
Power Aware Encoding for the Instruction

Address Buses Using Program Constructs

Prakash Krishnamoorthy∗ and Meghanad D. Wagh∗

Abstract— This paper examines the address traces

produced by various program constructs. By using

the correlation induced by the program constructs

within these traces, we develop a scalable bus en-

coding algorithm to significantly reduce the switching

activity on the instruction address bus. Simulation

results for Spec2000 benchmarks show that for mod-

est coding complexity, the proposed scheme reduces

switching activity on the instruction address bus by

as much as 88% and the overall bus power by as much

as 71%.

Keywords: Low power, Switching activity, Address bus,

Embedded systems.

1 Introduction

With the growing demand for mobile and embedded sys-
tems, power consumption has become an important de-
sign criteria. For many such systems built around pro-
cessor cores or custom ASICs, off chip bus power [1] rep-
resents a dominant portion of the total system power.
This work focuses on systems that use Harvard archi-
tecture employing independent data and instruction ad-
dress buses. Examples of such systems range from simple
embedded processor based systems to systems based on
cores implemented on Programmable Gate arrays where
bus activity is a significant source of power dissipation
[2].

The problem of reducing power in on-chip address and
data bases in deep submicron technologies has been ap-
proached on various fronts [3]. For such buses, crosstalk
and leakage are major contributors towards total bus
power as opposed to capacitance of the off-chip buses.
In the former, attention has been given to reduction of
crosstalk [4, 5] and leakage power consumption that arise
due to the large number of buffers that are used to man-
age signal slew rates and intrinsic delays. Based on our
experience working with off-chip buses, crosstalk is not
the main factor as ample time and effort is spent in rout-
ing these bus traces on multilayer boards. Further, the
components on the board exhibit little or no leakage. In
these cases, interconnect bus capacitance is the major
contributor to bus power and methods to reduce bus tran-

∗Department of Electrical and Computer Engineering, Lehigh
University, Bethlehem, PA 18015. Tel: (610)758-4142, Email:
prk2@Lehigh.Edu, mdw0@Lehigh.Edu

sition activity are extremely important. We do precisely
that in our work where we show that a method based on
program constructs delivers the best possible reduction
in switching activity on the instruction address buses.
We also demonstrate the power reduction by simulating
and comparing our method with three best methods us-
ing spec2000 integer benchmarks run on the simple-scalar
tool set [6]. For work on power reduction methods on data
buses, the interested reader can refer elsewhere [1, 7].

Off-chip buses with their large capacitive loads consume
a substantial amount of power for every transition. In an
instruction address bus, when addresses change sequen-
tially from 0 to 2n, one can expect as many as 2n − 1
transitions on the bus. This number could be even larger
(on an average, n2n−1) if the 2n address transitions are
random. Naturally, reduction of switching activity asso-
ciated with buses has attracted a lot of attention. Bus
switching may be reduced by encoding the bus data. Such
encoding typically takes into account the predictability
of the data. Unfortunately, in a general computing en-
vironment where bus data is not deterministic, one can
only exploit the statistical properties of the samples be-
ing transferred on the bus, and in particular, the tempo-
ral correlation of successive samples. The statistics that
have been employed to date include properties of the in-
dividual samples (such as their weights), their temporal
correlation and their variance (or localization). This pa-
per shows that by exploiting the statistics resulting from
common program constructs, one can further reduce the
address bus switching activity significantly.

Bus encoding techniques can be grouped in three broad
categories. The first category of encoding algorithms such
as the Bus Invert Method [8], Frequent Value codes [9] and
Self organizing lists [10] are designed to use statistics of
individual samples. The Bus Invert Method and its vari-
ants judiciously complement the bus data based on its
weight to guarantee an upper bound on the amount of
switching activity. Frequent Value codes and Self orga-
nizing lists memorize addresses that appear on the ad-
dress bus repeatedly and map them to code words with
lower switching activity.

The second category involves techniques such as the T0
code [11, 12] and its variants which take advantage of
the correlation between consecutive samples. T0 code is



based on the principle that in the sequential code execu-
tion, instruction addresses increase by a constant stride.
Since the uniformly increasing addresses can be easily re-
generated at the receiver, bus contents may be frozen to
completely eliminate bus switching. T0 codes require an
additional bus line to indicate whether the addresses are
in stride increments or random jumps. It is also pos-
sible to modify the T0 code such that the requirement
of additional bus line is eliminated [13]. Encodings that
use several combinations of bus-invert and T0 encodings
have also been developed [14]. The concept of correlation
between consecutive samples can be extended to correla-
tion between nearby samples. The Offset XOR SM and
Offset XOR SMC codes minimize switching activity for
addresses spaced by small offsets [13]. This may work
well for data organized in small structures. While all
these techniques work very well for sequential code, they
deliver inferior performance when they encounter (large)
loops, jumps and subroutine calls where there is a repet-
itive address pattern.

