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Abstract 

Ozbek, F.O. and M.D. Wagh, A parallel Hough transform algorithm for nonuniform images, Pattern Recognition 
Letters 15 (1994) 253-259. 

A Distributed Hough Transform Algorithm (DHTA) is proposed and its performance is analysed. It is shown that 
by distributing the algorithm rather than the image or transform space, one can avoid the asynchronism overheads. 
Mapping of DHTA on real architectures is discussed and results on linear array, mesh and hypercube are presented. 
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1. Introduction 

Hough Transform is rapidly becoming indispen- 
sable to industrial automation, diagnostic health care 
and national defense as a powerful tool to recognize 
parametrically described curves. Pattern recognition 
using Hough transform is a two-step process. In the 
first step, Hough transform is used to translate a bi- 
nary image consisting of black curves on light back- 
ground into a parameter space. Each point of this 
parameter space represents a curve with the corre- 
sponding parameter attributes. The translation pro- 
ceeds by examining each image pixel and for every 
pixel and for every black pixel, computing the pa- 
rameters of all possible curves to which that pixel may 
belong. The cells corresponding to these curves in the 
parameter space are appropriately marked. At the end 
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of this translation process, the parameter space holds 
information about the number of image pixels on each 
curve. The second step of pattern recognition simply 
searches the parameter space for cells containing the 
highest number of marks identifying the curves pres- 
ent in the image. 

Hough transform computation is very intensive. 
Curves such as straight lines or circles are parame- 
trized by two independent parameters each of which 
is discretized into M levels giving an M ×  M parame- 
ter space. Each black point in the image space can 
then potentially generate M points in the parameter 
space which are determined by varying one of the pa- 
rameters through its M values and computing the 
other each time. Assuming that this computation 
takes a constant time, Hough transformation of an 
N ×  N image into an MX M parameter space implies 
a O(N2M) complexity. Naturally, substantial re- 
search effort in recent years is devoted to improving 
the computation of Hough transform. 

One approach that has been very successful in im- 
proving Hough transformation speed is the use of 
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parallel architectures. Since the computations corre- 
sponding to each image pixel are independent, they 
may be carried out concurrently. Similarly the com- 
putations corresponding to different parameter re- 
gions are independent and can also be carried out 
concurrently. The parallel algorithms for Hough 
transform therefore distribute either the binary im- 
age or the parameter space, or both to multiple pro- 
cessors. A variety of parallel architectures have been 
employed for this purpose. These include systolic ar- 
rays by Chuang and Li ( 1985 ) and Li et al. ( 1989), 
meshes by Rosenfeld et al. (1988) and Kannan and 
Chuang (1990), SIMD trees by Ibrahim et al. (1986), 
scan line array processors by Fishburn and Highnam 
(1987), shared memory MIMD machines by Tha- 
zhuthaveetil and Shah (1991 ) and Choudhary and 
Ponnasamy (1991 ), and hypercube multicomputers 
by Ranka and Sahni (1990). 

There are several unforeseen overheads in parallel 
Hough transform implementation. The costs of data 
distribution and communication in parallel ma- 
chines may sometimes limit the algorithm perform- 
ance. Shared memory architectures present the lock- 
ing overheads. In addition, if the pattern distribution 
within the image is nonhomogeneous, the load distri- 
bution between processors is not equal. The speed of 
computation is then limited by the speed of the pro- 
cessor that has the largest task. This overhead, called 
the asynchronism overhead is one of the important 
factors limiting the performance of parallel Hough 
transform algorithms. Partial elimination of asyn- 
chronism overhead by shifting loads between neigh- 
boring processors is possible (Ranka and Sahni, 
1990), but it implies the costs of running a load bal- 
ancing algorithm and of the additional communica- 
tion to shift the loads. Most other parallel algorithms 
in literature fail to eliminate asynchronism overhead 
and some state that it is impossible without a priori 
knowledge of the pixels distribution (Thazhuthav- 
eetil and Shah, 1991 ). 

In Section 2 we develop a Distributed Hough 
Transform Algorithm (DHTA) by partitioning the 
algorithm, rather than the data space. This algo- 
rithm, suitable for distributed memory MIMD mul- 
tiprocessor architectures, greatly reduces the asyn- 
chronism overhead. The results obtained from the 
implementation of  DHTA on different MIMD archi- 

tectures are described in Section 3. Finally Section 4 
presents the conclusions from this work. 

