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Fig. 6. A more  general class  of  ESSQ. 

data  length,  the HP-ESSQ does  have  speed  advantage in this 
case. 

IV. CONCLUSION 
In this  correspondence we have  presented  two  error  spec- 

trum  shaping  quantizers  which  were  shown to improve  the 
performance of narrow-band  filters.  They  are  examples  of 
the  more  general  class  of  error  spectrum  shaping  quantizers 
given in Fig. 6 .  The  function Q (2) in Fig. 6 may  be  chosen  to 
minimize ( 1  5). However,  except  for  the  two cases  discussed in 
this  correspondence,  it  is  not  economical  to  implement  these 
ESSQ’s. 
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A Class of Translation  invariant  Transforms 

M. D. WAGH AND S. V. KANETKAR 

Fig. 1. Algorithm  for  calculating  transform  sequence A ( K )  from the 
input sequence a(1)  of eight  components. fl and f2 are  any  two 
symmetric  functions. 

called  translation  invariant  and  are  useful  for  pattern  recogni- 
tion.  Examples  of  transforms of this  kind  are  the  cyclic 
autocorrelation of a sequence,  the  modulus  of  the  DFT  of a 
sequence  (the  square  root  of  its  power  spectrum ) [ 11,  and 
the  power  spectrum  of  the BIFORE transform  of a sequence 
[ 2 ] .  In  this  note,  an  infinite class of transforms  is  defined 
and  its  translation  invariance is proved.  Since  this class is 
infinite,  “best”  transforms  could  conceivably  be  selected  for 
different  applications  where  emphasis  may  be on different 
properties  such  as  speed,  hardware  realizability,  memory 
requirements,  etc. 

A function f ( a ,  b )  in  two variables  is  said to be symmetric  if 
f ( a ,  b )  =f(b, a), e.g., f ( a ,  b )  = a  + b ,  la - bl, max (a, b ) ,  min 
(a, b ) ,  a2 + b 2 ,  ab,  etc.  Moreover,  when a and b are  binary, 
logical functions,  such as a . AND . b ,  a . OR . b ,  etc.,  are  also 
symmetric  functions.  Each  transform  in  the class of  transla- 
tion  invariant  transforms  reported  in  this  note is based  upon a 
pair  of  symmetric  functions,  as  the  following  definition  shows. 

Definition: For a pair  of  symmetric  functionsfi  and f2 and 
a given sequence a ( I ) ,  I = 0, 1,  . . * , 2n - 1 of 2n elements,  the 
Kth  component  of  its  transform  A(K), K = 0, 1 , . . . , 2” - 1 can 
be obtained  as  follows. 

Let  the n-bit  binary  expansion  of K be ko k , . . . , k,-l ; then 
compute  sequences y o ( I ) ,  yl(Z), . . . , y n ( I )  of 2 n ,  2n-1 > ,  . * - 
2’ elements,  respectively;  as 

YO(Z)  = a U )  
and 

Yr+l(Z) = fs (Yr(I) ,   yr(I+ 2 1) 
n-(r+l) 

Absfruct-A class  of translation  invariant  transforms  containing the 
R-transform is defined,  and it is shown that a particular  member of this where 
class is  superior to the R-transform  for pattern recognition  applications. f, = f i  , if k ,  = 0 

Rapid  advances  in  digital  technology  have  stimulated a great 
interest  in  the  transforms  of  discrete  sequences.  Transforms  The  Kth  component  of  the  transform is then  obtained  as 
which d o  not change  with  cyclic  shifts  in  the  sequences  are 

= f 2 ,  i f k r = l ,  for r = O , l ; . . , n -  1 .  

A ( K )  = ~ n ( o ) .  

Manuscript  received ~ ~ r i l  10,  1975; revised September 17,  1975, Although  this  definition  expresses  an  isolated  transform  com- 
May 18,1976, and  December 14, 1976. ponent,  an  efficient  algorithm  for  the  calculation  of all the  

The authors are  with  the  Department  of  Electrical  Engineering,  Indian transform  samples  simultaneously  can  easily  be  devised,  as 
Institute of Technology,  Bombay,  India. shown  in  Fig, 1. The  translation  invariance  of  this  transform 
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TABLE I 

BINARY INPUT  PATTERNS 
A COMPARISON OF THE R-TRANSFORM AND THE M-TRANSFORM FOR 

Computation  Timea  in a 
General-Purpose 

Digital  Minicomputer, 
Number of Distinct  Transform  Volume HP 2100 

Sequence  Patterns (bits) 
Length R T  MT RT MT RT MT 

4  6 6 8  4 337.12 15.68 
8 21 20 20 8 1011.36 47.04 

16  86 168 48  16 2696.96 125.44 

aHP 2100 average  times for relevant operations (in BASIC) 

Addition: 41.65 ps 
Subtraction: 42.63 ps 
AND/OR 1.96 p s  

is proved  in  the  following  theorem. 
Theorem 1 :  A ( K )  is invariant  under  cyclic  shifts  in dl). 