The third category of bus encoding techniques such as the
Work Zone Encoding (WZE) [15] and the Dynamic Sector
Encoding (DSE) [16] attempt to remedy the poor perfor-
mance of previous bus encoding methods in the presence
of multiple sequences of correlated addresses. These tech-
niques partition program address traces into segments
and assume that addresses within a segment are highly
correlated. The Dynamic Sector Encoding uses two regis-
ters that track up to two sequences of correlated addresses
at a time. This technique produces no switching for con-
secutive addresses that increase by a stride, but cannot
cope with more than two address sequences. For every
monitored zone in the WZE method, a zone register holds
some address from that zone. The encoding algorithm
transmits on the bus a zone identifier and the distance
of the current address from the address in the relevant
zone register. The Work zone encoding technique deliv-
ers superior performance in terms of switching activity
reduction when encountering multiple address sequences,
but the encoder and decoder themselves consume signifi-
cant amount of power. So, between sector and work zone
encoding, the effective method seems to be dependent on
the ratio of the capacitance of internal nets to the exter-
nal bus lines.

In this work, we present a bus encoding method whose
encoder/decoder power consumption and switching ac-
tivity reduction is far superior to that of WZE and DSE
methods. The bus encoding algorithm presented here ex-
amines instruction address traces issued by the processor
in response to program constructs such as sequential exe-
cution, loops, while statements, if-then-else blocks, jumps
and subroutine calls. Each of these constructs produces
address sequences that can be characterized as groups of
addresses that change by a fixed stride. The starting ad-
dress of each group depends on a specific branch address

in the program. By saving these start addresses, the re-
ceiver can guess the current address on the bus from the
group to which it belongs. Since minimal information
about the address needs to be transferred, a power effi-
cient bus transfer occurs.

The rest of the paper is organized as follows. Section
II illustrates correlation between program constructs and
the address trace. This section also presents the proposed
Program Construct Based Encoding (PCBE) algorithm
that uses this correlation. Simulation results comparing
the performance of the PCBE algorithm with other bus
encoding algorithms is presented in Section III. Section
IV presents our conclusions.

2 New Bus Encoding Algorithm

There is a close relationship between program constructs
and the switching activity on the Instruction address bus.
This relationship provides significant insight to develop-
ing an efficient bus encoding algorithm.

Program instructions can be broadly classified as se-
quential and branching. Sequential constructs constitute
about 70% of any typical program [17]. Non-branching
portion of a code produces an instruction address trace
in which consecutive addresses increase by a constant
(known) stride. Branch control constructs such as if-
then-else blocks, while statements, interrupts, jumps (in-
cluding conditional jumps), loops and subroutine calls
cause the instruction address to change abruptly to a
value that has no relation to the prior address.

Most prior bus encoding algorithms considered each oc-
currence of a branch target address as a random un-
known address. However, many branch target addresses
repeat often in a program execution. Examples of these
include branching addresses generated by program con-
structs such as the interrupt calls and loops. If an ex-
ternal event (such as a key being pressed) occurs, the
program always calls the same interrupt address. Simi-
larly, during all the iterations of a loop, the same branch
address representing the beginning of the loop appears in
the address trace.

It is well known that most program codes are temporally
stable, i.e., they use the same segments of code and sub-
routines multiple times before changing the context and
thereby, the suit of modules and subroutines being used.
This implies that for an extended period of time, the same
branch addresses representing the starting addresses of
subroutines appear in the address trace. This same ob-
servation also applies to branch target addresses gener-
ated by conditional and non-conditional jumps, loops and
while statements.

In order to take advantage of the repeatability of branch
target addresses in the address trace, we propose a new



bus encoding technique called the Program Construct
Based Encoding (PCBE) algorithm. Let n represent the
number of address bits. PCBE algorithm uses one addi-
tional line, i.e. a bus that is n+1 bit wide. Encoders and
decoders realizing PCBE algorithms use k ≤ n Branch
Target Registers Bi, 0 ≤ i < k. These k registers hold
k branch target addresses. In addition, another register,
R, holds the stride incremented previous address.

