
Parallel Processing Algorithms and Architecture
for Multimedia On-Demand Servers

Raja Neogi
Motorola Inc., Austin, TX 78720

Meghanad Wagh
Lehigh Ilniversity, Bethlehem, PA 1801 5

Abstract: Advances in networking and storage technolo-
gie.; have made it possible to build multimedia on-demand
servers that provide service similar to those of neighhor-
hood videotape rental stores. In this work. we p p o s e a spe-
ciaiized high-perforniance programmable multiprocessor
architecture which allows continuous playback of media-
streams to large number of clients, a critical factor in multi-
media servers. This architecture supports dynamic phase
shifts in media distrihution which i s particularly useful i n a
distributed environment. We introduce dlgorithnis for inax-
imiiin concurrency extraction and to avoid task rnigration in
thr pi-esence of dynamically changinp dernand. We show
th:ir our solution perforins an order of n ~ ~ ~ r ~ i t u d e better than
other known solutionh.

1.0 Introduction
Recent advances in networking have made it possible

for computer networks to support digital multimedia trans-
mission [1]. Coupled with emerging storage technologies,
they can be used to build multimedia on-demand services
over wide area networks that are expected to permeate resi-
deiitial and commercial premises in a manner Gmilar to ex-
isting cable TV and telephone networks. Naturally, a lot of
intrrest exists in the design of servers that can interface he-
tween the storage media and the clients demanding intornia-
tiori from this media. Such an on-dernand multimedia
sever, which we refer to as Multimedia Server in this paper,
provides services similar to those of neigtiborhood video-
tape rental store. A typical multimedia system is shown i n

Fig, I below. Multimedia server is the nerve center of such a
system. I t digitally stores media information such as the 4-
uc;itional documentaries. entertainment niovies, advertise-
merits, etc., on a large array ot extrernelv high-capacity
storage devices that are permanently on-line. The storage
used in multimedia servers comprise of optical or magnetic
dishs that are random accessible with short seek time. The

server is connected to client display sites via a high-speed
network sub-system. Clients can interactively choose a mul-.
timedia object by scanning several hierarchically organized
attributes like object type (comedy, tragedy, thriller, educa-
tional etc.). few seconds of media clip extracted from the ob-.
ject, and request its retrieval for real-time playhack [I O] on
their display sites. The multimedia server, if i t has necessary
resources such as service-time and buffer-space, serves cli-
ent requests by connecting to individual display sites and
transmitting the chosen multimedia object. Many such serv-
ers can share storage load or serve as temporary banks of in-
formation. One can generate delivery strategies for
optimized distribution of media (video, audio, image and
data) information based o n unit cost for direct transmission
as opposed to store and forward transmission.

clients

Fig. I : multimedia system model

A critical requirement for building any multimedia on-
demand service is the need for guaranteeing continuous
playback of media streams. For continuous playback, server
must support continuous retrieval from disk, network sub-
5ystem must support timely delivery ot media quanta to dis-

lCK3-7133/95 $4.00 0 1995 IEEE
798

play sites, and display sites ought to avoid buffer overflow
or underflow. Retrieval continuity can be guaranteed by
constraining the separation of successive media quanta.
Network subsystem has to lookahead and reserve network
resources for each client such that bounds of delay jitter are
not violated. Also, display sites need to prefetch sufficient
media quanta to match the slack between playback rate and
network latency.

Multimedia system design is a relatively new field with
most of the reported work being restricted to feasibility
studies for development of such systems [1 1,121. Ferrari and
Verina have introduced a network subsystem design for con-
tinuous delivery of media quanta [2]. Techniques for avoid-
ing buffer overflow and underflow at display sites in the
pre5ence of non-deterministic playback rate variations were
addressed by Ramanathan and Rangan 13). Work on multi-
media storage systems for still images and/or audio were re-
ported by several authors (4-6,8,9]. Recently Rangan and
Vin [7] have introduced a generalized niultimedia system
model with a detailed analysis of its feasibility. It is expect-
ed [hat the client bandwidth for such real-time multimedia
service will grow rapidly. To accommodate large number of
clients, it is essential to build a fast but inexpensive multi-
media servers that can directly interface to wide area net-
works via asynchronous transmission mode (ATM)
switching fabric.

