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An expression for the fraction of incident radiation transmitted by a right angle bend in a rectangular light
pipe is derived. This expression is used to show that, in a planar light pipe structure with right angle
bends, light attenuation is due only to reflection losses at the walls if the launching angle is 450.

1. Introduction

The transmission characteristics of rectangular
light pipes with specularly reflecting walls have been
studied earlier by Poehler and Turner' and Powell.2
However, both have dealt only with straight pipes,
and the former have not considered skew rays. In
many signal processing and optical communication
problems, bends in the light pipes are unavoidable.
The effect of bends on the flow of light energy
through the pipes has not been reported thus far. It
seems natural to define bend efficiency as the frac-
tion of incident radiation transmitted through the
bend. An explicit expression for the efficiency of a
right angle bend with perfectly reflecting walls is de-
rived in this paper. It is found that among other fac-
tors, it also depends on the launching angle. There-
fore, the expressions derived in this paper can be
used to choose the optimum launching angle.

II. Analysis

Consider a right angle bend in the light pipe as
shown in Fig. 1. a and b are the widths of the en-
trance and exit legs of the pipe. The only possible
paths of a ray PQR(S) whose last reflection from the
wall OPB is at P are sketched in this figure. It is ob-
vious from the inspection of these paths that a 2a
is a necessary and sufficient condition for the ray to
be reflected in the exit leg of the bend.

For the purpose of analysis, we attach a Cartesian
coordinate frame to the entrance of the pipe as shown
in Fig. 2. We assume that the entrance of the pipe is
uniformly illuminated with parallel rays and try to
find the fraction of this illumination that passes
through the bend.

We shall first assume that the rays at the entrance
of the tube are inclined away from the exit leg of the
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tube. It will be shown later that the other case of
rays inclined toward the exit leg gives rise to identical
formulae with minor changes.

Using Powell's method,2 the opening of the tube
can be imaged on a plane z = Lo + 2b, where Lo is the
z coordinate of point B. As all the rays are parallel
and travel with a direction specified by angles 0 and
X, a point (x., yo, 0) will be projected to

[(Lo + 2b) tanO cosq + x, (Lo + 2b) tanO sino + yo,

(Lo + 2b)]

in the plane z = Lo + 2b. If the last reflection of this
ray, which enters the tube at (x0, y, 0) on wall OPB,
is its

t. th

reflection (on OPB and its parallel wall), then it is
easy to see that

a = (Lo + 2b) tanG cos + - a, (1)

where t is given a suffix xo to emphasize its depen-
dence on xo.

To find
txo 

we note that it has to be an even integer as the rays
are inclined away from wall OPB at the entrance. If
we image again the opening of the tube on plane z =
Lo, the x coordinate of the projection of (xo, y, 0) is
Lo tanO cos + x0 . The largest even integer not larg-
er than (Lo tanO coso + x)/a will therefore be the
value of

txo 

We uniquely define an integer n by

n IL tanOcoso < (n + 1) (2)
2a

The totality of rays entering the pipe can now be di-
vided into the two cases shown below. Case 1 is all
the rays that start from (x0, yo, 0), where
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Fig. 1. Three possible paths of a light ray whose last reflection on wall OPB is at P.

2na L tan coso + x < 2(n + 1)a. (3)

For these rays,
tx, = 2n.

Therefore, from Eq. (1), the condition a 2 2a can be
translated to

xO 2(n + 1)a - (Lo + 2b) tanG coso.

Conditions (3) and (4) can be written together as

LI x < L 2,

(4)

(5)

where L1 = L2- 2b tanO cosq and L2 = 2(n + 1)a -
Lo tanO coso. Since 0 < xa, L1 < L2, and L2 > 
[from Exp. (2)], the range of values of x0 satisfying
Exp. (5) is

T = max[O, min(L 2,a) - max(L 1, 0)]. (6)

Case 2 is all the rays not satisfying condition (3),
i.e., rays that start from (xo, yo, 0), where

2(n + 1)a L tan cosq + x < 2(n + 2)a. (7)

For these rays,
=x 2(n + 1);

and, as before, condition a 2 2a can be translated to

x. 2(n + 2)a - (L,, + 2b) tanG coso.