Program Construct Based Encoding (PCBE) utilizes the
fact that program constructs produce instruction address
traces in the form of sequences of addresses. The ad-
dresses in each sequence are separated by constant stride
and their starting addresses are random but are likely to
occur multiple times within any given time span. The
encoder (and the decoder) save these starting addresses
in registers Bi and and the stride incremented value of
the previous transmitted value in a register R. For every
address that needs to be transmitted, encoder first de-
termines if it is available in one of these registers. If the
program instruction does not call for branching, the new
address matches the one in R. In that event, the encoded
bus contents are frozen to avoid switching transitions. If
a match is found with Bi, only the i-th bit of the encoded
address bus is complemented. Thus the power dissipation
is restricted to one bus line.

If the new address is neither in R, nor in Bi, 0 ≤ i < k,
then the encoded bus must carry this whole address. In
addition, the extra bus line that was added is comple-
mented1. Note that the extra bus line is not interpreted
as the miss signal; rather, its logical value switches ev-
ery time there is miss. This helps limit transitions on
this line only to the times when new addresses are trans-
mitted. The new address (without the extra bit) is also
recorded in one of the Bi registers. We use the round
robin algorithm to allocate a Bi register. This is sim-
ple and still takes advantage of the temporal stability of
the branching addresses. In other words, the round-robin
procedure allows our algorithm to store the branch ad-
dresses of the innermost constructs of a program, which
have a very high likelihood of being executed frequently.
The PCBE encoder algorithm is shown in Fig. 1. The cor-
responding PCBE decoder algorithm is shown in Fig. 2.
For proper operation, the Bi registers in the encoder and
the decoder are initialized to match for each i and the R
registers are set equal to each other as well. (They all
may be initialized to 0 on power-up.) In addition, a one
bit storage prev miss is set to 0 in both the encoder and
the decoder. Once synchronized this way, the decoder R
and Bi registers mirror the contents of the corresponding
registers in the encoder for ever. The algorithms ensures
that the intended addresses are reproduced correctly.

Our algorithm produces a switching activity of one bit
for a branch address which has already been stored in

1In Fig. 1, n + 1 bit bus is used, whose 0-th bit is used to carry
this miss information and bits 1 through n carry the new address.

Encoder(input: addr)
if (addr == R)

index = prev index;
addrsent = prev addr;
R = R + stride;

else
for (i = 0; i < targets; i + + )

if (Bi == addr)
index = i;
addr sent = (prev addr XOR 2index);
R = Bindex + stride;
miss = 0;

else
miss = 1;

if(miss = 1)
index = round robin();
Bindex = addr;
R = addr + stride;
addr sent = addr;

addr sent = (addr sent) ∗ 2
+(miss XOR prev miss);

prev addr = addr sent;
prev index = index;
if (miss = 1)

prev miss = miss XOR prev miss;
return addr sent;

Figure 1: Proposed encoder algorithm

Decoder(input: addr sent)
miss = (prev miss) XOR (addr sent%2);
if (miss = 0)

if (addr sent/2 == prev addr)
index = prev index;
addr received = R;
R = R + stride;

else
index = log2((addr sent/2) XOR prev addr);
addr received = Bindex;
R = Bindex + stride;

else if (miss = 1)
index = round robin();
addr received = addr sent/2;
Bindex = addr sent/2;
R = (addr sent/2) + stride;
prev miss = miss XOR prev miss;

prev addr = addr sent/2;
prev index = index;
return addr received;

Figure 2: Proposed decoder algorithm



one of the Bi registers, zero transitions when addresses
match the contents of the R register and an average of
(n/2) + 1 transitions on a miss.

Since the PCBE algorithm is specifically designed to work
with program constructs, it is worthwhile to evaluate its
performance for the common branching constructs.

• Sequential: There is no switching activity on the
bus when processing sequential addresses.

• If-then-else construct: Bus activity occurs only
if branches are taken. Each branching, whether to
go to the else code or to skirt around it, implies an
average of (n/2 + 1) bit changes. Since one of the
branch must be taken, the construct causes (n/2+1)
bit transitions on its first occurrence. Note that if the
same if-then-else code is encountered again within a
relatively short period of time, then it is quite likely
that the required branch address is in one of the Bi

registers and the branching activity in that case will
only be 1 bit.

