
Bilinear Algorithms for Discrete Cosine Transforms

of Prime Lengths

Venkatram Muddhasani and Meghanad D. Wagh1

Department of Electrical and Computer Engineering

Lehigh University, Bethlehem, PA 18015, USA

vem3@Lehigh.Edu, mdw0@Lehigh.Edu

Abstract: This paper presents a strategy to design bilinear discrete cosine transform (DCT)

algorithms of prime lengths. We show that by using multiplicative groups of integers, one

can identify and arrange the computation as a pair of convolutions. When the DCT length

p is such that (p−1)/2 is odd, the computation uses two (p−1)/2 point cyclic convolutions.

When (p − 1)/2 = 2mq with m > 0 and q odd, the computation requires one (p − 1)/2

point cyclic convolution and a combination of a q point cyclic convolution and a 2m point

Hankel product. Using bilinear algorithms for convolutions and Hankel products, one gets a

bilinear DCT algorithm. We also show that the additions required beyond the convolutions

can be minimized by a small modification to the convolution algorithms. This minimization

exploits the fact that efficient bilinear convolution algorithms are almost always based on

Chinese Remainder Theorem.

Keywords. Discrete cosine transform, Bilinear, Fast algorithm, Cyclic convolution, Group

theory.

1Corresponding author. E-mail: mdw0@Lehigh.Edu, Tel: +1 (610) 758-4142, Fax: +1 (610) 758-6279.

1

1 Introduction

Discrete cosine transform (DCT) is one of the most popular transforms used in a variety of

applications. It’s close approximation to Karhunen-Loeve transform implies a high degree

of energy compaction. It is therefore used in a wide range of data compression applications

including the low bit rate video and speech coding [1] and JPEG and MPEG standards [2].

It is also used for linear filtering [1] and pattern recognition [3].

The ever increasing need for faster digital signal processing (DSP) applications has forced

development of new high speed algorithms for core DSP computations such as discrete Fourier

and discrete cosine transforms. Most algorithms follow the pioneering strategy outlined

by Cooley and Tukey [4] that recursively decomposes the transform kernel into smaller

kernels. The resultant algorithms for n point transforms generally have O(log n) sequential

stages, each typically having O(n) computational complexity [1, 5–7]. Even though this

approach seems appealing computationally, it is applicable only to transforms lengths that

are composite.

The other strategy, first used by Rader for obtaining a prime length DFT [8], identifies

cyclic or skew-cyclic structures within the transform matrix. By using efficient algorithms

for these known structures, one can obtain a fast algorithm for the transform. With the

development of low complexity convolution algorithms [9,10], this method of deriving trans-

form algorithms looks even more appealing. It has been applied to the prime length discrete

Fourier transform (DFT) [8, 10, 11], composite length DFT [10]. Since the cyclic convolu-

tion algorithms of [9, 10] are bilinear, the transform algorithms derived from them are also

bilinear. They can be characterized by three sequential stages – the first and last stages of

simple additions and a middle stage of multiplications. Further, all the multiplications are

independent and can be done concurrently. Thus these algorithms have a further advantage

if they are executed or implemented on architectures that can exploit this concurrency.

2

The DCT is also amenable to similar methods as demonstrated by Wagh and Ganesh [12]

in case of arbitrary lengths. Their algorithm extracts convolution-like structures within

the DCT transform kernel using group theoretic methots and then employs efficient cyclic

convolution algorithms to derive the complete DCT algorithm. Chan and Siu [13] gave a

method to convert a DCT computation of a prime length into two pure cyclic convolutions.

Unfortunately, this conversion requires a number of extra multiplications and additions,

thereby increasing the overall complexity of the procedure. Later they improved upon this

by giving a new technique to convert the prime DCT computation into a cyclic and a skew-

cyclic convolution [14]. This new technique uses only a few additions for the conversion, but

forces the user to deal with a skew-cyclic convolution. This was further improved upon by

Yin and Siu [15] by proving that the DCT of prime lengths p can be expressed as two cyclic

convolutions if (p − 1)/2 is also a prime.

In this paper we show that a p point DCT can be computed as two cyclic convolutions,

each of length (p−1)/2, when (p−1)/2 is any odd number. For other primes, the DCT can be

computed as a cyclic convolution and a skew cyclic convolution, each of length (p−1)/2. We

also show that this 2mq point skew-cyclic convolution can be converted to a multidimensional

computation with a cyclic convolution of odd length q along one dimension and multiplication

by a 2m × 2m Hankel matrix along the other. Using bilinear algorithms for each of these

algorithms, we obtain a bilinear algorithm for the DCT. Finally, the number of additions

involved in the DCT computation is reduced by (3p − 7)/2 through a small modification to

the cyclic convolution algorithms used.

This paper is organized as follows. Section 2 deals with the design of bilinear DCT

algorithms of prime lengths p; the case of (p mod 4) = 3 being treated in subsection 2.1 and

the case of (p mod 4) = 1, in 2.2. Section 3 focuses on minimizing number of additions in

DCT calculation. In Section 4 we discuss the complexity of the resultant DCT algorithm

and compares our results with others. Finally, Section 5 presents our concluding remarks.

3

2 Design of the algorithms

As mentioned in Section 1, the DCT algorithms in this paper use cyclic and/or skew-cyclic

convolutions. A cyclic convolution of N point sequences a and b is defined as

c(j) =

N−1
∑

i=0

a(i)b((j − i) mod N), 0 ≤ j < N. (1)

In this paper we encounter this same calculation, but in a slightly different form. By the

mappings described later, a DCT can be split into smaller computations of the form

c(j) =

N−1
∑

i=0

a(i)b((j + i) mod N), 0 ≤ j < N. (2)

By reflecting the components of a to get a′ = [a0, aN−1, aN−2, . . . , a1] and using it in (2) gives

c(j) =

N−1
∑

i=0

a′(i)b((j − i) mod N), 0 ≤ j < N. (3)

One can readily see that (3) is a cyclic convolution of sequences a′ and b. Thus computation

(2) can be carried out by reflecting a and cyclically convolving the resultant sequence with

b. Clearly, the complexity and structure of this computation is identical to that of a cyclic

convolution. In fact, following others [10], unless mentioned otherwise, cyclic convolution in

this paper will refer to the computation (2).