Proof: Let  the  length of a ( Z )  be 2". We proceed  by  the 
method of mathematical  induction  over  the  exponent n. 
When n = 1, a(Z)  has  only  two  elements  and  the  translation 
invariance  of A ( K )  follows  from  the  symmetry of f i  and fz. 
If the  theorem is true  in  the case of sequences of length 2"-' , 
its  truth  in  the case  of  sequences of length 2" can  be  estab- 
lished  as  follows. For  a  sequence of length 2",  

Y1  ( I )  = fXY0 ( 0 ,  Y O U  + 2"-l>) 

= f s (a (Z ) ,  a(Z + 2n-' )). 

From  this, it can  be  seen that  a  cyclic  shift  in a(Z),  i.e., a ( Z )  -+ 

a((Z + 1)  mod 2"),  is  equivalent to  a  cyclic  shift  in y1 (Z) be- 
cause  for I < - 1, 

Y 1  (1) = f,(a(I), + 2n-1 )) 

-+f,(a(Z+ l ) , a ( Z +  1 + 2"-')) ' Y l ( Z +  1) 

and 

yl(2n-l  - 1) =fs(a(2"-l - l),a(2" - 1)) 

From  the  definition,  it  follows  that A ( K )  is the K mod 
2"-'th sample of the  transform of y1  ( I ) .  Therefore, A ( K )  is 
invariant  under  a  cyclic  shift  in y1 ( I ) ,  a  sequence of length 
Zn-l , and  is  therefore  invariant  under  cyclic  shifts  in a(Z) .  

It can  be  shown  that  this  class of transforms is  also  in- 
variant  under  inversion, as stated  in  the  following  theorem. 

Theorem 2: A ( K )  is invariant  under  inversion  in a(1). 
Proof: If the  length of a(Z)  is 2 n ,  the  inversion  of a(Z) 

means a ( Z )  -+ a(2" - 1 - I ) .  In  this  case  then, 

+f , (~2(2~ - 1 - I ) ,  a(2"-' - I -  1)) 

= fs(a(2"-' - 1 - I ) ,  a(2n - 1 - I ) )  

from  symmetry off, 

=y1(2"-1 - 1 - I ) .  

But  this is the  inversion of y l  ( I )  as this  sequence  has  only 
2n -1 elements.  Thus,  inversion  in a ( Z )  corresponds to inversion 
in ~ ~ ( 1 ) .  The  theorem  can  then  be  proved  by  arguments 
similar to  that  of  Theorem  1. Q.E.D. 

An important  property of this  class of translation  invariant 
transforms is their recursive nature of calculations  (see  Fig. l ) ,  
similar to that of the  FFT  or  fast  Hadamard  transformation. 
This  simplifies  both  the  software  and  hardware  implemen- 
tation. 

The  transform  obtained  by  setting f l ( a ,  b )  = a  + b and 
fz (a ,  b )  = la - b I is well known as the  R-transform  (RT) [3 J 
and is found to be  useful  for  pattern  recognition [ 41. Although 
the  R-transform  calculations  are  very  rapid  because  of  their 
dependence  on  addition  and  subtraction  alone [ 3 ] ,  this  very 
dependence  makes  the  hardware  implementation  difficult  and 
costly.  This is so firstly  because the  adder  circuits  used  are 
not  only  costlier,  but  also  slower  compared t o  basic AND/OR 
gates.  Further,  it is known [ 51 that  the  different  components 
of the R T  exhibit  different  amplitude  bounds  even  when  the 
pattern  component  amplitude  bounds  are  uniform.  The  ratio 
of the  maximum  to  minimum  amplitude  bounds is as large  as 
the  length of the  sequence.  Generally,  the  transforms of all the 
possible  patterns  are  stored,  and  the  transform of the  unknown 
pattern  is  compared  with  these  stored  transforms  for  its  identi- 
fication.  The  volume  required  for  the  transform  storage is 
therefore  an  important  consideration. If the  transform  storage 
is designed  according to  the individual  component  amplitude 
bounds,  it  occupies ( n  + 2) . Zn-l bits  for  binary  patterns of 
length 2" [6 ] .  But  in  this  case,  the  comparison of tce  trans- 
form of an  unknown  pattern  and  a  stored  transform is compli- 
cated  because of the  nonuniform  representation of the  transform 
components  (with  different  amplitude  bounds)  in  the  storage. 
If uniform  representation is used in  the  transform  storage,  the 
volume is  even  larger, 2'" bits.  Finally,  the  total  number of 
distinct  transforms is also  an important  factor because it 
determines  the  maximum  number of patterns which  can  be 
distinguished  from  one  another  using  that  transform  technique. 
For  example,  in  the  case of the  RT, if the  length of the  binary 
sequence is 16  bits,  even  though  there  are  65  536  possible 
binary  patterns,  one  can  choose  at  the  most  86 of these to  
form  a  valid  pattern  set (i.e., a  set  in  which  the  patterns  can 
be  distinguished  from  one  another  on  the  basis of the  RT) 
because  there  are  only  86  distinct  transforms. 