2. The distributed Hough transform algorithm 

We illustrate the Distributed Hough Transform Al- 
gorithm (DHTA) for the simple application of 
straight line detection in a binary image. By using pa- 
rameters r, the distance from the origin, and 0, the 
angle with the positive x-axis, any straight line may 
be expressed through parameterized equations 

x = r c o s 0 ,  and y = r s i n 0 .  (1) 

By restricting r, this parametrization leads to a fi- 
nite-sized parameter space with a one-to-one corre- 
spondence with all possible lines in the image. Under 
( 1 ), a black image pixel at (x, y) may belong on any 
line whose parameters satisfy the relation 

r=x cos O+y sin 0. (2) 

Consequently, the count in each (r, 0) cell in param- 
eter space satisfying (2) is incremented to indicate 
that there is possibly a line with these parameters in 
the image. After the entire image is scanned, the pa- 
rameter space holds the Hough transform of the im- 
age. The cell in the parameter space containing the 
highest count corresponds to the line to which the 
maximum number of black pixels fitted. 

DHTA separates the task of scanning the binary 
image from the task of generating the parameter 
space. It is useful for distributed memory MIMD ar- 
chitectures with many different geometries. DHTA 
assigns to a set of processors (image nodes) the tasks 
of scanning the image, extracting the coordinates of 
black pixels and communicating these coordinates to 
the remaining processors. Since in distributed mem- 
ory MIMD computers, communication set-up time 
is significant, DHTA generates messages only after 
examining successive ( 1/Q)th portions of the image 
for some appropriate Q. Each of these Q messages 
contains the total number of black pixels found in that 
region and the coordinate pairs of all those pixels. A 
second set of processors (parameter nodes) are as- 
signed to update the parameter space which is dis- 
tributed amongst them. The data communication 
proceeds in a pipeline fashion: when a processor gets 
a message, it sends a copy to the 'next' processor be- 
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fore using the data. This algorithm is shown in Figure 
1. l 

Mapping DHTA to a given MIMD architecture re- 
quires a one-to-one correspondence between the al- 
gorithm nodes and the processors. The number of 
processors to be used as images nodes, p~, versus those 
as parameter nodes, PH, is governed by the relative 
complexities of image scanning and parameter space 
generation tasks. The image scanning task involves 
finding all the black pixels in the image, and gener- 
ating and transmitting messages containing their co- 
ordinates. Its complexity, TI, depends upon the im- 
age size and its average gray level as well as on the 
communication set-up time. The task of parameter 
space generation, of  complexity TH, involves receiv- 
ing the messages containing the coordinates, and for 
each coordinate pair, evaluating (2) for every 0 in 
the parameter space. The processor partitioning 
should be such that the average load on each proces- 
sor is approximately the same, i.e., 

( T . / p H )  ~ ( T , /p~)  . 

1 The 'type' qualifier added to each message of Figure 1 allows 
each node of the MIMD architecture to distinguish between the 
messages it receives from the same source. 

In our studies, we found that for realistic images and 
reasonable parameter spaces, t91 << PH. 

The mapping of DHTA should also ensure that the 
source and destination nodes of a node are its topo- 
logical neighbors so as to minimize the communica- 
tion overheads. For architectures other than a linear 
array, a DHTA implementation may be configured 
as several concurrent pipelines. A DHTA implemen- 
tation has time complexity 

T= ( T,/pl) / Q+ Q" Ts 

q- (tma x - l ) ' T  c + (TH/PH) , (3) 

where L m a  x is the maximum length of a pipeline, Ts, 
the communication set-up time and To, the total 
communication time between neighboring proces- 
sors. As shown by (3), the time complexity of  DHTA 
increases with the maximum length of a constituent 
pipeline. Thus within the constraints of the architec- 
ture, a mapping should minimize this quantity. Fig- 
ure 2 shows a typical map of DHTA on a 16-proces- 
sor hypercube having L m a  x = 4 and multiple pipelines 
{1, 3, 7, 15), {1, 3, 11}, ..., (4, 12}, {8}. In Figure 2, 
the 0th processor scans the image and messages to 
multiple destinations are arranged in a left-to-right 
order. Thus, from processor 0, a message goes out to 
processors 1, 2, 4 and 8 in that order. This ensures 

D i s t r i b u t e d  H o u g h  T r a n s f o r m  A l g o r i t h m .  

if  image node t h e n  d o  

D e t e r m i n e  d e s t i n a t i o n  nodes  

f o r q =  l t o Q  d o  

e x a m i n e  ( l / Q )  i m a g e ,  no t i ng  the  b l ack  pixels  a n d  c r e a t i n g  m e s s a g e  

send  m e s s a g e  of t y p e  q to  all d e s t i n a t i o n s  

i f  parameter node t h e n  d o  

D e t e r m i n e  source  a n d  d e s t i n a t i o n  nodes  

f o r  q =  1 t o  Q d o  

rece ive  m e s s a g e  of t y p e  q f r o m  source  

send  m e s s a g e  of t y p e  q to  all d e s t i n a t i o n s  

u p d a t e  p a r a m e t e r  space  w i t h  t he  c o o r d i n a t e s  of b l ack  p ixe ls  in t he  m e s s a g e  

Figure 1. The Distributed Hough Transform Algorithm (DHTA). 
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Figure 2. DHTA mapped on a degree-4 hypercube configured as several concurrent pipelines. 

that the messages reach longer pipelines earlier than 
the shorter ones. 