• For loop:For this construct, the branching back to
the starting of the loop for the first iteration requires
PCBE to send the new branching address causing
an average of (n/2 + 1) transitions on the encoded
bus. The remaining iterations use the branch ad-
dress saved to an Bi register and require only 1 bit
change on the encoded bus to indicate that branch-
ing address. Thus, if a t iteration loop is encoun-
tered, then the total expected bit changes on the
PCBE bus would only be (n/2+ t). If the same loop
is encountered again with the branching address still
in one of the Bi registers, then the construct will
cause only (t − 1) transitions on the encoded bus.

• While loop: For this construct, the first iteration
implies branching to the start of the while loop, a
new address, with an average of (n/2 + 1) bus tran-
sitions. However, for the remaining iterations, this
address would be in one of the Bi registers and would
imply only a single bit change to transmit it on the
encoded bus. After all the iterations of the while
loop are completed, control branches to the instruc-
tions following the while block. This causes, on an
average, another (n/2 + 1) transitions on the bus.
Thus the cost of a while construct doing t iterations
is (n + t + 1) bits transitions on its first occurrence.
Note however that on subsequent occurrences, the
branching addresses would likely be in the Bi regis-
ters dropping the total cost of the construct to only
(t + 1).

• Call-and-Return: Clearly, every time a call is ex-
ecuted, a new subroutine start address needs to be
transmitted over the bus. When a return is executed,
the program address changes abruptly again and the

new address has to transmitted as well. Thus the
call-and-return construct causes (n + 2) bit changes
on the encoded address bus. If the subroutine is en-
countered again, the branch addresses may still be
in the Bi registers implying only 2 bit changes on
the address bus for the entire construct.

3 Performance Comparison

To evaluate the efficiency of the bus encoding scheme
of Section II, we used address traces generated by the
spec2000 benchmark programs using a Simple-Scaler/
ALPHA ver. 3.0 tool set [6]. We compared our Program
Construct Based Encoding (PCBE) algorithm with three
best algorithms, namely the Work Zone Encoding (WZE)
and the Dynamic Sector Encoding (DSE) algorithms and
T0-C encoding methods.

We synthesized the bus encoding and decoding logic for
PCBE, WZE, DSE and T0-C using Synopsys synthesis
tools and then mapped to a 1.2 Volt, 0.13µ CMOS li-
brary. The I/O Voltage was assumed to be 2.5 Volts.
Parasitic information (net and cell) was then backan-
noted into Primepower (Synopsys gate level power anal-
ysis tool) and a gate level simulator. Address traces from
spec2000 benchmarks were fed into the gate level simu-
lation tool to obtain accurate switching activity informa-
tion of internal nets using the real delays derived through
backannotation. Finally, Synopsis tool Primepower was
invoked to obtain power dissipation for the various bus
encoding schemes. The power dissipation numbers re-
ported in this paper include power dissipation in the en-
coder, the decoder and the bus. For these simulations,
we have used a bus access frequency of 50Mhz and a bus
capacitance of 10pf per line.

The total power dissipation (including the power used
by the encoders and decoders) of various address bus en-
coding schemes for five Spec2000 benchmark programs is
given in Table 1. The power required without any en-
coding and the percent saving due to each scheme is also
indicated in this table. One can clearly see that the pro-
posed Program Construct Based Encoding (PCBE) has
substantially higher power savings as compared to other
methods for every benchmark program tested.

Note that the Dynamic Sector Encoding (DSE) scheme
using exactly two sectors has only one implementation.
The T0-C method has a single implementation as well.
On the other hand, Work Zone Encoding (WZE) and
Program Construct Based Encoding (PCBE) are scal-
able schemes; WZE allows multiple zones and PCBE
allows varying number of registers to store target ad-
dresses. In our study, we investigated WZE implemen-
tations with up to 16 zones and PCBE implementations
with and same number of registers, Table 2 compares
the power dissipation of WZE and PCBE for larger num-
ber of zones/registers. The percent power saving over



Table 1: Power dissipation (mW) and savings (%) for various bus encoding schemes when WZE uses 2 zones and
PCBE uses 2 registers.