The server architectures proposed and analyzed till now
cannot support expected rapid growth i n the number of cli-
ents. However, an inspection of the data search, retrieval
and transmission processes shows that it is possible to do
many of these tasks concurrently. By using a parallel com-
puter system, one may be able to exploit this concurrency.
Further, recent advances in semiconducior technology make
it possible to build application specific multiprocessor archi-
tectures on a single chip. In this paper we propose a low cost
high performance multiprocessor implementation to realize
a sd-t ime multirnedia server. Our architecture provides for
continuous retrieval of media streams from disks for a large
number of clients simultaneously. It supports interactive
services, real-time media distribution and cacheing phase-
shift of multimedia objects from either native or non-native
content providers. Dynamic deadline driven scheduling pol-
icy is used to meet the continuity constraint for media quan-
ta delivery. Our analysis shows that the performance of our
architecture is an order better than those of the earlier sys-
tem.

2.0 Proposed Multiprocessor Architecture
The proposed architecture is shown in Fig.2. It can best

be described as a single-chip, heterogeneous architecture
connected to an off-chip shared memory (implementable as
DRAM) and an array of high speed optical disks. The pro-
ccsors are assigned specific functionalities. Each local

stream controller (LSC) interfaces directly to the disk sub-
system and fetches data through its pre-assigned head. As-
signment is made by selecting a free head in the disk that
cames the wanted media segment. In order to enhance mul-
titasking, individual stream controllers can switch between
tasks. A processor dedicated to a bank of DRAMs (Dynamic
random access memory) is known as a phase-shift controller
(PSC). The processor specialized in communication is
known as an adaptive network interface (NI). Through NI,
the multimedia server can send data and messages to neigh-
boring servers and the client sites. Similarly it can receive
client and other server requests. In addition, for control of
the architecture and global tasks, an interactive services pro-
cessor (ISP), a transaction monitor (TM) and a master con-
troller (MC) are used. All of the processors are connected
through a high-speed bus called the media-bus to handle the
periodic transactions and a local-bus to handle aperiodic
transactions.

-local-bus

In-0 I m*m
I 1 -

Figure-2: multiprocessor architecture

A composite multimedia object can be represented as a
collection of continuous media-quanta (e.g. audio and vid-
eo) tied together by synchronization information. Such mul-
tiplicity of media streams can be abstracted as a rope. For
effective digital storage and retrieval it is broken up into dis-
crete segments called media-block. Each media-block has a
fixed number of packets each of which contains fixed-size
compressed media stream (bits) identifiable by packet num-
ber and packet type (video or audio). In our discussion, we
refer to a sequence of continuously recorded media-blocks
(video frames and audio samples) that constitute a compos-
ite multimedia object as a strand. In our server model we
have assumed that media strands are located in write-once

799

read-only high performance optical disks (such as CLV and
WORM) [SI. Retrieval of media-block incurs retrieval time
and additional latency in the form of seek and rotation time.
The disk head has to seek to the right track and then rotate
along it to grab media blocks from the appropriate disk-
block. Storage of media blocks belonging to a strand could
either be constrained or unconstrained. Problem with un-
constrained placement in a multitasking environment is that,
context switch for fetching media-blocks from different
strands can often result in real time playback violations. Vin
and Rangdn have introduced a constrained placement stor-
age policy optimizing media-block granularity and scatter-
ing [IO].

