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Abstract

Although the role of lateral inhibition in edge (contrast) enhancement is well known, it has not been parametrized. This paper

investigates the imbalance between the lateral inhibitory and excitatory stimuli and its effect on the edge enhancement and stability. It is

shown that this imbalance can be expressed through g, a ratio of inhibitory to excitatory weights in a neuron. Stability requires g to be

less than the critical ratio Y. As g approaches Y, edge enhancement increases, the rise being the sharpest just before instability. The

increase in edge enhancement is also accompanied by an increase in the lateral spread of perturbations across the neuron layer.

r 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Lateral inhibition refers to the phenomenon where a
neuron in a neural network inhibits its neighbors, thus
creating a competition between neurons. This phenomenon
is observed in the visual cortex [9,5] as well as auditory
cortex [7,19]. The role of inhibition in contrast enhance-
ment has been recognized for a long time. Ernst Mach, a
19th century physicist, observed that retinal inhibition
accentuates contours and borders in the visual field. This
finding received a boost by the experimental work of
Hartline and Ratliff on the eyes of horseshoe crab Limulus

[9]. They observed that when illuminated, the retinal cells
are excited by the light within a central area and inhibited
by light in the surrounding area. This resulted in the
enhancement of the edges or contours between the regions
of different intensities. This effect is called edge or contrast
enhancement.

A number of researchers have studied lateral inhibition
and its role in edge enhancement and stability of neural
networks. In 1990, Kelly showed that large imbalance
between the excitatory and inhibitory stimulus can cause
e front matter r 2006 Elsevier B.V. All rights reserved.
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instability in neural networks [12]. Later, Shadlen and
Newsome [17,16] proved that relative strengths of excita-
tory and inhibitory inputs are important to stabilize neural
response. Their research indicates that neurons avoid
saturation by balancing excitation with inhibition. Their
analysis of high-input regime, where integrate-and-fire
neurons receive a large number of both excitatory and
inhibitory inputs, showed that such a balance is responsible
for the dynamic range of neurons’ response. Burkitt [3] has
also shown that balanced inhibition with reversal potential
can resolve the problem of dynamic range of neural
response. Amit and Brunel [1] have shown that cortical
network of integrate-and-fire neurons with balanced
inhibition and excitation and stochastic background is
stable. Simulations of Gutkin and Smith [8] have further
strengthened the argument that the right amount of lateral
inhibition is critical to the stability of cortical neural
networks as well as to edge enhancement. Their work
shows that a recurrent cortical neural network reaches a
steady state and enhances the edges only in the presence of
weak lateral inhibition.
Thus, the balance between the inhibitory and the

excitatory characteristics of a neuron and its impact on
the stability and edge enhancement is well documented.
But no results pertaining to quantitative estimates of the
imbalance that cause the instability are available. In this
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Fig. 1. The logical representation of the neural network in retina. The

excitatory inputs (xi’s) come from the photoreceptors and lateral

inhibitory inputs represent the collections of horizontal cells. The yi’s

represent the outputs of neurons.
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paper, we consider a planer neural network with lateral
inhibition. We show that the stability and the edge
enhancement of this network is governed by g, the ratio
of the inhibitory to excitatory strengths. In particular,
when g is less than the critical ratio Y, the network is stable.
The bound Y is only dependent upon the model and the
connectivity of the network. Further, when the network is
stable, its edge enhancement increases with g and becomes
very large when g nears Y.

2. Model of the neural system

Neural network analysis and simulation is generally
difficult because the number of neurons that influence each
other is very large. Previous research has shown the
columnar organization of neurons, i.e., groups of similar
neurons behave like single neurons (see review article [15]).
We take advantage of this fact to partition the retinal
neurons within a layer into large clusters of neighboring
neurons. Each of these clusters represents a single neuron
in our model. Thus, the response of each of our neurons is
an aggregate of the responses of all the neurons in the
corresponding cluster. This model influences our analysis
in two ways. Firstly, even though individual neurons may
be integrate-and-fire type with spikes at the output, the
composite output of a large number of such neurons can be
considered continuous. Further, it also allows us to ignore
threshold while computing the neuron output since that
output is the result of the collective behavior of a large
number of neurons. Thus the neurons in our model exhibit
linear behavior.