Benchmark No encoding Sector Encoding Work Zone Encoding T0-C Encoding PCBE

Program Power Power savings Power savings Power Savings Power Savings

VORTEX 3.55 1.59 55.22% 2.35 33.88% 1.46 58.85% 1.03 70.97%

GCC 3.59 1.93 46.26% 2.70 24.78% 1.76 50.91% 1.33 62.91%

GZIP 3.38 1.36 59.66% 2.23 33.93% 1.44 57.42% 1.01 70.16%

PARSER 3.41 1.60 53.16% 2.41 29.39% 1.51 55.75% 1.08 68.37%

TWOLF 3.39 1.60 52.72% 2.34 31.10% 1.48 56.23% 1.05 68.93%

Table 2: Power dissipation (mW) and power savings (%) for WZE and PCBE for larger number of zones/registers.
The power dissipation without any encoding for each benchmark is given in Table 1.

Coding Work Zone PCBE Work Zone PCBE Work Zone PCBE
4 zones 4 regs 8 zones 8 regs 16 zones 16 regs

Benchmark mW sav. mW sav, mW sav. mW sav. mW sav. mW sav.

VORTEX 2.87 19.15% 1.08 69.53% 3.63 -2.11% 1.34 62.29% 5.36 -50.99% 1.53 56.79%

GCC 3.13 12.82% 1.27 64.48% 3.88 -8.10% 1.45 59.58% 5.65 -57.42% 1.63 54.49%

GZIP 2.69 20.49% 1.06 68.59% 3.50 -3.45% 1.21 64.24% 4.94 -45.96% 1.49 56.03%

PARSER 2.76 19.15% 1.03 69.73% 3.50 -2.56% 1.10 67.76% 5.29 -54.98% 1.22 64.19%

TWOLF 2.77 18.33% 0.99 70.84% 3.54 -4.31% 1.18 65.14% 5.33 -57.15% 1.43 57.86%

the non-encoded bus shown in the table suggests that
the reduction in switching power due to larger number of
zones/registers may not always be able to offset the in-
crease in power due to larger encoders and decoders. Ta-
ble 3 shows the power requirement of different encoder/
decoder circuits.

Table 3: A comparison of the Encoder/decoder power
(mW) for various encoding schemes.

Design encoder decoder total
SE 0.206 0.267 0.473

TO-C: 0.328 0.316 0.644
WZE: 2 zones 0.512 0.956 1.468
WZE: 4 zones 0.809 1.161 1.970
WZE: 8 zones 1.386 1.356 2.742
WZE: 16 zones 2.366 2.118 4.484
PCBE: 2 reg. 0.108 0.106 0.213
PCBE: 4 reg. 0.137 0.130 0.266
PCBE: 8 reg. 0.268 0.266 0.534
PCBE: 16 reg. 0.397 0.415 0.812

From the simulation results, one can infer that for the as-
sumed bus capacitance of 10pf, the PCBE-2 and PCBE-4
provide the best possible power savings. These methods
save as much as 70% of total bus power with as much as

88% reduction in bus switching activity. Larger config-
urations of the PCBE methods (PCBE-8 and PCBE-16)
become effective in cases where the off-chip bus capaci-
tance is greater than 10pf.

Our algorithm uses only one additional bus line as com-
pared to WZE which needs 1 + ⌈log2z⌉ additional bus
lines where z equals number of zones used. Moreover,
the hardware complexity of the our encoding algorithm
is much less as compared to WZE for a given number
of registers used to track addresses. Both PCBE and
WZE methods are scalable, i.e., the power savings can be
traded with hardware complexity. One can use PCBE-
8 and PCBE-16 with larger values of on chip bus ca-
pacitances when the excess power consumed by the en-
coder/decoder is offest by switching power reduction in
the bus.

It is significant to note that the presence of arithmetic
circuitry (adder) in the encoded address path, in itself
introduces enormous number of transitions in the DSE,
T0-C and WZE methods. One needs to arrest this ac-
tivity from propagating further. These transitons due
to data path delay imbalance can defeat the very pur-
pose of bus encoding. In contrast, PCBE uses equality
comparators in the encoder path thereby removing ma-
jor implementation level challenges and yielding a delay
balanced data path.



Finally, for the technology used in these studies, the
encoder and decoder hardware complexity for the four
schemes, namely T0-C, DSE, WZE (2 registers) and
PCBE is (2 registers) was 2110, 2701, 2713 and 1554
gates respectively. At the same time, the delays for the
four schemes were 3.34, 18.92, 19.02, 4.13 nsecs. respec-
tively.

4 Conclusions

In this paper, we present a novel approach for power re-
duction in off-chip instruction address buses. The pri-
mary difference between our approach and those of oth-
ers is that our algorithm does not classify branching ad-
dresses as random new addresses; rather, it associates
them with program constructs. Its ability to distinguish
between addresses generated by regular strides from those
generated by branching constructs allows our algorithm
to reduce the switching activity on the address bus by
a significant amount. It is a scalable algorithm and its
complexity can be chosen to take advantage of varying
bus capacitances.