The value of Q should also be judiciously chosen 
based on (3).  A small Q implies a large time lag (first 
term of (3 ) )  before any parameter space updating 
may begin. On the other hand, a large Q causes a large 
number of messages, increasing the second term of 
(3). 

Thus the exact implementation of DHTA greatly 
depends on the topology and the communicat ion/  
computation characteristics of  the available MIMD 
architecture. 

3. Implementations and results 

This section describes the results of  DHTA map- 
pings on a linear array, wrap-around mesh and hy- 
percube topologies all of  which were implemented as 
subsets of  the same NCUBE 10 hypercube machine. 
This ensured that they all would have identical com- 
putational and communication characteristics and the 
results obtained would thus characterize the per- 
formance of the chosen topologies. 

NCUBE 10 is a multiprocessor MIMD architec- 
ture configured as a hypercube. Each processor, 
equipped with 128K local memory, has a peak per- 
formance of 0.5 MFLOPs. The operating system of 
NCUBE 10 supports time measurement in terms of 
'ticks', a tick being approximately equal to 0.171 ms 
for our 6 MHz system. Communication between pro- 
cessors takes place in a DMA fashion and the time 
required to move m bytes between neighboring pro- 
cessors is given by 

Tc= Ts +rm, 

where T~, the communication set-up time is 4 ticks 
and r, the incremental communication time is 0.017 
ticks/byte. 

A multitude of binary images characterized by pa- 
rameters image density and image nonuniformity was 
used. Image density of  a binary image, varied be- 
tween 5% and 25%, is the fraction of its pixels that 
are black. Image nonuniformity was intended to de- 
scribe the distribution of black pixels within the im- 
age. Since such a distribution can be varied in a va- 
riety of  continuous ways, we constrained our 
experimentation to a somewhat artificial setting in 
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which both left an right halves of  an image may have 
uniform but different densities. The extra fraction of 
black pixels in the right half (as compared to the left ) 
was chosen as the measure of nonuniformity. Thus 
images with 0% nonuniformity have a uniform dis- 
tribution of black pixels in the complete image, 
whereas 100% nonuniform images have all their black 
pixels in the right half and those with - 100% uni- 
formity, have all of them in the left half. 

Our experiments consisted of evaluating DHTA on 
the chosen topologies for both speed and insensitiv- 
ity to image nonuniformities. The speed improve- 
ment of a multiprocessor implementation is charac- 
terized by the Speed-Up, Se, defined as 

time complexity using one processor 
sp= 

time complexity using P processors 

Speed-up of DHTA on the three architectures is 
shown in Figures 3-5. 

In each case, the number of  processors varied be- 
tween 4 and 32. Exactly one processor was assigned 
the task of image scanning and the rest, to parameter 
space updating. The 64× 64 images (with uniform 
density) were scanned from left to right and a new 
message bearing the coordinates of black pixels was 
generated after every 8 columns were examined. 

A desirable characteristic of Se is Se=O(P). 2 Such 
linear speed-up implies that the algorithm implemen- 
tation is scalable, i.e., its time complexity may be kept 

2 Se cannot be P because of the communication and problem 
partitioning overheads. 
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Figure 3. Speed-up on a linear array for various image densities. 
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Figure 4. Speed-up on a mesh for various image densities. 
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Figure 5. Speed-up on a hypercube for various image densities. 

the same even if the problem size is increased by pro- 
portionate increase in the size of  the architecture. 