There is substantial amount of evidence that dendrites
develop randomly and consequently real neural networks
have a random structure which is extremely difficult to
analyze except in a stochastic manner [3,4]. In our model,
we hypothesize that the probability of neuron connectivity
depends upon the proximity. In other words, the number of
connections across the clusters of neurons (which represent
our aggregate neurons) is a function of the physical
distance between the clusters. We realize the interconnec-
tion density between the clusters through the weight of the
connections between our neurons. Thus, both the excita-
tory and the inhibitory weights of our neuron connections
can be assumed to be functions of the distance between the
clusters that the neurons represent.

Our model differs from models used by earlier research-
ers substantially. In particular, our representation of
neuron clusters as single neurons allows us to use simpler
(linear) model of an individual neuron, while allowing for a
more detailed network topology. In much of the previous
research in this area, the network topology was not a
consideration. Burkitt, for example, deals with a stochastic
distribution of neurons [3]. We use a simpler model of the
cortical networks consisting of neurons laid out uniformly
in space. Each neuron provides lateral inhibition to certain
range of its neighbors. We use a linear model of a neuron.
Several previous papers [14,6,5] have considered neurons in
primary visual cortex to be linear cells that compute a
weighted sum of light intensities falling on the receptive
field. Evidence is also available showing that the P cells, a
type of retinal ganglion cells, behave linearly for small
variations in the stimulus [13,2]. Even though our network
geometry closely resembles that of Gutkin and Smith [8]
and Kelly [12], they use sigmoid or other non-linear
functions to compute the neuron response against our
linear function. Further, the connection matrix used in [12]
is a cyclic Toeplitz matrix and is quite different from the
one we have employed. Finally, unlike others, our weights
are functions of the distance between the source and
destination nodes with the inhibitory weight of an edge of
the same length being a constant g times the weight of an
excitatory edge.
Our model of neuron network shown in Fig. 1 closely

resembles the arrangement of retinal neurons. It could be
considered a logical representation of the retinal pathway
with the excitatory input coming from the rods/cones and
inhibitory inputs coming from lateral horizontal cells. The
sole purpose of the horizontal cells is to inhibit the neurons
they synapse with. This is responsible for a lateral
inhibition in the cortical network in the eyes. The output
of our neural system is then applied to bipolar cells and
finally to ganglion cells.
The assumptions and notation used in this paper are as

follows.
�
 The N denotes the number of identical neurons in the
array as shown in Fig. 1. Each of our neurons in Fig. 1
represents a cluster of real neurons.

�
 Each neuron has ne excitatory input connections from
the neurons in the lower layer and ni inhibitory input
connections from neurons in its own layer (lateral
connections). We assume that the weight of a connec-
tion is a function of the distance between the source and
the destination neurons. A neuron is affected the same
way by neurons equidistant from it on either side. The
excitatory weights are denoted by wj where j is the
difference in the source and the destination neuron
indices. The inhibitory weights are assumed to follow
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the same function of distance as the excitatory weights.
The proportions of the inhibitory and the excitatory
neurons in the cluster are responsible for the relative
strengths of the inhibitory and excitatory behavior of
the entire cluster. To account for this, we scale the
inhibitory weights by the weight ratio g. The g allows one
to compare the populations of the inhibitory and the
excitatory neurons within a cluster. Thus, the inhibitory
weight of an edge between neurons j0 away is denoted by
gw0j where the part of inhibitory weight that depends
upon the distance is w0j. Fig. 2 shows the weights of the
connections from a single neuron.

�
 In the analysis we have ignored self-inhibition. In other
words, w00 was set to 0. But it should be pointed out that
the presence of self-inhibition does not change the
overall behavior of the system, though it reduces the
edge enhancement. All the simulations reported in
Section 4 use self-inhibition.