Another requirement for any multimedia server is to re-
spond to dynamically shifting storage requirements during
delivery of media quanta. For example, client is being
served a two hour movie that started at 2 P.M. Another client
requests the same movie at 3 P.M. Rather than fetching all
media-quanta from read-only disk-array, server bandwidth
is increased by fetching captured data from faster memory.
In our multiprocessor architecture, PSC snoops on initial
media-bus transaction to capture and later serve the required
phase of the strand. Captured data is stored in DRAMS with
only few nanoseconds of access-time Placement of media-
blozks in DRAM, could be either Constrained or uncon-
strained. PSC refers to any stored strand fragment by saving
handle and storage patterns for each active strand in its n&i-

tive buffer. As illustrated in Fig. I , multimedia systems coin-
prise of servers connected directly to clients and other
servers through networks. So. a neighboring server could ei-
ther feed media-quanta or request for it. i[n the latter case
neighboring server is just another client but in the former, it
is a content provider that supplies media quanta penodicdly
for later consumption by natlveclients. This way, F’SC along
with its storage resources provide store-and-forward capa
bility to the proposed multiprocessor based multimedia
server architecture. Garbage collection policies for recover-
ing free areas of memory is programmed in MC which com-
municate with the PSC by port-to-port type of media bu\
requcst (MBR).

At any point of time, only finite number of clients can
be served. The main purpose of designing a multiprocessor
based solution for multimedia servers is to expand the num-
ber of clients that may be simultaneously served. In our pro-
posed architecture, ISP manages admission of new clients
into the system. Once a client is admitted, i t leaves only at trr
its service is complete. Admission control strategy used bv
the ISP is introduced in the next section. Also, before re-
questing service or admission, clients can interactively que-
ry local server catalog database. Optimized hierarchical
organization of such database is beyond the scope of this
work Transaction Monitor ITM) audits all tran\actioii\ on
media bus. It records admission ofclients ,ind units of medLi

quanta delivered or received. Upon completion of service,
this information is packed and delivered to the network for
consolidating server charges to network charges. Security
issues associated with media strands are programmed in MC
which can override accepted service request. In ii complicat-
ed real-time multiprocessor system, as the one proposed, it
is possible that there are real-time violations in the continu-
ous delivery of media quanta at peak load. MC monitors all
periodic transactions on media-bus to detect such a violation
and can be programmed to respond to faults depending upon
its severity. All transactions between multiprocessor system
and the ATM switching fabric are routed through an adap-
tive network interface (NI). It adapts to different internal
and external bus rates.

3.0 Concurrency Extraction
Each transaction on media-bus must have a control, da-

ta, arbitration and snoop phase. All except data phase is
completed i n a fixed number of cycles. Since, bus resource
is required for both data and control phase, these phases
need to be sequential. Each control phase is preceded by
snoop and arbitration phase, and followed by data phase.
Data phase for a control phase follows the next control
phase, as shown in Fig.3. The LSCs and PSC support multi-
tasking and prefetch data for a task in such a manner that all
data is available when its turn to load the media-bus comes.
This is accomplished by snooping on the media-bus prior to
the preceding control phase of transaction and initiating
prefetch from the storage media. Null data phase is only
possible when processor wins the media bus for one of its
native task before prefetch from storage media for the trans-
action is complete. By allowing task migration in LSCs
when a task dies (service to client is complete) and mapping
tasks (initiate service for new client) in such a wdy that con-
secutively executing tasks do not belong to the sdme LSC,
prefetch contention can be avoided. In arbitration phase,
each LSC and PSC figure out local task winner, based on
red-time deadline, and along with NI (lor inbound traffic)
communicates arbitration value to MC through the arbitra-
tion loop shown in Fig. 2. MC then decides the winner of
media bus. Local bus control-flow and datn-flow IS identical
to that of the media-bus except that priority encoding is
based on events rather than on the deadline.

4.0 Dynamic Scheduling
Each processor driving the media-bus (LSCs. PSC, MC

and NI) has a snoop module that captures the most recent
control-phase to derive its local prefetch strategy For exam-
ple, in Fig. 3, sp(i) coines after cp(i) . In sp(i), processor
checks out its local processes to establish a winner that can
potentially win the ap(i+2) arbitration and consequently re-
serve data-phase dp(i+t) through control-phase (*p(i+2). In
older toexplain the algorithm to establish such a winner, we

800

introduce three terms: deadline, laxity and readiness.
Definition 1: deadline for a process or task, D(i,j), is defined
as the time remaining (normalized to clock-cycles) between
now and the absolute deadline for task j in processor i to
reach the network. Both the local scheduler for each proces-
sor and the MC maintain this parameter for each active task.