References

[1] D. C. Suresh, B. Agrawal, W. Najjar, and J. Yang,
“Low power electronics and design,” in Proc. of the
2005 Int. Symp. on SLPED, pp. 319–322, Aug. 8–10
2005.

[2] Y. Aghaghiri, , and M. Pedram, “Beam: Bus en-
coding based on instruction-set-aware memories,”
in Proc. of Asia South Pacific Design Automation
Conference, (Kitakyushu, Japan), ACM/IEEE, Jan
2003.

[3] H. Kaul, D. Sylveter, M. A. Anders, and R. K. Krish-
namurthy, “Design and analysis of spacial encoding
circuits for peak power reduction in on-chip buses,”
IEEE Trans. Very Large Scale Integration Systems,
vol. 13, pp. 1225–1238, Nov. 2005.

[4] C.-G. Lyuh and T. Kim, “Low power bus encod-
ing with crosstalk delay elimination [SoC],” in 15th
Annual IEEE Int. ASIC/SOC Conf., pp. 389–393,
Sept. 25–28 2002.

[5] P. Subrahmanya, R. Manimegalai, V. Kamakoti, and
M. Mutyam, “A bus encoding technique for power
and cross-talk minimization,” in Proc. of the 17th
Int. Conf. on VLSI Design, pp. 443–448, 2004.

[6] T. Austin, E. Larson, and D. Ernest, “SimpleScaler:
An infrastructure for computer system modeling,”
IEEE Computer, vol. 35, pp. 59–67, Feb 2002.

[7] D. C. Suresh, B. Agrawal, W. Najjar, and J. Yang,
“VALUE: variable length value encoder for off-chip
data buses,” in IProc. of the 2005 Int. Conf. on
Computer Design, pp. 631–633, Oct. 2–5 2005.

[8] M. R. Stan and W. P. Burleson, “Bus-invert coding
for low-power i/o,” IEEE Trans. on VSLI, vol. 3,
pp. 49–58, Mar 1995.

[9] J. Yang and R. Gupta, “Fv encoding for low-power
data i/o,” in Proc. of Symp. on Low Power Electron-
ics and Design, (Huntington Beach, CA), pp. 84–87,
ACM, Aug 2001.

[10] M. Mamidipaka, D. Hirschberg, and N. Dutt,
“Low power address encoding using self-orgnaizing
lists,” in International Symp. on Low Power Design,
(Huntington Beach, CA), pp. 188–193, ACM, Aug
2001.

[11] L. Benini, G. D. Micheli, E. Macii, D. Sciuto,
and C. Silvano, “Asymtotic zero-transition ac-
tivity encoding for address buses in low power
microprocessor-based systems,” in IEEE 7th Great
Lakes Symp. on VLSI, (Urbana, IL), pp. 77–82,
IEEE, Mar 1997.

[12] W. Fornaciari, M. Polentarutti, D. Sciuto, and
C. Silvano, “Power optimization of system level ad-
dress buses based on software profiling,” in CODES,
pp. 29–33, 2000.

[13] Y. Aghaghiri, F. Fallah, and M. Pedram, “Irredun-
dant address bus encoding for low power,” in Proc. of
Symp. on Low Power Electronics and Design, (Hunt-
ington Beach, CA), pp. 182–187, ACM, Aug 2001.

[14] L. Benini, G. D. Michelli, E. Macii, D. Sciuto, and
C. Silvano, “Address bus encoding techniques for
system level power optimization,” in Design Au-
tomation and Test in Europe, pp. 861–866, 1998.

[15] E. Musoll, T. Lang, and J. Cortadella, “Working-
zone encoding for reducing the energy in micropro-
cessor address buses,” IEEE Trans. on VLSI Sys-
tems, vol. 6, pp. 568–572, Dec 1998.

[16] Y. Aghaghiri, F. Fallah, and M. Pedram, “Reducing
transitions on memory buses using sector based en-
coding technique,” in Proc. of Symp. on Low Power
Electronics and Design, (Monterey, CA), pp. 190–
195, ACM, Aug 2002.

[17] J. Hennessy and D. Patterson, Computer Architec-
ture: A Quantitative Approach. Morgan Kaufmann
Publishers, 2nd ed., 1995.