�
 In order to minimize the edge effects due to a finite array
of neurons, we reflect the connections at the end of the
array. In other words, if the jth neighbor of a neuron is
outside the range of neurons under consideration, then
the weight of the connection from its mirror image
(from the array edge) is doubled. As long as the
discontinuities in the input stimulus are sufficiently
away from the edge, this is sufficient to suppress the
edge effects of the finite array.

�
 The input stimulus at time t is denoted by xiðtÞ; 1pioN.

�
 In order to produce a constant (and equal) output
corresponding to a constant input, we scale the output
of each neuron by a normalization factor Z. It is shown
later that Z is inversely proportional to the sum of all the
excitatory and the inhibitory weights.

�
 We assume a linear time-invariant neural system. Thus,
our weights are constant over time and are independent
of either the excitation or the output.

Based on the model described above, the discrete-time
output yi of the ith neuron at time tþ 1 is given by
yiðtþ 1Þ ¼ Z
Xr
j¼�r

wjjjxiþjðtÞ � g
Xt
j¼�t

w0jjjyiþjðtÞ

" #
, (1)

where r ¼ ðne � 1Þ=2 and t ¼ ðni � 1Þ=2. It should be noted
here that because of the infinite array assumption stated
w’γ 1w’γ 1

xi+2xi+1xi
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w’γ
yi

yi-2

w’γ 2

w2

yi+2

2

w2

yi+1

w1

yi-1

xi-2 xi-1

w1

i

. 2. Connections to the ith neuron. The lateral inhibitory weight of the

es coming from neurons i þ t and i � t is gw0t. Weight of the edges from

uts xiþt and xi�t is wt. There is no self-inhibition, i.e., w00 ¼ 0.
above, if the index i þ j of x or y in (1) goes out of its
defined range of 12N, then it needs to be reflected with
respect to the neuron index, i.e., an out of range index j

needs to be changed to 2i � j. For example, when
ne ¼ ni ¼ 5, the output of the second neuron, y2 is

y2ðtþ 1Þ ¼ Z½w2x4ðtÞ þ w1x1ðtÞ þ w0x2ðtÞ þ w1x3ðtÞ þ w2x4ðtÞ

� gðw02y4ðtÞ þ w01y1ðtÞ þ w01y3ðtÞ þ w02y4ðtÞÞ�.

Eq. (1) can also be written in the following matrix form:

YðtÞ ¼ Z AXðtÞ � gBYðt� 1Þ½ �, (2)

where X ¼ ðx1;x2; . . . ;xNÞ
T, Y ¼ ðy1; y2; . . . ; yN Þ

T and A

and B are N �N square matrices:

A ¼

w0 2w1 2w2 . . . 2wr 0 . . .

w1 w0 w1 2w2 . . . 0 0

..

. ..
. ..

. ..
. ..

. ..
. ..

.

0 wr . . . w0 . . . wr . . .

..

. ..
. ..

. ..
. ..

. ..
. ..

.

0 . . . . . . 2w2 w1 w0 w1

. . . 0 0 . . . . . . 2w1 w0

0
BBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCA

,

B ¼

0 2w01 . . . 2w0t . . . 0 0

w01 0 w01 2w02 . . . 0 0

..

. ..
. ..

. ..
. ..

. ..
. ..

.

. . . w0t . . . 0 . . . w0t . . .

..

. ..
. ..

. ..
. ..

. ..
. ..

.

0 . . . . . . . . . w01 0 w01

0 0 2w0t . . . . . . 2w01 0

0
BBBBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCCCA

.