The  work  reported  in  this  note  indicates  that  the  arithmeti- 
cal  functions a + b and I a - b I which  occur  in  the  definition of 
the R T  can  be  replaced  by  any  other  symmetric  functions so 
that  the  transform  has  other  desirable  properties  besides 
translation  invariance. We investigate  here  the  transform  result- 
ing  from fl (a, b )  = max { a, b }  and fz (a, b )  = min { a, b }, to  be 
denoted as the  M-transform  (MT),  in  the  case of binary 
patterns.  It  should be immediately  obvious  that  in  the  binary 
case,  the  functions f1 and fz reduce  to  the logical  operations 
fl (a, b )  = a . OR . b and f z ( a ,  b )  = a . AND . b which  are  very 
simple  and  cheap  to  implement  by  hardware  and  are  com- 
puted  many  times  faster  than  the  functions a + b and l a  - b] .  
Further,  the  transform  components have  a  uniform  amplitude 
bound of 1 bit,  resulting  in  a  smaller  transform  volume  and 
also  simpler  transform  comparison  circuits.  The  performances 
of the  R  T  and  MT  are  compared  in  Table I for  various  sequence 
lengths N =  2". This  table  shows  that  even if the RT volume 
is based upon  the  individual  component  amplitude  bounds,  it 
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is larger  than the MT volume  by a factor 1 + n / 2 .  The trans- 
form  computation  time  in the case  of the RT is 21.5 times  as 
much  as  that in the case  of the MT. Although  these  times  are 
highly  dependent  upon the machine  used, it is obvious  that  the 
evaluation  of the logical operations AND/OR will always be 
much  faster than the  arithmetical  operations  of  addition  or 
subtraction. The number of distinct  transforms  in the case  of 
the MT (determined  by  computer  search)  is  also  nearly  equal 
to that of the R T  (from [ 31) when N = 4 and 8 and  about 
double  when N = 16. 

The MT can  also  be  extended to two-dimensional  patterns, 
as  has  been  done in case of the R T  [ 31 , [ 7 J . It  is  thus  clearly 
superior to the R T  and  can  replace  the R T  in most  binary 
pattern  recognition  work. 
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Corrections to “Letter-tosound Rules for Automatic 
Translation of English Text to Phonetics” 

HONEY S .  ELOVITZ, RODNEY JOHNSON, 
ASTRID McHUGH, AND JOHN E. SHORE 

In  the  above  paper’ the last sentence in the abstract  should 

Manuscript  received  January 1,1977. 
The authors are  with the Naval  Research Laboratory,  Washington, 

DC 20375. 
‘H. S .  Elovitz, R. Johnson, A. McHugh, and J. E. Shore, IEEE Trans. 
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read:  “It gives overall  performance  figures  and  detailed  statis- 
tics  showing the importance  of  each  rule.” 

On page 448, the   two displayed  rules in  column 1 should  be 
C[O]M = /AA/’ and ‘ : [El  = /IY/I. In  column 2, the 

rule on line 6 should  be ’ [RE] r\ #=/R IY/’, and the rule  in 
the first  line  of the fourth  full  paragraph  should  be [ O ]  = 

In Table VIII, the following  headings  should  be  inserted 
/ow/’. 
above  the  eight  columns  of  numbers: 

Most Frequent 8000 Words 

Total 
Number of Frequencies of 

Words 
Matched Matched 
Words 

1000-Word Sample  of  Low- 
Frequency  Words 

Total 
Number of Frequencies of 

Words 
Matched  Matched 
Words 

Correction to “Real-Time  Adaptive  Linear  Prediction 
Using  the  Least Mean  Square  Gradient  Algorithm” 

In  the  above  paper,’  the  photograph  of  Dennis R. Morgan 
was inadvertently  omitted. The complete  biography  and 
photograph  appear  below. 

Dennis R. Morgan (S’634’68-M’69)  was born 
in  Cincinnati,  OH, on February 19, 1942. He 
received the B.S. degree in electrical  engineering 
from the University, of  Cincinnati,  Cincinnati, 
OH, in 1965, and the M.S. and Ph.D.  degrees 
in electrical  engineering  from  Syracuse  Uni- 
versity,  Syracuse, NY,  in 1968 and 1970, 
respectively. 

He  is now a Senior  Engineer at  the Electronics 
Laboratory, General  Electrical  Company, 
Syracuse, NY, where he is  involved  in the 

analysis  and  design  of  signal  processing  systems. 
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