Skew-cyclic convolution of N point sequences a and b is defined as

c(j) =

N−1
∑

i=0

sign(j − i)a(i)b((j − i) mod N), 0 ≤ j < N, (4)

where, sign(k) equals −1 if k < 0 and +1 otherwise. Whereas a cyclic convolution corre-

sponds to multiplication of polynomials modulo (xN−1), a skew-cyclic convolution represents

the same polynomial multiplication modulo (xN + 1). DCT algorithms presented later use

the following computation

c(j) =

N−1
∑

i=0

sign(N − (i + j))a(i)b((j + i) mod N), 0 ≤ j < N. (5)

4

As before, one can show that by replacing a by a′ = [a0,−aN−1,−aN−2, . . . ,−a1] in (5),

computation (5) reduces to the usual skew-cyclic convolution (4). Thus (5) has the same

computational complexity and structure as (4) and will be referred to in this paper as the

skew-cyclic convolution.

We now focus on DCT computation. The DCT of prime length p is defined as [1]

X(j) =

p−1
∑

i=0

x(i) cos((2i + 1)jπ / 2p), 0 ≤ j < p. (6)

Equation (6) shows that X(0) can be computed merely by adding all the x components. We

discuss details of this calculation in Section 3. For the rest of the DCT, we compute even

and odd components separately.

When j in (6) is even, x(i) and x(p−1−i) multiply with the same cosine term. Therefore,

the computation of the DCT for these j’s can be simplified to

X(j) =

(p−3)/2
∑

i=0

y(i) cos((2i + 1)jπ / 2p) + (−1)j/2x((p − 1)/2), 0 ≤ j < p, j even, (7)

where

y(i) = x(i) + x(p − 1 − i). (8)

Similarly, when j is odd, coefficients of x(i) and x(p − 1 − i) are negative of each other.

Thus the DCT computation for these j’s becomes

X(j) =

(p−3)/2
∑

i=0

z(i) cos((2i + 1)jπ / 2p), 0 ≤ j < p, j odd, (9)

where

z(i) = x(i) − x(p − 1 − i) (10)

Note that when 0 ≤ i ≤ (p − 3)/2, (2i + 1) represents integers less than (p − 1) that are

relatively prime to 2p. These integers are part of a well known set

A(2p) = {n ∈ Z | 1 ≤ n < 2p, gcd(n, 2p) = 1}

5

that forms a group under the operation of multiplication modulo 2p. By applying permu-

tations and negations obtained from the structure of this group, the DCT kernel can be

turned into convolutions. However, the structure of A(2p) can take two quite different forms

depending upon p; thus forcing us to use two distinct design strategies described below.

2.1 DCT lengths: primes of type 4k + 3

When DCT length p is of type 4k + 3, (p − 1)/2 is odd and consequently,

A(2p) ≡ Cp−1 ≡ C2 × C(p−1)/2. (11)

Clearly, in (11), subgroup C2 = {1, (2p − 1)}. Let g denote the generator of the subgroup

C(p−1)/2. A group has multiple generators. In the present application, we choose a generator

g such that 4|(g − 1). Even though we do not prove here that such a g always exists, it has

been verified for primes (of type 4k + 3) less than 100,000.

To determine the signal and transform permutations, we define a function φ(·) : Z → Z

as follows:

φ(i) =







gi mod 2p if (gi mod 2p) < p

(−gi) mod 2p otherwise.
(12)

Similarly, to determine the negations, define a function σc(·) : Z → {−1, 1} as follows.

σc(i) =







−1 if p < gi mod 4p < 3p

1 otherwise.
(13)

Function φ(·) defined above has the following property.

Lemma 1. When p mod 4 = 3 and g ∈ A(2p) is an element of order (p − 1)/2, mapping

(φ(·) − 1)/2 is a permutation of integer set {0, 1, . . . , (p − 3)/2}.

Proof. The structure (11) of A(2p) implies that all the p− 1 elements of A(2p) are given

by

{gi mod 2p | 0 ≤ i ≤ (p − 3)/2} ∪ {(2p − 1)gi mod 2p | 0 ≤ i ≤ (p − 3)/2}. (14)

6

Thus for each i, i ∈ {0, 1, . . . , (p − 3)/2}, φ(i) is distinct. Further, each φ(i) < p because

from the definition (12), φ(i) equals gi mod 2p < p or (−gi) mod 2p = 2p− (gi mod 2p) < p.

Therefore 0 ≤ (φ(i) − 1)/2 ≤ (p − 3)/2.

Odd DCT components

Using Lemma 1, the odd transform components in (9) can be expressed as:

X(j) =

(p−3)/2
∑

i=0

z((φ(i) − 1)/2) cos(φ(i)jπ / 2p), 0 ≤ j < p, j odd. (15)

With the help of Table 1 one can replace the φ(i) in the argument of the cosine function

in (15) by gi mod 4p. By using the fact that j is odd and a function σc(i) to take care of

the proper sign, one can simplify (15) to:

X(j) =

(p−3)/2
∑

i=0

σc(i)z((φ(i) − 1)/2) cos((gi mod 4p)jπ / 2p), 0 ≤ j < p, j odd. (16)

Table 1: Values of φ(·), σc(·) and σs(·) for various ranges of gi mod 4p.

Range of (gi mod 4p) φ(i) σc(i) σs(i)

(0, p) gi mod 4p 1 1

(p, 2p) 2p − (gi mod 4p) −1 1

(2p, 3p) (gi mod 4p) − 2p −1 −1

(3p, 4p) 4p − (gi mod 4p) 1 −1

An odd j in (16) can be replaced by (2j ′ + 1), 0 ≤ j ′ ≤ (p− 3)/2. Since the range of j ′ is

the same as that of index i, it is also possible to permute it by φ(·). With this permutation

applied to the transform components, (16) becomes for 0 ≤ j ′ ≤ (p − 3)/2,

X(φ(j ′)) =

(p−3)/2
∑

i=0

σc(i)σc(j
′)z((φ(i) − 1)/2) cos((gi mod 4p)(gj′mod 4p)π / 2p). (17)

7

or,

X(φ(j ′)) =

(p−3)/2
∑

i=0

σc(i)σc(j
′)z((φ(i) − 1)/2) cos(gi+j′π / 2p), 0 ≤ j ′ ≤ (p − 3)/2. (18)

Note that for the ranges of i and j ′, (i + j ′) < p. Thus,

gi+j′ = g(i+j′) mod ((p−1)/2) · g(p−1)/2. (19)

However, order of g in A(2p) is (p − 1)/2. Let

g(p−1)/2 = 1 + k · 2p (20)

Thus

k · 2p = g(p−1)/2 − 1

= (g − 1)(1 + g + g2 + · · ·+ g(p−3)/2) (21)

Since 4 | (g − 1), k in (21) is even. Using this fact and combining (18), (19) and (20) gives

X(φ(j ′)) =

(p−3)/2
∑

i=0

σc(i)σc(j
′)z((φ(i) − 1)/2) cos(g(i+j′) mod ((p−1)/2)π / 2p),

0 ≤ j ′ ≤ (p − 3)/2. (22)

Equation (22) shows that the odd components of the DCT can be computed as a (p − 1)/2

point cyclic convolution. In particular,

[σc(i)X(φ(i))] = [σc(i)z((φ(i) − 1)/2)] ∗ [cos(giπ / 2p)], 0 ≤ i < (p − 1)/2, (23)

where ∗ denotes a cyclic convolution and the notation [a(i)] stands for a sequence with

components a(0), a(1), etc.