In case of  DHTA whose behavior is modeled by 
(3), an increase in P keeping Q constant results in a 
proportionate decrease in (T~/p~) and in ( TH/PH ). 
The second term of (3) is a constant that becomes 
negligible in the presence of large (TH/PH). HOW- 
ever, the third term of (3) increases with P, and in 
particular, is proportional to the diameter of the ar- 
chitecture. For the linear array, mesh and hypercube 
architectures, the diameters are P, w/P and log2 P, re- 
spectively. One can thus conclude that the DHTA 
implementation on all these three architectures is 
scalable and provides O (P) speed-up for large prob- 
lems. This conclusion is supported by the results 
plotted in Figures 3-5. 
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One should however note that if the problem size 
is small and the architecture size is increased un- 
bounded, one may actually get a lower speed-up be- 
cause the increase in the overheads outpaces the de- 
crease in the computations per processor. Thus, for 
example, in case of linear array computing the Hough 
transform of a low density (5%) image, the speed-up 
actually decreases as P increases beyond 16. For 
higher densities, the amount of computation is higher 
and the speed-up curve does not decline till a much 
higher processor cardinality. In case of both mesh and 
hypercube, similar declines are not observed (within 
the range of P plotted) because their diameters are 
much smaller than a linear array implying a much 
lower overhead represented by the third term of (3). 

The results of Figures 3-5 were obtained with uni- 
form image densities. When nonuniform images were 
used, these results were negligibly affected. Figures 6 
and 7 show the DHTA complexity for nonuniform 
images. Even though we have presented here results 
for a 32-processor linear array and hypercube, other 
architecture sizes and the mesh behave similarly. The 
insensitivity of DHTA to image nonuniformity can 
be understood by noting that in our implementation, 
the average time to create a new message, 
( (T~/pI)/Q), is chosen to be a little less than the av- 
erage time to digest that message, ((TH/pH) / Q). This 
implies a load imbalance as the PI nodes working on 
the image have a smaller load than PH others working 
on the parameter space. However, since PI <<PR, the 
proportion of less efficient nodes is small. On the 
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Figure 7. Time complexity of DHTA on a 32-processor hyper- 
cube for various image densities. 

other hand, a new massage arrives at the PH proces- 
sors before (an average size) old message is com- 
pletely digested. Thus even if the old message con- 
tained fewer coordinate pairs than average (because 
of image nonuniformities), the probability of the t91 
processors becoming idle because of the lack of new 
coordinate pairs is fairly small. 

The results presented in Figures 6 and 7 show that 
the asynchronism overheads are greatly reduced in 
DHTA except in extreme image nonuniformities 
( - 100%) which are rare in real images. 

4. Discussion and conclusion 
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Figure 6. Time complexity of DHTA on a 31-processor linear ar- 
ray for various image densities. 

This correspondence describes the Distributed 
Hough Transform Algorithm (DHTA) and presents 
results relating to its implementation on a linear ar- 
ray, a wrap-around mesh and a hypercube. DHTA is 
based on two principles: separating and distributing 
the tasks of image examination and parameter space 
updating, and mapping of these tasks on concurrent 
pipelines. 

DHTA speed-up on standard MIMD architectures 
is seen to be linear unless the computational task is 
very small with respect to the number of processors 
used. In such cases, the task size is smaller than ideal, 
the overheads increase disproportionately and the 
speed up declines with increasing number of proces- 
sors. DHTA implementation uses concurrent pipe- 
lines carved out of an architecture and its speed-up is 
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re la ted  to the  m a x i m u m  length  o f  any such pipel ine .  

There fo re ,  a smal le r  d i a m e t e r  a rch i t ec tu re  such as a 

hype rcube  p rov ides  a m u c h  h igher  speed-up  than  a 

l inear  ar ray  wi th  a larger  d i ame te r .  

An  i m p o r t a n t  c o n s e q u e n c e  o f  d i s t r ibu t ing  the  al- 

go r i t hm ra ther  t han  the  da ta  is the  r educ t ion  o f  asyn- 

c h r o n i s m  o v e r h e a d  in D H T A  i m p l e m e n t a t i o n s .  Th i s  

does  not  requ i re  add i t i ona l  tasks o f  load  shuff l ing be- 

tween  processors;  ra ther ,  it is a c h i e v e d  by the  very  

na tu re  o f  D H T A .  T h e  load  i m b a l a n c e  b e t w e e n  TI/pt  

and  TH/PH al lows one  to ensure  that  the  large frac- 

t ion  o f  processors  engaged  in p a r a m e t e r  space upda t -  

ing are  rare ly  idle  even  i f  the  image  is no t  un i fo rm.  

O u r  results  in this  respect  are p r o m i s i n g  bu t  m o r e  ac- 

cura te  m o d e l i n g  o f  image  n o n u n i f o r m i t y  and  its re- 

l a t ion  to the  'bes t '  load  i m b a l a n c e  still is an  open  

p r o b l e m  which  needs  to be addressed  to m a k e  mos t  

e f fec t ive  use o f  D H T A  in a prac t ica l  s i tua t ion .  
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