Fig. 3 represents a linear feedback system based on Eq. (2).
Because of our assumption that the weights and con-
nectivity are constant, this is a time-invariant system. It will
be shown in the subsequent sections that g should be less
than Y for a stable output.
Normalization

X(t)
Y(t)A

B

ηΣ
+

-Excitatory connections

Feedback formed by lateral inhibition

γ < Θ

Fig. 3. The neural network of Fig. 1 represented as a linear time-invariant

feedback system from Eq. (2).
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3. Mathematical analysis of the neural system

3.1. Normalization

We use a constant normalization factor, Z, in our analysis
such that if the input stimulus, xi, is constant over time at
some value, then the output also settles at that same value.
Let xi ¼ x for all i. Then, the output y of each neuron is
obtained from (1) as

y ¼ Z
Xr
j¼�r

wjjjx� g
Xt

k¼�t

w0jkjy

" #
. (3)

From (3) we get Z as

Z ¼
1Pr

j¼�rwjjj � g
Pt

k¼�tw
0
jkj

ð4Þ

¼
1

Sum of excitatory weights� sum of lateral inhibitory weights
.

ð5Þ

3.2. Critical ratio

Let li, i ¼ 1; . . . ;N, denote the eigenvalues of B. The
characteristic equation of B is given by

jB� lIj ¼ 0.

Let us denote the sum of each row in B as S. In the above
determinant, after adding the first N � 1 columns to the
last column, we get the equivalent equation

�l 2w01 . . . 2w0t . . . 0 S � l

w01 �l w01 2w02 . . . 0 S � l

..

. ..
. ..

. ..
. ..

. ..
. ..

.

. . . w0t . . . �l . . . w0t . . .

..

. ..
. ..

. ..
. ..

. ..
. ..

.

0 . . . . . . . . . w01 �l S � l

0 0 2w0t . . . . . . 2w01 S � l

�������������������

�������������������

¼ 0.

One can see that by setting l ¼ S, the last column of the
determinant becomes 0 indicating that one of the
eigenvalues is

lm ¼ S. (6)

From Gerschgorin’s circle theorem [18], all the eigenva-
lues lie within or on the boundary of the circles whose radii
are the sum of absolute values of all entries in each row
except the value on the principal diagonal. Applying this to
matrix B, we get

jlijpS; i ¼ 1; 2; . . . ;N. (7)

From (6) and (7), lm is the maximum eigenvalue of B.
Consider now the system equation given by (2). Assume

that the system outputs are zero before the stimulus is
applied. This system is causal because as shown in (2), the
output of the system at time t is only dependent upon its
inputs and outputs till time t. Let the stimulus X be
constant over time. Then we have

Yð0Þ ¼ 0,

Yð1Þ ¼ ZAX.

By using recursion for solving Eq. (2) we get

YðtÞ ¼ Z½AX� gBYðt� 1Þ�

¼ Z½I� gZBþ � � � þ ð�1Þt�1ðgZBÞt�1�AX

¼ ZCAX, ð8Þ

where

C ¼ ½I� gZBþ � � � þ ð�1Þt�1ðgZBÞt�1�

¼ ½Iþ ð�1Þt�1ðgZBÞt�½Iþ gZB��1, ð9Þ

provided none of the eigenvalues l satisfy gZl ¼ �1. Eq.
(9) can be verified by noting that

C½Iþ gZB� ¼ ½Iþ ð�1Þt�1ðgZBÞt�,

and that the matrix ½Iþ gZB� is invertible if no eigenvalue l
of B equals �ðgZÞ�1. Combining (8) and (9) one gets

YðtÞ ¼ Z½Iþ ð�1Þt�1ðgZBÞt�½Iþ gZB��1AX.

As t!1, the geometric progression, C, converges if
and only if jgZlmjo1. Therefore, the steady-state output is

Yð1Þ ¼ Z½Iþ gZB��1AX.

The neural system would be stable only if the output Y
converges asymptotically. By substituting values of Z and
lm from (4) and (6) in the inequality, we deduce that for
stability, one should have

g
Pt

j¼�tw
0
jjjPr

j¼�rwjjj � g
Pt

j¼�tw
0
jjj

�����
�����o1. (10)

We assume that the lateral inhibition effect is less than
the overall excitatory effect, so as to produce a meaningful
output. Since the ratio in (10) is positive, we get the
condition for a stable output to be

go
Pr

j¼�rwjjj

2
Pt

j¼�tw
0
jjj

. (11)

We refer to the right-hand side of (11) as critical ratio

and denote it by Y in the rest of the paper. The condition
for the stability of the neural system then becomes

goY. (12)

Since gw0jjj is the jth inhibitory weight, an alternate way to
express the stability condition (12) is

Sum of lateral inhibitory weights

Sum of excitatory weights
o

1

2
.