Figure 1 illustrates the computation of the odd components of an 11-point DCT obtained

through a 5-point cyclic convolution. In this and later such figures, we also list the constants,

m0, m1, . . ., used in the multiplications from top to bottom. Note that a generator g = 5

is used to obtain the permutation φ(i) = 1, 5, 3, 7, 9 and the sign σc(i) = 1, 1,−1, 1, 1 values

for i = 0 through 4.

8

X(5)

X(7)

-X(3)

X(9)

X(1)

z(2)

z(3)

z(4)

-z(1)

z(0)

m0 = (c0 + c1 + c2 + c3 + c4)/5 m1 = c1 − c2 − c3 + c4 m2 = c2 − c4

m3 = −c0 − c2 + c3 + c4 m4 = c3 − c4 m5 = (−c0 − c1 − c2 − c3 + 4c4)/5
m6 = c0 − c4 m7 = c0 − c1 − c3 + c4 m8 = c1 − c4

m9 = −c0 − c1 + c2 + c4 ci = cos(5iπ/22)

Figure 1: Odd components of the DCT of length 11.

Even DCT components

To compute even components of the DCT, one can similarly convert the summation

term of (7) to a cyclic convolution. A simple addition of (−1)j/2x((p − 1)/2) to every

convolution output then gives all X(j)’s. Later in Section 3 we show how these additions

may be accomplished efficiently. Here we focus on the evaluation of the summation term
∑(p−3)/2

i=0 y(i) cos((2i + 1)jπ / 2p), denoted here as X ′(p − j). (Thus X(j) = X ′(p − j) +

(−1)j/2x((p − 1)/2).) By splitting j in the cosine argument as p − (p − j), one gets

X ′(p− j) =

(p−3)/2
∑

i=0

(−1)iy(i) sin((2i + 1)(p− j)π / 2p), 0 ≤ (p− j) < p, (p− j) odd (24)

Note that (24) is similar to (15) except that it uses a sine function in place of a cosine

and an odd (p − j) in place of an odd j. The occurrence of sine requires use of a function

σs(·) : Z → {−1, 1} defined as

σs(i) =







−1 if 2p < gi mod 4p

1 otherwise.
(25)

9

The σs defined above has an interesting property stated in Lemma 2 below.

Lemma 2. Let p mod 4 = 3 and g mod 4 = 1. Then φ(·) and σs(·) defined by (12) and

(25) respectively, satisfy

σs(i)(−1)(φ(i)−1)/2 = 1, for all 0 ≤ i < (p − 1)/2.

Proof. Since g mod 4 = 1, (gi mod 4p) mod 4 = 1. Then, gi mod 4p can be expressed as

4t+1. Using this, and the values of functions φ(·) and σs(·) from Table 1, the lemma can be

easily verified. For example, if 0 < gi mod 4p < p, then φ(i) = 4t+1 and σs(i)(−1)(φ(i)−1)/2 =

(1)(−1)2t = 1.

From Table 1, it is easy to verify that one now has the following expression similar to

(16).

X ′(p − j) =

(p−3)/2
∑

i=0

σs(i)(−1)(φ(i)−1)/2y((φ(i) − 1)/2) sin((gi mod 4p)(p − j)π / 2p),

0 ≤ (p − j) < p, (p − j) odd.

Use of Lemma 2 now simplifies this to

X ′(p − j) =

(p−3)/2
∑

i=0

y((φ(i) − 1)/2) sin((gi mod 4p)(p − j)π / 2p),

0 ≤ (p − j) < p, (p − j) odd. (26)

Equation (26) is similar to (16) obtained in the odd DCT components case. One can therefore

use a procedure similar to that following (16). Let (p − j) = 2j ′ + 1. Then one can express

the sequence [σs(i)X
′(φ(i))] through a cyclic convolution as

[σs(i)X
′(φ(i))] = [y((φ(i) − 1)/2)] ∗ [sin(giπ / 2p)], 0 ≤ i < (p − 1)/2. (27)

Recall that to complete the computation of each X(2j), one should add (−1)jx((p − 1)/2)

to the corresponding convolution output X ′(j).

10

2.2 DCT lengths: primes of type 4k + 1

In this case, (p− 1)/2 is even and A(2p) = Cp−1 cannot be split as before. Let g denote the

generator of A(2p). Using this g, define functions φ(·) : Z → Z, σc(·) : Z → {−1, 1} and

σs(·) : Z → {−1, 1} as before using (12), (13) and (25). We then have the following lemma.

Lemma 3. When p mod 4 = 1 and g ∈ A(2p) is an element of order (p − 1), mapping

(φ(·) − 1)/2 is a permutation of integer set {0, 1, . . . , (p − 3)/2}.

Proof. We will prove that each φ(i) is distinct and φ(·) is onto. Assume i 6= j. If

(gi mod 2p) and (gj mod 2p) are both either less than or greater than p, then clearly φ(i)

and φ(j) are distinct. Assume now that only one of them, say, gi mod 2p is less than p. If

φ(i) = φ(j), then

gi + gj = 0 mod 2p, or

gj−i = −1 mod 2p.

Since g is the generator of Cp−1, this implies that

(p − 1)/2 | (j − i). (28)

But (28) is impossible because 0 ≤ j, i < (p − 1)/2. Therefore all φ(i)’s are distinct for

i ∈ {0, 1, . . . , (p−3)/2}. Further, from the definition, φ(i) < p, or 0 ≤ (φ(i)−1)/2 ≤ (p−3)/2.