‘seek

Definition 2: Laxity for a process or task, 4 i , j) , is defined
as the time difference (normalized to clock-cycles) between
now and the time media-bus control should be obtained to
successfully dispatch media-blocks without violating any
real-time deadline. This can be calculated by subtracting
bus-latency from D(i,j) .

n

seek seconds
latency

Fig 3. Execution concurrency in the architecture

Fig. 4 below illustrates the relation between the deadline
and laxity.

t bus-latency
4 1 laxity

now dead1 i ne

Fig. 4. Relation between Laxity and Deadline

Definition 3: Readiness of a processor for a task or process,
R(i,j), is a condition defined as its ability to prefetch all data
before execution of the corresponding data-phase transac-
tion.
The symbols used in this and the next section are listed i n
Table 1. Media-bus winner is derived i n two stapes. Each
media-bus driver that supports multitasking (LSCs and
PSC) comes up with a winner by selecting the highest prior-
ity task from its native pool of active tasks. This is per-
fonned by the native snoop module in snoop phase and is

given as,

P’ = m i n , E 7 . , { D ((i , j) A R (i , j)))

where P‘ indicates the id of the winning task in processor i
and Ti, the set of active tasks in processor i. Each media-bus
contender (LSCs, PSC and NI) fills up its slot in the arbitra-
tion packet (initiated by MC along the arbitration-loop) with
the local winner id and bus-latency (for laxity calculation).
Arbitration is performed by MC in arbitration phase and i s
given as,

W = m i n , s l s L { D (i , P i) A f , (i , P i) }

where W indicates the arbitration winner and L, the number
of processors competing for data flow transaction on media-
bus.

Table 1: List of symbols used

Symbol Explanation Unit

of storage media block

size of bits per
video-frame frame

media-bus I p 1 width I
video play- frames per
back rate second

disk-data bits per

rotational seconds
‘ro, latency

Lemma 1: At least three LSCs are needed for maximal con-
currency.
Pmu8 We consider the worst case condition i.e. all clients
requesting service require original media-quanta (LSC ser-
vice). Maximum extent of DF(dp(i)) overlaps with dp(i-I),
dp(i-2) and portion of dp(i-3). This means DF(dp(i- 2)) and
DF(dp(i-I)) concur with the execution of DF(dp(i)). Noting
that each LSC has only one head to perform disk prefetch,
three consecutive tasks need to be on separate LSCs.

Lemma 2: Earliest response time is variable, but is bounded

80 1

and is greater than next three data-phases, i.e.,
I

p p (1 + k)

where TresPonse indicates acceptance-to-service lag time and
fLrx the operating frequency of the system.
Prooj Let a high priority task be granted admission before
snoop-phase sp(i). Then, even if it wins local arbitration and
global arbitration up(i+2), data transaction slot can only be
reserved through cp(i+2). This implies data-phases dp(i I)
(concurrent to sp(i)), dp(i) (concurrent to up(i+2)J and
dp(i+ I) (follows cp(i+2)), have to come before dp(i+2). So,
earliest an incoming task can be served i.i the sum of the next
three data-phases. Each data-phase can be of different size
depending upon the number of media-blocks being served.
However, media decompression parameters can fluctuate
boundedly (eg. playback rate, frame size are not widely dif-
ferent), so one can derive an average response time that IS

marginally different from the actual response time. There-
fore the response time IS bounded.

Each media-bus driver needs to have a data-buffer to
save prefetched data, and control buffer to store control data
structures for active ta\ks. Moreover, processors that sup-
port multitasking by context switching need to have context
butfer. Both control-buffer and context-buffer sizes scale
linearly with control parameters monitored and maximum
multitasking limit, respectively. Bits required per control
parmeter or task state I S also relatively small. The datd-
buffer, on the other hand is huge and it is expensive to have
more than one data-buffer per processor. Hence, we intro-
duce the following lemma

Lemma 3: maximum data-buffer size for any of the media
bus controllers (LSCs and NI) is given as,

where dp,, indicates maximum cycles allowed per
dataphase.
Prooj Each prefetch from storage-media is triggered by a
snoop phase sp(i). This allows the processor data-phases
dp(i - I) , dp(i) and dp(i+l) to get data from storage-media.
Assuming that there is no prefetch contention and an upper
bound for the maximum number of cycles that can be allo-
cated to any processor on the media-bus, we conclude that
the data-buffer size is bounded.

