.

Note that MDCT converts N signal samples into only N/2
transform samples. MP3 standard defines two data frames of
1152 and 384 samples. These frames are further divided in 32

subbands to be processed by the MDCT/IMDCT, resulting a
long block of 36 samples and a short block of 12 samples. The
switch from a long block to a short block is called window
switching and it is used to supress distortions frequently
associated with frequency doamin coding of an audio signal.
The ability to process both long and short blocks is crucial to
efficient implementations of MP3 audio encoder and decoder.

Because the MP3 block lengths are not power of two, only
a few fast algorithms are published and the focus has been
on software implementations [5]–[7]. However, over the years
the cost of application specific architectures has decreased
substantially. In addition, such dedicated architectures can be
embedded in field programmable gate arrays making them just
as flexible as software routines. Such an approach permits one
to utilize a low-cost and low-power processor to work on data
management and other computationally simple tasks while
the dedicated hardware can take care of the computationally
challenging tasks.

This paper is devoted to the development of the MDCT/
IMDCT hardware accelerator for MP3 audio applications.
Based on a group theoretic partitioning of the transform kernel,
our solutions employ carefully crafted bilinear algorithms
which can be directly mapped to hardware architectures. We
show for the first time that both the long and short MP3 audio
blocks can be seamlessly processed with a single hardware
architecture. Our MDCT/IMDCT algorithms require only 9
multiplications for the short block and 36 multiplications for
the long block. These may be compared with the current
best algorithms for the same tasks which use at least 11
and 43 multiplications respectively [5]–[7]. However, the main
advantage of the proposed algorithms is its bilinearity which
implies that all the multiplications are independent and can be
carried out concurrently. Thus when implemented in hardware,
our algorithms have only one multiplication on the critical path
for both the long and short block MDCT/IMDCT. Previous
reported algorithms have at least 2 multiplications along the
critical path [5]–[7]. As a result, our VLSI implementations re-
duce the critial path delay by about 25% while simultaneously
saving about 25% of the chip area.

II. ALGORITHM AND ARCHITECTURE

A bilinear algorithm is made up of an addition stage
followed by a stage of independent multiplications and a final
addition stage. Our procedure consists of (a) converting the
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MDCT/IMDCT computation to a DCT of type IV (using
additions and subtractions only), (b) decomposing the DCT
kernel into cyclic convolutions and Hankel matrix products,
and finally, (c) employing bilinear algorithms for each of the
convolutions and Hankel matrix products to obtain the required
bilinear algorithm for the MDCT. We illustrate each of these
steps in this section.

A. Conversion of MDCT into DCT

To obtain MDCT using a DCT, introduce a new data
sequence

y(i) =

{ −x(i + 3N/4), if 0 ≤ i < N/4,
x(i − N/4), if N/4 ≤ i < N.

Then defining

z(i) = y(i) − y(N − 1 − i), 0 ≤ i < N/2,

an N point MDCT can be expressed as an N/2 point DCT-IV
as

X(k) =

N/2−1∑
i=0

z(i) cos

(
π(2i + 1)(2k + 1)

2N

)
,

0 ≤ k < N/2.

Thus the MDCT computation of short and long blocks is
transformed into DCTs of 6 and 18 points respectively.

B. Conversion of IMDCT into DCT

To obtain the IMDCT, we first compute the N/2 point type-
IV DCT of X as

z(i) =
2

N

N/2−1∑
i=0

X(k) cos

(
π(2i + 1)(2k + 1)

2N

)
,

0 ≤ i < N/2.

Then defining a new data sequence

y(i) =

{
z(i), if 0 ≤ i ≤ N/2 − 1,
−z(N − 1 − i), if N/2 ≤ i < N,

One can recover the signal sequence as

x(i) =

{
y(i + N/4), if 0 ≤ i < 3N/4,
−y(i − 3N/4), if 3N/4 ≤ i < N.

Thus the IMDCT computation of short and long blocks is also
transformed into DCTs of 6 and 18 points respectively.

C. DCT algorithm for MP3 short block

Recall that a DCT-IV of an N point sequence {x(i)} is
given by

X(k) =

N−1∑
i=0

x(i) cos(
π(2i + 1)(2k + 1)

4N
), 0 ≤ k < N. (1)

For MP3 short block, the DCT length N = 6. To compute (1)
for this N ,we partition the signal and transform indices in two
sets: set S1 = {1, 4} is made up of those i’s for which (2i+1)
is a multiple of 3 and set S2 = {0, 2, 3, 5}, of the rest. We
compute those transform components together whose indices

are in the same set. Further, the summation in (1) is carried out
over the two signal index sets separately. We will denote the
computation of X(k) with signal component indices restricted
to sets S1 and S2 by X1(k) and X2(k) respectively. Clearly,
X(k) = X1(k) + X2(k).