Odd DCT components

Using Lemma 3 (in place of Lemma 1) and following exactly the same procedure as in

the case of p = 4k + 3, one gets as before,

X(φ(j ′)) =

(p−3)/2
∑

i=0

σc(i)σc(j
′)z((φ(i) − 1)/2) cos(gi+j′π / 2p), 0 ≤ j ′ ≤ (p − 3)/2. (29)

11

Note that in the present case, order of g ∈ A(2p) is (p − 1) and not (p − 1)/2 as in the

previous case. Since 0 ≤ i, j ′ ≤ (p − 3)/2, one can express gi+j′ for (i + j ′) > (p − 1)/2 as

gi+j′ = g(i+j′) mod ((p−1)/2) · g(p−1)/2. (30)

As the order of g in A(2p) is (p − 1),

g(p−1)/2 = −1 + k · 2p (31)

(p − 1)/2 being an even number, one may subtract 1 from both sides of (30) and factor the

left side to get

(g(p−1)/4 + 1)(g(p−1)/4 − 1) = 2(−1 + kp) (32)

Each factor on the left side of (32) is even. Therefore k on the right side is odd.

From (31) the cosine term in (29) can be written as:

cos(gi+j′π / 2p) =







cos(g(i+j′) mod ((p−1)/2)π / 2p) if i + j ′ < (p − 1)/2

cos(g(i+j′) mod ((p−1)/2)(−1 + k2p)π / 2p) otherwise

Since k is odd, this gives

cos(g(i+j′)π / 2p) = sign((p − 1)/2 − (i + j ′)) cos(g(i+j′) mod ((p−1)/2)π / 2p). (33)

Equations (29)and (33) show that the odd components of the DCT when p is of the form

4k + 1 can be obtained through a (p − 1)/2 point skew-cyclic convolution. In particular,

[σc(i)X(φ(i))] = [σc(i)z((φ(i) − 1)/2)] ∗ [cos(giπ / 2p)], 0 ≤ i < (p − 1)/2, (34)

where ∗ denotes a skew-cyclic convolution. Let (p−1)/2 = 2mq, where q is odd. In Section 3

we show that this skew-cyclic convolution can be computed using a q point cyclic convolution

algorithm and a 2m point Hankel matrix product algorithm.

12

Even DCT components

As in the case of p of type 4k + 3, one may denote
∑(p−3)/2

i=0 y(i) cos((2i + 1)jπ / 2p) by

X ′(p − j). Replacing j by p − (p − j) as before, gives

X ′(p − j) =

(p−3)/2
∑

i=0

((−1)iy(i)) sin((2i + 1)(p − j)π / 2p), 0 ≤ (p − j) < p, (p − j) odd

Using Lemma 3 and Table 1 and defining p − j = 2j ′ + 1, one gets

X ′(φ(j ′)) =

(p−3)/2
∑

i=0

σs(i)σs(j
′)y((φ(i) − 1)/2) sin(gi+j′π / 2p), 0 ≤ j ′ ≤ (p − 3)/2. (35)

Using (31) one can write the sine term in (35) as:

sin(gi+j′π / 2p) =







sin(g(i+j′) mod ((p−1)/2)π / 2p) if i + j ′ < (p − 1)/2

sin(g(i+j′) mod ((p−1)/2)(−1 + k2p)π / 2p) otherwise

But since k is odd as shown above, this gives

sin(g(i+j′)π / 2p) = sin(g(i+j′) mod ((p−1)/2)π / 2p). (36)

The two equations (35) and (36) show that the even components of the DCT are obtained

through a (p − 1)/2 point cyclic convolution. In particular,

[σs(i)X
′(φ(i))] = [σs(i)(−1)(φ(i)−1)/2y((φ(i) − 1)/2)] ∗ [sin(giπ / 2p)], 0 ≤ i < (p − 1)/2.

(37)

However, the following lemma shows that by choosing an appropriate g, one can simplify

(37).

Lemma 4. Let p mod 4 = 1 and g mod 4 = 3. Then φ(·) and σs(·) defined by (12) and

(25) respectively, satisfy

σs(i)(−1)(φ(i)−1)/2 = (−1)i, for all 0 ≤ i < (p − 1)/2.

Proof. Since g mod 4 = 3, (gi mod 4p) mod 4 equals 1 when i is even and −1 when it is

odd. Therefore (gi mod 4p) can be represented by 4t + 1 for even i and by 4t + 3 for odd i.

13

Using this, and the values of functions φ(·) and σs(·) from Table 1, the lemma can easily be

verified. For example, if 0 < gi mod 4p < p, then φ(i) equals 4t + 1 for even i and 4t + 3 for

odd i. Thus, σs(i)(−1)(φ(i)−1)/2 = (1)(−1)i = (−1)i.

We have verified that when p < 100, 000 and p mod 4 = 1, a generator g characterized

in Lemma 4, (i.e., g mod 4 = 3), always exists. In all the analysis that follows, we will use

such a generator.

Lemma 4 simplifies (37) to

[σs(i)X
′(φ(i))] = [(−1)iy((φ(i) − 1)/2)] ∗ [sin(giπ / 2p)], 0 ≤ i < (p − 1)/2. (38)

Once X ′(p − j) is computed, it is added with (−1)j/2x((p − 1)/2) to obtain X(j). In

Section 3 we show that these additions for all the even j’s 0 < j < p are accomplished by

only one addition.

3 Reducing Computational Complexity.

Equation (34) shows that the odd components of DCT of length p when p is of type 4k + 1

are obtained through a skew cyclic convolution of length 2mq for m ≥ 1 and odd q. We show

in this section that this computation can be transformed into a computation involving a q

point cyclic convolution and a 2m point Hankel product.

In the latter part of this section we show that a simple modification to the cyclic con-

volution algorithm (without altering its bilinear nature) allows one to obtain X(0) in only

one extra addition. Further, one more addition completes the computation of each X(2j) by

adding (−1)j/2x((p− 1)/2) to each convolution output. These modifications exploit the fact

that efficient bilinear cyclic convolution algorithms are based on multiplication of polynomi-

als modulo a third polynomial and this product is computed by using the Chinese Remainder

Theorem [9–11].

14

Converting a skew-cyclic convolution into a cyclic convolution.

Equation (34) shows that the odd components of a p point DCT are obtained through

a skew-cyclic convolution. We now show that this computation can be turned into one

that uses only cyclic convolution and Hankel product algorithms. We illustrate this through

an example using p = 13, but the procedure is quite general and can be applied to any

skew-cyclic convolution.