5.0 Performance Analysis
Consider a multimedia. server that is required to concur-

rently serve n clients by supplying them strands S I , s,,
S,. Since each request is periodic, multimedia server can
service them by proceeding in rounds. Suppose that during

each round, multimedia server retrieves k , media-blocks of
strand SI, k2 of strand S2, etc. The total time required to
complete the round should not exceed the minimum play-
back durations of k l , k2, , k, blocks. The the continuity
requirement for each strand can be satisfied ifand oniy ifthe
service time per round does not exceed minimum of the
playback durations of k l , k,, ... , k, blocks. That is,

(1)
The multimedia server can service all n clients simulta-
neously if and only i f k l , k2 , ... , k, can be determined. Since
we have n variables and one equation, determination of k , ,
k2. ... , k, require additional techniques (all the other param-
eters besides this are supplied by the client seeking service).
We use two approaches to solve this problem. In the first
case, we use same value of k, for all clients yielding a round
robin service approach. This gives the number of media
blocks using the Round Robin strategy [11, k,, as

.r, ,kP ZJ""
krr = -

I = I

where U", denotes the right hand side of (1).

because, strand with maximum playback rate would have
retrieved exactly the number of media-blocks it needs for
the duration of service round, other strands with smaller
playback rates will have retrieved more media blocks than
is needed in each service round. To get around this problem,
we allow retrieved media-blocks to be proportional to cli-
ents' playback rate (also called quality proportional ap-
proach [I]). The number of media blocks, k,, is obtained in
this case as,

This however may not be the optimal number of clients,

f c , l , P U m i n
Lo =

i = 1

On the other hand, in a uniprocessor scenario, the number of
media blocks must satisfy the following equation,

(2)
The first term in (2) is a result of the fact that latency due to
seek and rotation is incurred every time context is switched
from one client to next in every period.

Using quality proportional approach, mentioned above,
(1) and (2) can be rewritten as,

n

802

(3)
and,

n

4, c "IfR:p :m

/ l (l ~ k + / ; ; J) + - 5 I/""
R \ m

(4)
Written in this form, inequalities (3) and (4) show that the
number of clients served in both multiprocessor and the uni-
processor architectures is bounded above. Note now that the
typical values of R,,,,f, /A and p are I Gbps, 50- 100 Mhz and
63 respectively. Thus the product filk@, denominator of the
left hand side of (3), is 6.4 times larger than the correspond-
ing denominator of (4). By comparing { 3 I and (4) in the light
of this, one can see that (3) admits a much larger n than (3)
(at least 6.4 times larger). The term corresponding to the
seeh times in (4) further reduces the maximum n satisfying
(4). Thus using our multiprocessor architecture, a much
larger number of clients can be served through the multime-
dia 5erver as compared with earlier architectures which
were based on a single processor. Finallj, i t should be point-
ed out that as Femiconductor technology advances, bothh [&

and p are expected to increast:, further enhancing the per-
formance of our multiprocessor multimedia server.

6.0 Scalability
From (3) one can derive the maximum number of clients
supported, NftiU as,

f P
" 1 " - C l k

Rvp.q,.,

(5)
Note that is independent of block sizes. However, each
client's compressed bitstream buffering capacity is limited
and this limits the maximum size of a media block. Typical
values of R,,,, and.f,.lk are 30 frames per second and 66.7 kilo-
bits per frame on average. This yields a maximum broadcast
capacity of about 3200 clients. However, in near future, ad-
vances in semiconductor techriology will permit use of
higher clock rates&.[k and bus.-widths p for single chip im-
plementations. This will scale up performance of our pro-
posed system even further. For example, a system with 128
bit wide media bus operating at 200 MHz can support more
than 12000 clients.