Thus, if the sum of lateral inhibitory weights for a neuron
is less twice the sum of its excitatory weights, the system is
stable. Note that Y, as defined by (11), is a function of only
the network connectivity specified by constants t and r and
the weights determined by the relative distance between the
source and the destination neurons. The constant nature of
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Y allows us to characterize network stability rather easily
in the rest of the paper.

4. Simulation results

We used MATLAB programs for all our simulations. In
all simulation we used the same number of neurons,
N ¼ 40. In order to characterize the effect of input
discontinuities on the output, we chose an input stimulus
that has a single edge sufficiently far from the boundaries
of the neural network. This edge was located between
neurons 20 and 21, i.e., xiðtÞ ¼ 55, for 1pip20 and
xiðtÞ ¼ 65, for 21pip40. We also assumed that there is
only one layer of neurons. We used 500 iterations in each
simulation run to allow the system to stabilize, if at all. We
did two sets of simulations: with self-inhibition and
without any self-inhibition; but report here only the results
with self-inhibition. Systems without self-inhibition showed
the same qualitative behavior. Particularly, when the
number of connections to a neuron (ni or ne) was large,
both sets of simulations gave identical outputs. For small
number of connections, networks with little or no self-
inhibition produced much larger edge enhancement.

We used three weight distributions that we believe are
probable in biological systems. In each case, the con-
nectivity of the neural system and the weight ratio g were
varied and their effect on the critical ratio and output was
determined. In order to parametrize the edge enhancement,
we define the edge enhancement as the ratio of the
difference in the stable maximum and minimum outputs
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Fig. 4. Response of a neural system with uniform weights for ni ¼ ne ¼ 3. No

enhancement increases with increase in g. (a) g ¼ 0:8Y, (b) g ¼ 0:95Y, (c) g ¼
to the input edge amplitude. Simulations show that edge
enhancement is independent of the value of inputs or the
magnitude of edge.
Following subsections present the simulation results.
4.1. Uniform weight distribution

In this set of simulations, all the excitatory weights ðwiÞ

were assumed to be equal and so were the inhibitory
weights ðgw0iÞ. Further, without loss of generality, these
weights may be chosen to be 1, i.e.,

wj ¼ 1 for � rpjpr,

w0j ¼ 1 for � tpjpt.

Fig. 4 shows the input/output behavior of such a system
with ni ¼ ne ¼ 3. From this figure one can see the criticality
of the weight ratio in keeping the neural system stable. As
soon as the weight ratio exceeds Y, the system oscillates
with disproportionate magnitude. In Fig. 4(d), a weight
ratio of mere 1% more than the critical ratio Y causes the
output to oscillate about four orders of magnitude larger
than the input discontinuity after 500 iterations.
The critical ratio dependence on the number connections

is shown in Fig. 5. One can see that the critical ratio
increases with increasing number of excitatory connections
and decreasing number of inhibitory connections. But
when the number of excitatory connections equals the
number of inhibitory connections, Y approaches 0.5 as the
number of connections becomes larger.
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tice how the system becomes unstable when g exceeds Y ¼ 0:75. The edge
0:99Y and (d) g ¼ 1:01Y.
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Fig. 5. Dependence of the critical ratio Y on number of inhibitory

connections ðniÞ and excitatory connections ðneÞ for uniform weight

distribution.
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Fig. 4 also shows that as the weight ratio approaches the
critical ratio, the edge enhancement increases, the rise being
the sharpest just before the system becomes unstable. This
dependence of edge enhancement on the weight ratio is
shown in Fig. 6.