For p = 13, one can choose a generator g = 7. Using definition (12) one gets φ(i) =

1, 7, 3, 5, 9, 11 for i = 0, 1, 2, 3, 4, 5. Similarly, from (13), one sees that σc(i) equals −1 only

when i = 3 and equals 1 for all other values. Equation (34) can now be expressed as:































X(1)

X(7)

X(3)

−X(5)

X(9)

X(11)































=































c0 c1 c2 c3 c4 c5

c1 c2 c3 c4 c5 −c0

c2 c3 c4 c5 −c0 −c1

c3 c4 c5 −c0 −c1 −c2

c4 c5 −c0 −c1 −c2 −c3

c5 −c0 −c1 −c2 −c3 −c4





























































z(0)

z(3)

z(1)

−z(2)

z(4)

z(5)































, (39)

where ci = cos(7iπ/26). For a skew-cyclic convolution of length 2mq, we partition the

columns of the matrix into groups of 2m columns each. These groups are then permuted

such that the new i-th group is the original (2i mod q)-th group. The same permutation is

also applied to the rows. The computation of (39) will then take the following form.































X(1)

X(7)

X(9)

X(11)

X(3)

−X(5)































=































c0 c1 c4 c5 c2 c3

c1 c2 c5 −c0 c3 c4

c4 c5 −c2 −c3 −c0 −c1

c5 −c0 −c3 −c4 −c1 −c2

c2 c3 −c0 −c1 c4 c5

c3 c4 −c1 −c2 c5 −c0





























































z(0)

z(3)

z(4)

z(5)

z(1)

−z(2)































. (40)

15

Finally, we change the signs of the last 2mbq/2c rows and columns (and the corresponding

X and z vectors to match). In the present case, we thus get































X(1)

X(7)

X(9)

X(11)

−X(3)

X(5)































=































c0 c1 c4 c5 −c2 −c3

c1 c2 c5 −c0 −c3 −c4

c4 c5 −c2 −c3 c0 c1

c5 −c0 −c3 −c4 c1 c2

−c2 −c3 c0 c1 c4 c5

−c3 −c4 c1 c2 c5 −c0





























































z(0)

z(3)

z(4)

z(5)

−z(1)

z(2)































. (41)

The matrix in (41) partitioned as shown reveals a block cyclic structure made up of 2 × 2

sub-matrices each with a Hankel structure. The computation can be written as in (42),

where A, B and C are 2 × 2 Hankel matrices and elements of v(i) and V (i) are appropriate

sub-vectors of length 2.











V (0)

V (1)

V (2)











=











A B C

B C A

C A B





















v(0)

v(1)

v(2)











. (42)

Since the matrix in (42) is cyclic, one can apply a 3-point cyclic convolution algorithm

shown in Fig. 2(a) to vector [v(0), v(1), v(2)]T . The additions in Fig. 2(a) simply translate to

additions of 2-point vectors. The multiplications, on the other hand, become multiplications

of 2 × 2 Hankel matrices and 2-point vectors; and can be implemented using the Hankel

matrix multiplication algorithm shown in Fig. 2(b).

The resultant algorithm for computation (41) is shown in Fig. 3.

Computation of X(0).

Recall that X(0) is merely the sum of all the components of the input vector. We now

show that while computing the cyclic convolution to get the even components of the DCT,

16

a b
= b c

m2 = (c-b)
m1 = b
m0 = (a-b)

v1V1c a b
b c a
a b c

m1 = (b-c)
m2 = (2c-a-b)/3

V0

V2
V1
V0

V1

V0

m2

m3

m1

m0

v0

(a) (b)

m2

m1

m0

v1

V2

v2
v1
v0

=

V1

V0

v2

v1

v0

v0

m3 = (a-c)

m0 = (a+b+c)/3

Figure 2: Bilinear algorithms for (a) 3-point cyclic convolution and (b) 2-point Hankel

product.

one evaluates the sum of all but the (p− 1)/2-th input vector components. Thus adding the

one leftover component to this sum, one can get X(0).

A t-point cyclic convolution can be viewed as a multiplication of two polynomials modulo

(st − 1). Let polynomials a(s) and b(s) be

a(s) =
t−1
∑

i=0

ai si and b(s) =
t−1
∑

i=0

bi si. (43)

Then the cyclic convolution of sequences ai and bi is merely the sequence made up of the

coefficients of c(s), where

c(s) = a(s) b(s) mod (st − 1). (44)

Note that while computing the even DCT components through cyclic convolutions (see (27)

and (38)), t = (p − 1)/2, sequence ai is made up of y components, sequence bi has constant

sine terms and the coefficients of c(s) provide the X ′(i) values.

c(s) is evaluated from the Chinese Remainder Theorem by factoring (st − 1) in pairwise

17

X(1)

X(7)

X(9)

X(11)

z(3)

z(4)

z(5)

z(2) X(5)

-z(1)

z(0)

-X(3)

m0 = (c0 − c1 + c4 − c5 − c2 + c3)/3 m1 = (c1 + c5 − c3)/3 m2 = (−c1 + c2 − c5 − c0 + c3 − c4)/3
m3 = c4 − c5 + c2 − c3 m4 = c5 + c3 m5 = −c5 − c0 − c3 + c4

m6 = (−c0 + c1 − c4 + c5 − 2c2 + 2c3)/3 m7 = (−c1 − c5 − 2c3)/3 m8 = (c1 − c2 + c5 + c0 + 2c3 − 2c4)/3
m9 = c0 − c1 + c2 − c3 m10 = c1 + c3 m11 = −c1 + c2 − c3 + c4

ci = cos(7iπ/26)

Figure 3: Computation of the odd components of a 13-point DCT by combining a 3-point

cyclic convolution and 2-point Hankel product.

relatively prime factors fi(s) such that

st − 1 =
∏

i

fi(s).

Then c(s) is given by

c(s) =
∑

i

ri(s)ei(s) mod (st − 1), (45)

where,

ri(s) = c(s) mod fi(s), (46)

and

ei(s) =
(st − 1)

fi(s)

(

(

(st − 1)

fi(s)

)

−1

mod fi(s)

)

. (47)

Let DCT length p be of type 4k + 3. In this case, (27) shows that the convolution input

ai = y((φ(i)−1)/2) and t = (p−1)/2. Further, recall from (8) that y(i) = x(i)+x(p−1− i).