Let p denote the DCT kernel element cos(πp/4N) and
p, the element − cos(πp/4N). Then from (1), the transform
components X1(k), k ∈ S1 are given by:

[
X1(1)
X1(4)

]
=

[
9 3
3 9

] [
x(1)
x(4)

]
. (2)

Since the constant matrix in (2) is a Hankel matrix, one can
use a bilinear algorithm to obtain this product.

Similarly, using the same shorthand notation, transform
components X2(k), k ∈ S1 are given by:

[
X2(1)
X2(4)

]
=

[
3 9
9 3

] [
x(0) − x(3)

−x(5) − x(2)

]
. (3)

Note that (3) exploits the fact that some kernel matrix elements
are equal in magnitude and therefore the signal sequence may
be folded to reduce the number of multiplications. Since the
constant matrix in (3) is a Hankel matrix, one can once again
use a bilinear algorithm to obtain this product.

When both the signal and transform indices are restricted to
set S2, the computation can be transformed into a multidimen-
sional convolution. To do this, observe that indices in S2 are
elements of A(8N), a group formed by non-negative integers
less than and relatively prime to 8N under the operation of
multiplication modulo 8N . The structure of this group can
be used to order the indices in S2 as well as to define a
sign function. By using the order {0, 5, 3, 2} suggested by
A(8N) and the corresponding sign function {1,−1, 1, 1}, one
can express X2(k), k ∈ S2 as:

⎡
⎢⎢⎣

X2(0)
−X2(5)

X2(3)
X2(2)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

1 11 7 5
11 1 5 7
7 5 1 11
5 7 11 1

⎤
⎥⎥⎦

⎡
⎢⎢⎣

x(0)
−x(5)

x(3)
x(2)

⎤
⎥⎥⎦ . (4)

The structure of the matrix in (4) is predicted by the structure
of the group A(8N). By partitioning the matrix in (4) as
shown, one can see that it is a block cyclic matrix with
each block being a Hankel matrix. Thus this computation
corresponds to a two dimensional convolution with a 2 point
cyclic convolution along one dimension and a 2 point Hankel
product along the other. Again, appropriate bilinear algorithms
for these small lengths can be combined to obtain the bilinear
algorithm for (4).

Finally, when the signal indices are restricted to the set S1,
one the computation of X2(k), k ∈ S2 gives:

⎡
⎢⎢⎣

X1(0)
X1(5)
X1(3)
X1(2)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

3 9
9 3
3 9
9 3

⎤
⎥⎥⎦

[
x(1)
x(4)

]
. (5)
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By comparing (5) with (2) one can see that⎡
⎢⎢⎣

X1(0)
X1(5)
X1(3)
X1(2)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

−X1(4)
−X1(1)

X1(4)
−X1(1)

⎤
⎥⎥⎦ . (6)

Equation (5) shows that X1(k), k ∈ S2 need not be computed
separately.

As a last simplification, note that because of the following
trigonometric identities for N = 6,

cos(9π/4N) = cos(π/4N) − cos(7π/4N),
− cos(3π/4N) = − cos(11π/4N) − cos(5π/4N),

(7)
one gets

X2(1) = −2X2(2),
X2(4) = 2X2(3).

(8)

Therefore computation for (3) can be absorbed into the that
for (4). The operation of multiplication by 2 may be counted
as one addition. However, frequently in hardware design, this
scaling by 2 can be realized as a trivial left shift with negligible
impact on area and speed of the implementation.

The complete bilinear algorithm for 6 point DCT is shown
in Fig. 1. The multiplication constants used in Fig. 1 have the
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Fig. 1. Proposed bilinear implementation of the 6 point DCT-IV.

following values: c1 = 0.5412, c2 = −0.9239, c3 = 1.3066,
c4 = 0.4687, c5 = 0.3314, c6 = −1.1315, c7 = 0.6533,
c8 = −0.4619 and c9 = 0.2706.

The arithmetic complexity and hardware delay of vaious
MDCT/IMDCT algorithms are compared in Table I. One can
see that the new proposed algorithm has about 20% less mul-
tiplications than other algorithms currently available. Because
of the bilinear structure, we have only one multiplication on
the critical path which results into a very fast implementation.
Figures 2 and 3 show a comparison of various fixed point
implementations in TSMC 90nm technology. It is evident
from this figure that the proposed bilinear algorithm provides
the smallest and fastest MDCT/IMDCT implementation for
MP3 audio short block.