4.2. Inversely linear weight distribution

Our second set of simulations assumed signal loss along
the length of synapses and axons. We therefore used
weights that are inversely proportional to the length of the
connection. Assuming unit distance between neighboring
neurons and unit distance between neuron layers, we got

wj ¼
1

j
ffiffiffiffiffiffiffiffiffiffiffiffi
1þ j2

p
j

for � rpjpr,

w0j ¼
1

jjj
for � tpjpt; ja0 and w00 ¼ 1:5.

The behavior of this neural system with respect to
stability was similar to the one described in Section 4.1 and
shown in Fig. 4. The dependence of the critical ratio on ne

and ni in this case is shown in Fig. 7. A neural system in this
case has a much lower critical ratio than one with uniform
weights with the same number of connections. Therefore,
the signal losses within the neuron connections significantly
reduce the range of weight ratio g to keep the neural system
stable.

The dependence of edge enhancement on g for this
weight distribution is shown in Fig. 8. One can see that for
the same connectivity, the edge enhancement in this case is
much smaller than in the case of uniform weights. Thus,
loss of signal along the neural connections affects both the
stability and the edge enhancement adversely.

4.3. Normal weight distribution

In the third set of simulations we assumed the weights to
have a normal distribution. As before, we let the weights be
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functions of the distance between the neurons. In addition,
we choose large r and t so as to span all the neurons in a
layer. However, with the standard deviations we chose, the
distributions fall off sharply and there are no edge effects to
consider. Thus, in this case, the weights become

wj ¼
1ffiffiffiffiffiffi
2p
p

se
e�ð1þj2Þ=2s2e for � rpjpr,

w0j ¼
1ffiffiffiffiffiffi
2p
p

si
e�j2=2s2

i for � tpjpt; ja0 and w00 ¼ 0:5,

where se and si denote the standard deviations of the
excitatory and inhibitory weight distributions, respectively.
This allows us to use a connectivity strength that drops off
gradually as we move further away from a neuron. This is
in sharp contrast to the earlier two cases where the
connectivity strength dropped abruptly beyond a chosen
number of neurons. In this case, the weight distribution can
be made flatter or narrower by increasing or decreasing the
standard deviation. This allows us to control the sphere of
influence of each neuron on its neighbors to a greater
degree than the other two distributions. When se !1 and
si!1, the normal distribution degenerates into a
uniform distribution.

The dependence of critical ratio on the standard
deviations se and si in case of the normal weight
distribution is shown in Fig. 9. This figure shows that
increasing si decreases the critical ratio. Thus, inhibitory
influence from more neurons reduces the range of weight
ratio over which the neural system is stable. On the other
hand, increasing se allows more excitatory connections to
affect the output of a neuron and increase the critical ratio.

The edge enhancement in the case of the normal weight
distribution is shown in Fig. 10. It is interesting to note that
one gets substantial edge enhancement in the case of
normal weight distribution. Further, this edge enhance-
ment increases with smaller standard deviations of the
weight profiles. This is in line with the earlier two weight
distributions, in which a smaller number of connections
tended to give a larger edge enhancement.
0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22
1

γ

Fig. 10. Edge enhancement as a function of g in case of a normal weight

distribution for two network connectivities. Note the similarity with the

curves in Figs. 6 and 8.

Table 1

Spread of perturbations in the system response because of an edge in the

input pattern as g approaches the critical ratio Y

g Number of neurons affected by perturbations

0:3Y 5

0:5Y 5

0:8Y 7

0:99Y 11

The case illustrated here uses uniform weights, ni ¼ ne ¼ 5.
5. Other effects near the critical region