18

Let f1(s) = (s − 1), one of the simplest factors of st − 1. Then

r1(s) = (

t−1
∑

i=0

ai) (

t−1
∑

i=0

bi) (48)

Now, X(0) is given by

X(0) =

p−1
∑

i=0

x(i) = x((p − 1)/2) +

(p−3)/2
∑

i=0

y((φ(i) − 1)/2) = x((p − 1)/2) +

t−1
∑

i=0

a(i). (49)

While obtaining r1(s), one computes the sum of ai’s as shown by (48). X(0) can be evaluated

by merely adding x((p − 1)/2) to this sum.

Figure 4 shows the evaluation of the even components of the DCT of length p = 11 using

a generator g = 5.

X(6)

-X(4)

X(2)

-X(8)

x(5)x(5)

X(10)

y(2)

y(1)

y(3)

y(4)

X(0)

y(0)

m0 = (s0 + s1 + s2 + s3 + s4)/5 m1 = s1 − s2 − s3 + s4 m2 = s2 − s4

m3 = −s0 − s2 + s3 + s4 m4 = s3 − s4 m5 = (−s0 − s1 − s2 − s3 + 4s4)/5
m6 = s0 − s4 m7 = s0 − s1 − s3 + s4 m8 = s1 − s4

m9 = −s0 − s1 + s2 + s4 si = sin(5iπ/22)

Figure 4: Even components of the DCT of length 11.

When DCT length p be of type 4k + 1, (38) shows that the convolution input ai =

(−1)iy((φ(i)− 1)/2) and t = (p− 1)/2. Further, as defined in (8), y(i) = x(i) + x(p− 1− i).

19

Since t is now even, (s + 1) | (st − 1). Let f1(s) = (s + 1). Then

r1(s) = (
t−1
∑

i=0

(−1)iai) (
t−1
∑

i=0

(−1)ibi) (50)

In this case X(0) is given by

X(0) =

p−1
∑

i=0

x(i) = x((p− 1)/2)+

(p−3)/2
∑

i=0

y((φ(i)− 1)/2) = x((p− 1)/2)+

t−1
∑

i=0

(−1)ia(i). (51)

Note that while obtaining r1(s), one computes the sum of (−1)iai’s as shown by (50). X(0)

can be evaluated by merely adding x((p − 1)/2) to this sum. Figure 5 shows the evaluation

of the even components of the DCT of length p = 13 using a generator g = 7.

y(4)

y(1)

y(0)

X(0) x(6)x(6)

-y(2)

-y(5)

X(6)

X(2)

-X(8)

-y(3)

X(12)

-X(10)

X(4)

m0 = (s0 + s1 + s2 + s3 + s4 + s5)/6 m1 = (s1 + s2 − s3 − s4)/2
m2 = (−s0 − s1 − s2 + 2s3 + 2s4 − s5)/6 m3 = (s0 − s3 − s4 + s5)/2
m4 = (s0 − s1 + s2 − s3 + s4 − s5)/6 m5 = (−s1 + s2 + s3 − s4)/2
m6 = (−s0 + s1 − s2 − 2s3 + 2s4 + s5)/6 m7 = (s0 + s3 − s4 − s5)/2
si = sin(7iπ/26)

Figure 5: Even components of the DCT of length 13.

This gives φ(i) = 1, 7, 3, 5, 9, 11 and σs(i) = 1, 1,−1,−1, 1, 1 for i = 0, 1, 2, 3, 4 and 5. The

convolution input based on φ(i) is given by {y(0),−y(3), y(1),−y(2), y(4),−y(5)}. However,

the 6-point cyclic convolution in Fig. 5 is obtained by combining a 3-point algorithm with a

20

2-point algorithm. This calls for permuting the input and the output to the order shown in

the figure.

Adding (−1)j/2x((p − 1)/2) to each X ′(p − j) for even j.

Recall from the earlier discussion that the even DCT components X and the convolution

output X ′ are related by

X(p − φ(i)) = X ′(φ(i)) + (−1)(p−φ(i))/2x((p − 1)/2), 0 ≤ i < (p − 1)/2. (52)

Thus one may require (p − 1)/2 extra additions beyond the convolution to get all the even

components of X. We now focus on evaluating (52) with minimum complexity.

As shown by (45), the convolution result c(s) is merely a sum of polynomials ei(s) weighed

by corresponding ri(s). Recall that the coefficients of c(s) give X ′(φ(i)). We will now show

that one of the ri(s) in the algorithm may be altered in such a way that the coefficients of

c(s) give X(p − φ(i)) instead of X ′(φ(i)).

When prime p mod 4 = 3, one can use f1(s) = s − 1 as discussed earlier. In this case,

r1(s) is the result of a single multiplication and is independent of s (see (48)). e1(s) can be

shown to be

e1(s) = (1/t)(1 + s + s2 + · · ·+ st−1). (53)

To develop an efficient convolution algorithm, factor (1/t) is absorbed in r1. This is easily

done by dividing the multiplication constant used in r1 by t. However, this implies that r1

takes a new value r′1 = r1/t thus simplifying e1(s) to e′1(s) = (1 + s + s2 + · · ·+ st−1). (Note

that since r1e1(s) = r′1e
′

1(s), this computational convenience does not affect the convolution

result.) If one subtracts x((p − 1)/2) from r′1, then the product r′1e
′

1(s), and therefore the

output c(s) changes by

−x((p − 1)/2)(1 + s + s2 + · · · + st−1).

21

Since the coefficient of si in c(s) earlier gave σs(i)X
′(φ(i)), the alteration of r′1 will transform

this coefficient to

σs(i)X
′(φ(i)) − x((p − 1)/2).

This term can be rewritten as

σs(i)(X
′(φ(i)) − σs(i)x((p − 1)/2))

= σs(i)(X
′(φ(i)) − (−1)(φ(i)−1)/2x((p − 1)/2)) using Lemma 2

= σs(i)(X
′(φ(i)) + (−1)(p−φ(i))/2x((p − 1)/2))

= σs(i)X(p − φ(i)) from (52)

Thus through a single addition of −x((p − 1)/2) to r′1, one can effectively implement

all post-convolution additions and directly obtain every even DCT component. Figure 4

illustrates this modification to the convolution while computing a 11-point DCT.

Similarly when p mod 4 = 1, f1(s) can be chosen as s + 1. In this case also, r(s) is

independent of s and is given by (50). e(s) now evaluates to

e1(s) = (1/t)(1 − s + s2 − · · · − st−1). (54)

As before, the factor (1/t) in e1(s) can be absorbed in r1. If x((p−1)/2) is added to r′1 = r1/q,

then r′1e
′

1(s) and therefore the output c(s) changes by

x((p − 1)/2)(1 − s + s2 − · · · − st−1).