D. DCT algorithm for MP3 long block

We now extend the procedure of Subsection II-C to length
N = 18 which is used in MP3 audio long block. As before, we

TABLE I

COMPLEXITIES AND CRITICAL DELAYS OF VARIOUS 12 POINT MDCT

AND IMDCT ALGORITHMS. NOTE THAT M AND A REFER TO

MULTIPLICATION AND ADDITION RESPECTIVELY.

Algorithm complexity Critical delay
MDCT Proposed 9M + 29A† M + 6A

Ref. [5] 13M + 39A 2M + 6A

Ref. [6] 13M + 27A 2M + 5A

Ref. [7] 11M + 29A 3M + 7A

IMDCT Proposed 9M + 23A† M + 5A

Ref. [5] 13M + 33A 2M + 5A

Ref. [6] 13M + 21A 2M + 4A

Ref. [7] 11M + 23A 3M + 6A

† Two of these additions can be converted to shifts.
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Fig. 2. Delay and area for various implementations of 12 point MDCT for
MP3 short block.
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Fig. 3. Delay and area for various implementations of 12 point IMDCT for
MP3 short block.
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partition the transform components into two sets and compute
each set of components together. The partition of transform
indices is based on the set of integers A(8N) = {0 ≤ i <
8N | gcd(i, 8N) = 1}, i.e., a set of positive integers less
than 8N which are relatively prime to 8N . The transform
components X(k) with (2k + 1) /∈ A(8N), can be directly
obtained from a DCT of a 6 point sequence y(i) obtained by
folding of the input as

y(i) = x(i) − x(11 − i) − x(12 + i), 0 ≤ i < 6.

On the other hand, the transform components X(k) with
(2k + 1) ∈ A(8N) require a computation that we call the N
point Cosine Group Transform, CGTN . This overall structure
of the computation for N = 18 is shown in Fig. 4.

X(k)

X(k)

i=0,1,...,17.

ε

ε2k+1     A(8N)

2k+1     A(8N)
and 0<k<18.

and 0=<k<18.
x(i)

Cosine Group Transform

Addition
Pre−

18

DCT−IV of
6 points

CGT

i=0,1,...,5.y(i),

Fig. 4. Flow graph for 18 point bilinear DCT-IV.

The Cosine Group Transform, CGTN , can itself be com-
puted recursively by dividing the signal components into sets
using the group A(N). In particular, the portion of the CGTN

that uses signal components x(i), with i /∈ A(N) forms
CGTN/3 while the portion using x(i), with i ∈ A(N) can
be structured as a multidimensional cyclic convolution. The
output of this convolution may be added to the output of
CGTN/3 to obtain the output of CGTN . The decomposition
of CGTN is summarized in Fig. 5.

x(i)

X(k)

Y(k)
x(i)

ε

ε

ε

2i+1     A(8N)

2i+1     A(8N)

ε2k+1     A(8N)

CGT
ε

X’(k)
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i=0,1,...,17.

2k+1     A(8N)

2k+1     A(8N/3)

Multidimensional
cyclic convolution

6

Post−
Addition

Fig. 5. Flow graph for cosine group transform CGT18.

The computation of 18 point DCT (hence 36 point MDCT/
IMDCT) for the MP3 long block requires one to obtain CGT18

and a 6 point DCT. From Fig. 5, CGT18 computation in turn
involves that of a CGT6 and a large computational block
(multidimensional convolution). We already have the 6 point
bilinear DCT algorithm from Subsection II-C. Further, the
CGT6 is also a part of the 6 point DCT as indicated in Fig. 1.
Thus we only need to obtain the additional algorithm for the
multidimensional convolution in Fig. 5.

As in the previous case, this block can be converted into
a multi-dimensional convolution with the use of the group
A(8N) where N = 18. By permuting the inputs and outputs
as per the index sequence {0, 9, 11, 2, 12, 14, 8, 17, 15, 6, 3, 5}
and using the sign function values {1, 1,−1,−1,−1, 1, 1, 1, 1,
1,−1,−1}, one can translate the computation to a three-
dimensional convolution with a 2 point cyclic convolution,
a 3 point cyclic convolution and a 2 point Hankel matrix
multiplication along the three dimensions. The flow-chart of
this multi-dimensional convolution is shown in Fig. 2. Note
that both the index permutation and the sign function sequence
are obtained systematically from the structure of the group
A(8N). The details are omitted for brevity.
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Fig. 6. Proposed bilinear implementation of multidimensional convolution
involved in the 18 point DCT-IV.