As has been discussed earlier, the relationship between g
andY determines the stability of the neural network of Fig.
1 as well as the value of the edge enhancement. Our
simulations show that the value of g relative to that of Y
plays a greater role in deciding many other properties of
neural networks as well. Interestingly, as g! Y, the
system behavior changes rapidly and other phenomena
such as hysteresis become evident. An example of this rapid
change can be seen from the perturbations around the
input edge as g approaches the critical ratio in Fig. 4. These
radical changes are even more prominent in the absence of
the self-inhibition. For example, in the case of inversely
linear weight distribution, with no self-inhibition and
ne ¼ ni ¼ 3, the edge enhancement is about 1:3 when g ¼
0:9Y and 2:3 when g ¼ 0:99Y.
An edge in the input produces perturbations in the

system response (see Fig. 4). We also observe that these
perturbations spread laterally over a larger number of
neurons as g increases; the increase being more dramatic as
g nears the critical ratio. Table 1 shows this behavior.
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Fig. 11. The hysteresis in the neural system output when (a) g ¼ 0:8Y and (b) g ¼ 0:99Y. The case illustrated uses uniform weights with ni ¼ ne ¼ 5. The

same input is applied to all the neurons. Solid line indicates the neural network output as the input is increased, the dotted line shows the output as the

input is decreased.
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Jacobs and Werblin [11] have observed experimentally that
a high-illumination narrow spike stimulus produced ridges
in the retinal output which spread laterally. This phenom-
enon can be explained in the context of our model as
follows. It is known that stimulus intensity alters the
balance between excitation and inhibition in visual cortex,
and in particular, it suppresses the excitatory response
while enhancing the inhibitory response [20]. In other
words, a high-illumination spike such as the one used by
Jacobs and Werblin may indeed cause g to increase, and
even bring it close to the critical ratio Y, thus producing a
lateral spread of the output spike. As the ridge progresses,
it changes the g of the surrounding neurons, which in turn
spread the ridge further.

The g-dependent feedback in the neural system (see Fig. 3)
produces hysteresis effects, particularly when g is close to the
critical ratio. Fig. 11 shows a typical behavior of the system
for two values of g. During these simulations, all the neurons
were applied the same input. The input was either linearly
increased or decreased with time and the output of the neural
system was recorded. Note the substantial difference in the
output for the same value of input depending upon whether
the input was increasing or decreasing. Note that for low
values of g, hysteresis effects are not observed.

Cai et al. have demonstrated hysteresis by using kinetic
theory to a mixture of simple (linear) and complex (non-
linear) neurons [4]. Our relatively simple model also
displays hysteresis albeit only when g is very close to Y.
6. Conclusions

This paper deals with the imbalance between the
strengths of the inhibitory and excitatory phenomena in
the neuron. We assume that the effect of neighboring
neurons on any neuron is dependent upon their distances
from the neuron, but given the same distance, an inhibitory
influence is g times stronger than an excitatory influence. In
terms of neural networks this implies that the weights of
inhibitory connections are g times larger than the
excitatory connections. We have assumed only lateral
inhibition. We have considered three very different weight
functions and the overall conclusions of this work seem to
be independent of them.
From the mathematical analysis and the simulations we

observe that in stable neural networks, g has upper bound
which we call the critical ratio Y. This bound Y is
dependent only on the network connectivity and the weight
functions. When goY, the neural system is able to enhance
any discontinuities in the input stimulus. If g exceeds Y
even minimally, the system output instantly becomes
erratic. The edge enhancement increases rapidly as the
system approaches instability (i.e., as g! Y). The number
of neurons affected by the input discontinuity also grows at
the same time. The spacial discontinuity in the stimulus
produces stable periodic patterns around the discontinuity
region. Such periodic patterns have been observed by
others in intracortical neuronal fields [10]. Simulations
show that edge enhancement is independent of the actual
values of the inputs.
The stability region ðgoYÞ depends on the localization

of connections. If there are very few lateral inhibitory
connections or a large number of excitatory connections
from a lower layer, then the stability region is wider. In
other words, in this case, a larger amount of imbalance
between the excitatory and inhibitory strengths may be
tolerated. For g values close to Y (but less than Y), the
system exhibits hysteresis. Many of the system properties
change at a rapid rate when g! Y creating unwanted
anomalies. Determination of the stability region and the
critical ratio Y identified here will help avoid such
situations and achieve a balance between the excitatory
and inhibitory strengths for well-behaved neural networks.
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