The alteration of r′1 changes the coefficient σs(i)X
′(φ(i)) of si in c(s) to a new value of

σs(i)X
′(φ(i)) + (−1)ix((p − 1)/2).

This can be rewritten as

σs(i)(X
′(φ(i)) + σs(i)(−1)ix((p − 1)/2))

= σs(i)(X
′(φ(i)) + (−1)(φ(i)−1)/2x((p − 1)/2)) using Lemma 4

= σs(i)(X
′(φ(i)) + (−1)(p−φ(i))/2x((p − 1)/2))

= σs(i)X(p − φ(i)) from (52)

22

Thus even in this case, a single addition of x((p − 1)/2) to r′1 is equivalent to as many as

(p−1)/2 post-convolution additions required to obtain all the even DCT components. Figure

5 illustrates this modification to the convolution while computing a 13-point DCT.

4 Complexity of the algorithms

This section evaluates the complexity of the DCT algorithm proposed in Section 2 with the

modifications in Section 3.

Recall that all the even DCT components are computed by cyclically convolving a (p −

1)/2 point sequence y with a pre-computed sequence, and then doing two more additions

as suggested in Section 3. Creating y requires (p − 1)/2 additions. Computing odd DCT

components involves first getting a sequence z of length (p − 1)/2 at the cost of (p − 1)/2

additions. When p mod 4 = 3, z is cyclically convolved with a pre-computed sequence to

obtain the required DCT components. On the other hand, when p mod 4 = 1, this cyclic

convolution is replaced by an algorithm obtained by combining a 2m point Hankel product

and a q point cyclic convolution.

The cyclic convolution and Hankel product algorithms are obtained by combining ap-

propriate algorithms from Table 2. Two cyclic convolution algorithms of relatively prime

lengths may be combined to get a cyclic convolution algorithm of a larger length. A Hankel

product algorithm may be combined with any cyclic convolution algorithm as needed. If

the factor algorithms are bilinear, then so are the composite algorithms. To estimate the

complexity of a composite algorithm, characterize a bilinear algorithm by a triple (n, a, m)

made up of the length of its input vector, and its additive and multiplicative complexities.

Algorithms (n1, a1, m1) and (n2, a2, m2) can be combined [9, 10] by partitioning the n1n2

point input vector into sub-vectors of lengths n1 or n2. The two resultant algorithms have

the same functionality, but are characterized by complexities (n1n2, n1a2 + a1m2, m1m2)

23

and (n1n2, n2a1 + a2m1, m1m2) respectively. Clearly, one should use a choice with a lower

complexity.

To illustrate the complexity calculation, consider p = 37. To compute the even compo-

Table 2: Complexities of bilinear algorithms for
cyclic convolution (CC) and Hankel product (HP) [9, 10, 16].

Algorithm Multiplications Additions

2n-point HP 3n 3(3n − 2n)

3n-point HP 5n 8(5n − 3n)

5-point HP 14 27

2n-point CC (3n + 1)/2 (3n+1 + 2n+1 − 5)/2

3n-point CC (3 · 6n + 2)/5 (9 · 6n + 5 · 3n − 14)/5

5-point CC 10 31

7-point CC 16 69

13-point CC 46 183

nents, one needs (p− 1)/2 = 18 pre-convolution and 2 post-convolution additions. A length

18 convolution is obtained by combining cyclic convolution algorithms of length 2 and 9 with

characteristics (2, 4, 2) and (9, 71, 22). The required cyclic convolution algorithm will then

have characteristics (18, 178, 44). Thus the even DCT components require 44 multiplications

and 198 additions. Computation of odd components requires 18 additions to create z. The

rest of the computation uses an algorithm combining a 2-point Hankel product with a length

9 cyclic convolution with characteristics (2, 3, 3) and (9, 71, 22) respectively. Their combina-

tion is characterized by (18, 208, 66). Thus the even components of the DCT are computed

using 66 multiplications and 226 additions. The total complexity of a bilinear 37-point DCT

is 110 multiplications and 424 additions.

24

Table 3 provides the complexities of most of the primes less than 100. We have also listed

a generator useful in each case.

Table 3: Prime DCT complexities and generator g.

Multiplications Additions

Length g Odd Even Total Odd Even Total

5 3 3 2 5 5 8 13

7 9 4 4 8 14 16 30

11 5 10 10 20 36 38 74

13 7 12 8 20 40 42 82

17 3 27 14 41 65 56 121

19 5 22 22 44 80 82 162

29 3 32 48 80 200 182 382

31 9 40 40 80 194 196 390

37 15 66 44 110 226 198 424

41 7 90 50 140 294 252 501

53 3 138 92 230 530 446 976

61 7 120 80 200 508 450 958

71 9 160 160 320 876 878 1754

73 11 198 110 308 650 528 1178

79 5 184 184 368 914 916 1830

97 7 324 164 488 1004 766 1770

Wagh and Ganesh have previously given a DCT algorithm that converts the DCT com-

putation into cyclic convolutions [12]. Even though they employ the same number of multi-

25

plications as our algorithm2, their number of additions tends to be quite high. For example,

a 31 point DCT needs 422 additions in [12] compared with our 390 additions.

Table 4: Comparison of the computational complexity of the new algorithms with that

of Chan and Siu [13] and Yin and Siu [15]. (The computational blocks involved, cyclic

convolution and Hankel product of i points, are denoted by Ci and Hi respectively.)

DCT Algorithm Even transform Odd transform Multiplications Additionss

length components components

[13] C6 C6 34 133

13 [15] C6 H6 23 105

New C6 C3 × H2 20 82

[13] C9 C9 71 240

19 [15] C9 H9 47 235

New C9 C9 44 162

[13] C15 C15 125 522

31 [15] C15 H15 124 491

New C15 C15 80 390

[13] C18 C18 142 553

37 [15] C18 H18 119 581

New C18 C9 × H2 110 424

Table 4 compares the proposed algorithms with two of the more recent algorithms, namely

those by Chan and Siu [13] and by Yin and Siu [15]. This table also shows the blocks em-

ployed in the computation of both the even and the odd transform components. Note

that even though [13] uses only cyclic convolutions, an extra 3(p− 1)/2 multiplications and

2They use one extra multiplication to compute X(0) because of their definition of DCT.

26

11(p − 1)/2 − 1 additions are required to express the computation into cyclic convolutions.