Conditions (7) and (8) can be written together as

x. Ž L 2 and x0 , L3,

(8)

(9)

where L 3 = L1 + 2a. Again, since L2 > 0, the range
of values of x0 between 0 and a satisfying Exp. (9) is

T2 = max[O,a - max(L2.,L3)]. (10)

Equations (6) and (10) give two disjointed [as con-
ditions (3) and (7) are mutually exclusive] ranges of
x0 for which a > 2a, i.e., the ray starting from (x,,, yo,
0) is reflected into the exit leg of the bend. We can
now define the efficiency of the bend as the fraction
of the incident radiation that is transmitted across
the bend. Clearly,

RAY

Fig. 2. Light pipe geometry, coordinate frame, and the light ray
characterization.
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must be noted that though the expression for q does
not change in this case, its value may change because
of the changes in L1, L2, and L3.

III. Discussion and Conclusions

Equation (11) can be used to evaluate the perfor-
mance of any right angle bend in a light pipe. Un-
fortunately, in a general case, this performance is de-
pendent not only on the direction of the incident ra-
diation and physical dimensions of the bend but also
on the distance of the bend from the incident end, Low
A closer inspection of this equation, however,yields a
special case where 7 is independent of Lo. If the di-
mensions of the light pipe are such that

b tanG cosA a (15)

then
LI < 0 and L 3 < L 2.

Equation (11) can then be simplified as

77 = - [min(a, L2) + max(O, a - L2)]

= -[min(a - L2/2,L2/2) + max(L2/2,a - L2/2)]
a

= 1.

b

Fig. 3. Increasing the length of the entrance leg to change the in-
clination of the incident rays.

77= a(T + T2)a

= !{maxLo, min(L2,a) - max(L1 ,0)]

+ max[O, a - max(L 2, L3)]}. (11)

If the incident radiation is inclined toward the exit
leg, then

txo
0

is odd; and the results developed so far do not apply.
However, an inspection of Fig. 3 reveals that if we in-
crease the tube entrance leg length by L so L tanO
cos = a, then this new tube can be treated with
methods developed earlier because now the incident
radiation is inclined away from the exit leg.

Thus for incident radiation inclined toward the
exit leg, Eq. (11) can still be used to find out the bend
efficiency, provided Lo is replaced by Lo + L, where

L tanG coso = a. (12)

We have to determine n in this case from

n Lo tanO cost + < n + 1 (13)
2a 2

and L 2 from

L2 = (2n + )a - Lo tanG cos4. (14)

The expressions for L1, L3, and do not contain Lo
explicitly and, therefore, need not be modified. It

Thus, if the dimensions of the light pipe satisfy con-
dition (15), efficiency of bend, ,7, is 1 and is indepen-
dent of L.

In a practical situation where a = b and = 0,
equivalent of condition (15) is

450 < G < 900.

After the bend, light travels into the exit leg with new
angles 0' = 90 - 0 and O' = 0. If 0 is chosen to be 450
and = 00, there is no change in 0 or 0 after the
bend; and a right angle bend in the same plane en-
countered by this radiation will also be traversed
without any attenuation. In general, therefore, a
light beam will travel through a planar structure of
light pipes with right angle bends without any atten-
uation if the launching angles are 0 = 450 and 0 = O.

For the analysis in this paper, it is assumed that
the walls of the tube are perfectly reflecting and the
medium in the tube is perfectly transparent. In
practice, these conditions may not be satisfied. A
small calculation shows that for a length L of the
tube with launching angles 0 and , the optical path-
length for each ray is L sec. Powell2 has shown that
the number of reflections from the walls in this tube
is also proportional to L tanO. We thus find that if
the walls of the tube are not perfectly reflecting and
the medium in the tube is absorbing the radiation,
then increasing the launching angle 0 increases the
attenuation of the beam. Thus launching angles 0
satisfying condition (15) can be favored only for low-
loss tubes.

References

1. T. 0. Poehler and R. Turner, Appl. Opt. 9,971 (1970).
2. W. R. Powell, Appl. Opt. 13, 952 (1974).

May 1976 / Vol. 15, No. 5 / APPLIED OPTICS 1333

X

l

r