Scaling performance to these high values requires one
tu effectively combat the problem of task migration. Task
migration is a result of using less number of LSCs than the
number of clients being supported (for obvious economic
and feasibility reasons). Thus each LSC i s supporting mul-
tiple strands. The LSCs are provided a periodic access to the
media bus to dump their data. This ensures that each LSC
has maximum possible time to retrieve and buffer the data
from the disk. Tasks are serviced in the order oftheir priority
in each of these rounds. When a new task enters the system,

the servicing sequence has to be changed by taking the pri-
ority of this new task into account. This might force migra-
tion of all the tasks that have a priority lower than the new
task. To illustrate this, consider three LSCs marked a, b and
c, and seven tasks PI through P7 with decreasing priorities.
(Each task is a request from a client for a particular media
strand.) One may let LSC a service tasks Pl, P4 and P7, b,
the tasks P2 and Ps and c, tasks P3 and Pa. By sequencing
through the LSCs a, b and c in that order repeatedly, one
would then be able to service tasks in their priority order and
each LSC will have atleast two data phases to fetch its data
from the disk. The processing would follow the timing
shown in Fig. 3 and will proceed without any problems.
Now, if a new task, P2 of priority higher than that of P , but
lower than P2 comes into the system, than one would have
to modify the mapping of tasks to the LSCs to take into ac-
count this new reality. LSC a would now service tasks [' I ,
P , and Pg, 6, the tasks P2, P4 and P7 and c, tasks P2.5 and
P,. By sequencing through the LSCs a, b and c as before,
one would be able to service tasks in their priority order. I3ut
this new mapping of tasks to LSCs calls for migration of the
five tasks of a priority lower than the new task (P3 through
P7) from an LSC to another.

In our earlier performance analysis, we had ignored the
delays due to migration. However with high performance
systems, data phases take less time and task migration might
become a significant burden. A system will service all the
designed number of clients satisfactorily if it is possible to
map all the tasks on the available LSCs such that by se-
quencing through the LSCs periodically, all the tasks are
serviced in their order of priority and each LSC gets at least
two data phases (as in Fig. 3) to fetch the data for any task
assigned to it. We now show that if the system has atleast 5
I S C processors, then it is possible to insert a new task into
the system without any task migration.

Theorem 1: No task migration (due to remapping to accom-
modate a new task) is required if the system has at least 5
LSC processors.
I"$ Denote the tasks in their order of priority by P,, i =
f, 2, .. n and Q, (Pi) , the LSC processor to which task Pi is
mapped. Since the tasks need to be processed in their order
of priority, the sequencing of the processors in each round is,

(6)

@ (P ,) ? Q , (P 2) , " . 9 $ (P ,)

If the number of tasks is less than the number of proces-
sors 0 , we map one task to each processor. Clearly this
would avoid the bus contention. We now assume that each
processor has at least one task and a new task P,,, with a
priority higher than that of P, comes in. The new mapping
of tasks to processors, on, may be defined as:

Q (P) if P is an old task
if P = Pnex,

803

Clearly this mapping avoids any task migration. The new
periodic sequencing through the processors is now given by

From the definition of the function this sequence can be
rewritten as:

Q,n (P , 1 1 9, (P,) 7 ’... 9, (IJ,- , I . 9n (P,,J 7 9, (P,) I . . .$, (P,)

@ (P , 1 1 . . . 9 (p , - I 1 7 @ (P , + 2) > 9 (P,) > Q, (P , + 11, . I . 9 9 (P ,)
(7)

It is easy to verify that the sequencing of (7) does service the
tasks in their priority order. To show that it avoids bus con-
tention, we demonstrate that no processor is accessed before
it i s allowed two data phase cycles so as to have sufficient
time for its data fetch. Since the only difference between the
sequence of (6) and that ot’(7) is due to the new task mapped
to processor 4 if, + 2) , one only has to verify the absence of
bus contention for this processor. But this is also obvious
from (7). Thus this mapping and sequencing avoids bus con-
tention without any task migration.
Finally, note that the processor sequence around this new
acitiition @ (P , + ~ : I , i.e.,@ip,-2), 9(p+ 11, 9(“,+2) , Q (“ d
and @ (f, + ,) should all be distinct processors, or else some
processor may be accessed earlier than two data phases.
This proves that there should be at least five processors to
aloid bus contention without any task migration.