Our complexity is substantially lower than [15] also, because of two reasons. Firstly, when

(p − 1)/2 is a composite number, [15] has to use a skew-cyclic convolution which is typi-

cally computed as a Hankel product requiring large complexity. Instead, we use a cyclic

convolution (e.g., p = 31) or a cyclic convolution combined with a small Hankel product

(e.g., p = 37). Secondly, in all cases, we can obtain X(0) and accomplish the addition (or

subtraction) of x((p − 1)/2) to all even transform components at an extra cost of a mere 2

additions. On the other hand, for arbitrary lengths p, [15] has to use (p − 1)/2 additions to

compute X(0) and another (p − 1)/2 additions to add (or subtract) x((p − 1)/2).

The bilinear character of our algorithm lends itself to high speed hardware implementa-

tions. The independendance of the multiplications involved implies that they may be done

concurrently. Thus the critical path delay of the hardware implementation of our algorithm

is determined by a single multiplier and a few adders. For example, from Fig.s 1, 3, 4,

and 5, one can see that 11 or 13 point DCTs can be completed within the time required

for 8 additions and 1 multiplication. Further, the 8 additions along the critical path are

grouped into two sets of four consecutive additions. In fixed point number system, delay of

four consecutive n bit additions equals the delay of one n bit adder and that of three 1-bit

adders. Thus the hardware realizations of these algorithms is expected to be very fast. In

contrast, DCT hardware implemented as a systolic array [17–19] requires at least (p − 1)/2

clock cycles for a p point DCT, where the clock period is at least equal to the delay of 1

multiplication and 1 addition.

27

5 Conclusion

This paper presents a complete methodology of deriving bilinear algorithms for prime length

discrete cosine transforms. We show that the use of appropriate multiplicative groups of

integers allows one to identify cyclic structures within a DCT matrix.

We show that a p point (with prime p) DCT is equivalent to two (p − 1)/2 point cyclic

convolutions whenever (p−1)/2 is an odd integer. This is a substantial improvement over [15]

where the cyclic convolutions are guaranteed only if (p − 1)/2 is a prime. Further, for

other primes, we show that the skew-cyclic convolution involved can be computed using a

multidimensional technique from a smaller cyclic convolution and a Hankel matrix product

algorithm.

We also show that the 0-th component of the DCT can be computed with just one extra

addition. Further, all the post-additions required to obtain the other even DCT components

can be accomplished through a single addition. Both these enhancements result from small

modifications to the cyclic convolution algorithm. It should be mentioned here that [15] had

observed this for the specific case of a 7-point DCT that uses a cyclic convolution of length 3.

We show that these enhancements are possible whenever the cyclic convolution algorithms

are based on Chinese Remainder Theorem and prove them for an arbitrary prime length.

The paper gives complete bilinear algorithms for DCT lengths 11 and 13, illustrating all

aspects of the method.

The bilinearity of the algorithms obtained here implies that all the multiplications in-

volved in the computation are independent of each other and can be performed concurrently.

Because of this concurrency and their low complexity, these DCT algorithms are well suited

for software implementations as well as dedicated hardware solutions using application spe-

cific integrated circuits (ASICs) or FPGAs.

28

References

[1] K. R. Rao, P. Yip, Discrete Cosine transform: Algorithms, Advantages, Applications,

Academic Press, Boston, 1990.

[2] G. Mandyam, N. Ahmed, N. Magotra, Lossless image compression using the discrete

cosine transform, J. Visual Comm. and Image Representation 8 (1) (1997) 21–26.

[3] Z. M. Hafed, M. D. Levine, Face recognition using the discrete cosine transform, Int. J.

of Computer Vision 43 (3) (2001) 167–188.

[4] J. W. Cooley, J. W. Tukey, An algorithm for the machine computation of complex

Fourier series, Math. Comput. 19 (1965) 297–301.

[5] G. Bi, L. W. Yu, DCT algorithms for composite sequence lengths, IEEE Trans. on

Signal Processing 46 (3) (1998) 554–562.

[6] E. Feig, S. Winograd, Fast algorithms for the discrete cosine transform, IEEE Trans.

on Signal Processing 40 (9) (1992) 2174–2193.

[7] Z. Cvetkovic, M. V. Popovic, New fast recursive algorithms for the computation of

discrete cosine and sine transforms, IEEE Trans. Signal Process. SP-40 (8) (1992) 2083–

2086.

[8] C. M. Rader, Discrete Fourier transforms when the number of data samples is prime,

Proc. IEEE 56 (1968) 104–105.

[9] R. Agarwal, J. Cooley, New algorithms for digital convolution, IEEE Trans. Acoust.,

Speech, Signal Proc. 25 (1977) 392–410.

[10] S. Winograd, On computing the discrete Fourier transform, Math. Comp. 32 (141)

(1978) 175–199.

29

[11] I. Selesnick, C. Burrus, Extending Winograd’s small convolution algorithm to larger

lengths, in: Proc. IEEE Intl. Symposium on Circuits and Systems, London, 1994, pp.

449–452.

[12] M. D. Wagh, H. Ganesh, A new algorithm for the discrete cosine transform of arbitrary

number of points, IEEE Trans. on Computers C-29 (4) (1980) 269–277.

[13] Y. Chan, W. Siu, Algorithm for prime length discrete cosine transforms., Electronic

Letters 26 (1990) 206–208.

[14] Y. H. Chan, W. C. Siu, Generalized approach for the realization of discrete cosine

transform using cyclic convolutions, in: Intl. Conf. on Acoustics, Speech and Signal

Processing, Vol. 3, 1993, pp. 277 – 280.

[15] R. Yin, W. Siu, A new fast algorithm for computing prime-length DCT through cyclic

convolutions, Signal Processing 81 (5) (2001) 895–906.

[16] M. D. Wagh, Modular algorithms for cyclic convolutions, unpublished manuscript.

[17] J. Guo, C. M. Liu, C. W. Jen, A new array architecture for prime length discrete cosine

transform, IEEE Trans. on Signal Processing 41 (1) (1993) 436–442.

[18] D. F. Chiper, Novel systolic array design for discrete cosine transform with high through-

put rate, in: Proc. IEEE Int. Symp. Circuits and Systems, Vol. 2, 1996, pp. 746–749.

[19] C. Cheng, K. K. Parhi, A novel systolic array structure for DCT, IEEE Trans. on

Circuits and Systems - II: Express Briefs 52 (7) (2005) 366–369.

30