The multiplication constants used in Fig. 6 are as follows:
c1 = −0.9231, c2 = −0.6528, c3 = 2.2287, c4 = −0.5086,
c5 = −0.3596, c6 = 1.2278, c7 = −0.6025, c8 = −0.4261,
c9 = 1.4546, c10 = −0.1628, c11 = 0.2779, c12 = −0.3930,
c13 = 0.1851, c14 = −0.3160, c15 = 0.4469, c16 = 0.7181,
c17 = −1.2258 and c18 = 1.7336.

The arithmetic complexity and hardware delay of vaious
MDCT/IMDCT algorithms are compared in Table II. The

TABLE II

COMPLEXITIES AND CRITICAL DELAYS OF VARIOUS 36 POINT MDCT

AND IMDCT ALGORITHMS. NOTE THAT M AND A REFER TO

MULTIPLICATION AND ADDITION RESPECTIVELY.

Algorithm Complexity Critical delay
MDCT Proposed 36M + 150A† M + 10A

Ref. [5] 47M + 165A 2M + 9A

Ref. [6] 47M + 129A 2M + 8A

Ref. [7] 43M + 133A 3M + 22A

IMDCT Proposed 36M + 132A† M + 9A

Ref. [5] 51M + 151A 2M + 8A

Ref. [6] 51M + 115A 2M + 7A

Ref. [7] 43M + 115A 3M + 21A

† Two of these additions can be converted to shifts.

proposed bilinear MDCT/IMDCT algorithm has the lowest
multiplication requirement for MP3 audio short block. For
128Kbps MP3 audio stream, our algorithms represent a saving
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of nearly 1800 multiplications per second. This can instantly
translate into significant power savings for MP3 players, now
mostly battery operated. Moreover, because the proposed algo-
rithm is bilinear, a directly mapped hardware will have fastest
implementation due to the minimization of multiplications on
the critical path.

III. UNIFIED ARCHITECTURE

The computation of MDCT/IMDCT of MP3 long block
requires one to design for a multi-dimensional convolution,
a CGT6 and a 6 point DCT. Note that both the CGT6 and the
6 point DCT are used in the computation of MDCT/IMDCT
of MP3 short block. Therefore without introducing any extra
computations, we can integrate the computation of MP3 short
block with that of the long block. Three different unified
MDCT/IMDCT architectures are proposed, providing the pro-
cessing power of one long or one short block (architecture A),
one long or two short blocks (architecture B), or half long or
one short block (folding, architecture C). It is worth empha-
sizing that the ability to process both block sizes is of central
importance to a low cost and low power implementation of
MP3 audio player.

We implemented our algorithms and those available in
the literature using fixed point arithmetic in TSMC 90nm
technology. The area and delay comparisons are shown in
Fig. 2. We compare our unified architecture performance with
that of other architectures useful for processing long block
audio only. One can see that using the same technology, our
unified architectures are still 25% smaller and 25% faster than
any previous architectures designed for a single frame size.
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Fig. 7. Delay and area for unified 12 and 36 point MDCT and IMDCT
architectures (A, B and C) for MP3 audio, with comparison to the 36 point
MDCT architectures in literature.

IV. CONCLUSION

The modified discrete cosine transform (MDCT) and its
inverse (IMDCT) are amongst the two most compute intensive
operations in MP3 audio encoders and decoders. This paper
has developed efficient bilinear algorithms and architectures
for computing the MDCT and IMDCT of short and long MP3
blocks. Our algorithms have less multiplications than any other
algorithm in literature. In mobile MP3 players this may imply
a sizable power saving.

The real advantage of our algorithm is seen when it is cast
in Silicon. Because our algorithm is bilinear, it has only one
multiplication on the critical path. All other algorithms have
at least two multiplications on the critical path. This implies
a much faster MP3 encoder and decoder architecture allowing
much more flexibility in trading speed for area and power of
the hardware accelerator.

The structure of our algorithm allows us to create unified
architectures to process both the long and short MP3 blocks.
This ability to process both block sizes is crucial to MP3
encoders and decoders because both types of blocks generally
abound in the same data stream. As compared with the
implementations (in the same technology) of other algorithms
that process only a single long block, our unified architectures
processing both size blocks are still 25% smaller and 25%
faster.
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