7. Conclusion
Multimedia servers are different from other servers by

virtue of their real-time continuity requirements for distribu-
tion of media streams. Rapidly increasing popularity of niul-
tirnedia necessitates the design of new multimedia servers
thai can simultaneously satisfy a large pool of clients
In this paper we have proposed a multiprocessor based mul-
timedia server to address this problem. Our architecture
takes full advantage of the concurrency between the dish
fetch, bus transfer and network delivery. The processors in
our architecture are specialized to do the assigned tasks and
use an interconnection strategy that maximizes the perfor-
muice of the system besides meeting tht: demands of the ap-
plication. The data transactions are pipelined tor optimal
utilization of resources. Finally, each local stream controller
(LSC) and the phase shift controller (PSC) uses a scheduler
for swapping active tasks 11) achieve multitasking. To make
the architecture more flexible, we introduce programmahil-
it) In handling fault tolerance, security, uni t cost estimation
for media-quanta delivery md prioritizing events on the lo-
cal bus. This architecture can also handle dynamic phase
shifts during media-distribution. We have introduced algo-
rithms for maximum concurrency extraction arid for avoid-
ing the task migration even when the demand on the sen er
changes dynamically. With the current technology, our solu-
tion can perform an order of magnitude better than other
known solutions.

8. References
[I] P. V. Rangan, H. Vin and S. Ramanathan, “Designing an
on-demand multimedia service”, IEEE Communications
Magazine, vol. 30, no. 7, pp. 56--65, Jul. 1992.

[2] D. Ferrari and D. C. Verma, “A scheme for real-time
channel establishment in wide-area networks“, IEEE Jour-
nal on selected areas of Communication, vol. 8, no. 3, pp.
368--379, Apr. 1990.

[3] S. Ramanathan and P. V. Rangan, “Adaptive feedback
techniques for synchronized multimedia retrieval over inte-
grated networks”, ACM Transactions on Networking, vol. 1 .,
no. 2, pp. 246--260, Apr. 1993.

141 C. Abbot, “Efficient editing of digital sound on disk”,
Journal of Audio Errgineering, vol. 32, no. 6, pp. 394--402,
June 1984.

IS] B. C. Ooi and A. D. Narasimhalu, “Design of a multime-
dia file-server using optical disks for office applications”,
IEEE compufer society Office Automation Symposium,
Gaithersberg, M D , pp. l57-- 163, Apr. 1987.

161 J. Gemmel and S . Christodoulakis, “Principles of delay
sensitive multimedia data storage and retrieval”’, ACM
Transactions on Injhrmution systems, vol. 10, no. 1, pp. 51-
-90, 1992.

171 H. M. Vin and P. V. Rangan, “Designing a multiuser
HDTV storage server”, IEEE Journal on selecred areas of
Communication, vol. 11, no. 1, pp. 153--164, Jan. 1993.

[8] C. Yu and W. Sun, “Efficient placement of audio data on
optical disks for real-time applications”, Comniunications
r$ACM, vol. 7, no. I , pp. 862-471, Jul. 1989.

191 P. V. Rangan and H. Vin, “Efficient Storage Techniques
for Digital Continuous Multimedia”, IEEE Transactions of
Knowledge and Datri Engineering, vol. 5 , no. 4. Aug. 1993.

[IO] Raja Neogi and A. Saha, “Embedded Parailel Divide
and Conquer Video Decompression Algorithm and Archi-
tecture for HDTV Applications”, munuscrpt in Review

[1 I] Ron Buck, “The Oracle Media Server for nCUBE Mas-
sively Parallel Systems”, Proc. ofthe 8th. Intl. Parallel Pro-
cessing Symposium, pp. 670-673, Apr. 26-29, 1994.

[121 B. A. Gennart and R. D. Hersch, “Multimedia Perfor-
mance Behavior of the Giga View Parallel Image Sewer”,
Proc. of 13th. IEEE Symposium on Mass Storage Systems,
pp. 90-98, Jun. 1994

804

