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On Group Theoretic Transforms and the Automorphism Groups
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An exact correspondance between the signal sample permutations described
by group automorphisms and the Group Theoretic Transform (GTT) sample
permutations is established. This enables one to find the permutation matrices
which commute with the transform kernel. It is also shown that the signal and
the transform samples can be partitioned into sets (called orbits) such that if all
the signal samples in every orbit are identical then all the transform samples in
every orbit are also identical.

1. INTRODUCTION

Recent advances in digital technology have triggered an arousal of a deep
interest in discrete linear transform theory. A study of these transforms using
classical matrix methods is not only complicated, but is also restricted to trans-
forms with rather simple and suitable kernels.

It has been shown that many of these transform kernels are the character
tables of appropriate finite abelian groups and are amenable to group theoretical
methods (Kanetkar and Wagh, 1977). We therefore, refer to them as the Group
Theoretic Transforms (GTT), although some authors (Apple, 1970; Karpovsky,
1976) prefer the name ‘Fourier transforms over abelian groups’. The GTT’s
include, among others, the Discrete Fourier Transform (DFT), the Hadamard
Transform (HT) and the Generalised Walsh Transform (GWT) of Chang
and Thomas (1972) which are character tables of a cyclic group, a group C, X
C, - X C; and an élementary abelian group C, x C, X C,, *- X C,, respec-
tively. In general, all GTT’s are the Butson’s generalised Hadamard transforms
(1962).

Consider an abelian group® G = {g,, £ ,---» v—1}- It is known that there
are exactly N homomorphisms ¢, , ¢, ,..., $n_, of G into the multiplicative group
of complex numbers, C*. An N X N matrix defined by

MG ) =¢dg) O0<4j<N-—1

is called the character table of G. If G = Cy , a cyclic group of order N and the
group elements are ordered as g; = ja where (@) = G, then the matrix M is

! Group operation will be denoted by +.
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the Fourier matrix and will be denoted by Fy . Further, the character table of
G ~ G, x G, is the Kronecker product of the character tables of G; and G, .
This suggests that the character table of G ~ C, X C, -+ X C,, is given by
F,,1 ®F,,: @ F, where %) denotes Kronecker product and the group elements
are ordered lexicographically as:

& = hty + ja@ +  + jea, (M
where {a;) = C, and j,, s ..., j, are obtained from the unique representation
of j as

J=<LJrsJesesdry
= Jafghy =" B+ Jongny My 4 +Jrate +4rs O <pism—1 (2)
It is obvious that the ordering of the homomorphisms also plays an important
part in establishing the matrix Fy or in general, a matrix F,,’ ®F,,z ®F,,'
as the character table of the group Cy or C, x C, - X C, respectively.
Firstly, since the number of homomorphisms is exactly equal to the order
of the group, the homomorphisms may also be indexed by the group elements,
€.8- by, > Py 1o by, - Thus, in the case of cyclic group Cy , the homomorphism
é: G — C* defined by é(g;) = w*, 0 < j < N — 1, where w is the primitive
Nth root of unity and & is a fixed integer 0 < & << N — 1, is denoted by ¢,, .

This also allows one to compute any element in the matrix M, which is the
character table of a cyclic group Cy since,

Mk, j) = $o,(8) = ¥ €)

Now if G o~ C,,l X C,,2 X C,,3 + X C, , one can associate a 7 X r diagonal
matrix D with G such that

d; = lem(n, , ny ..., n,)/n; t==1; 2500 T
di,’i = 0, ) #]’.

Then the fact that the character table of G is F"x ®F,,z ® - @F, yields
M(k,j) = dy(g;) = i -0 i, O0< Kk, ji<m—1 (4)

where w; is the primitive n;th root of unity and %k, , &, ,..., &, and j; , jo ,..., J,
are mixed radix representation coefficients of % and j obtained from (1) and (2).
Using matrix D and the notation

kY = (kys By s k) and K3 = (JrsJarenr ok 4)
may be written compactly as

M(k,j) = 5,(8)) = 0¢O¥PE* 0 <k j<N-—1, (5)
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where ¢ denotes the transpose and w is the primitive lem(n, , n, ..., n,)th root
of unity. It may be observed that (3) is a special case of (5) when G = C,.
Equation (5) determines the character table M completely.

Given a sequence x(j), j =0, 1,.., N — 1 one may define its GTT X(&),
k =0, 1,..., N — 1 via the character table M of an abelian group G of order N as

X(®) = Y ME)sG), 0<k<N—I. ©)

=0

Further M being symmetric and orthogonal, M*, the complex conjugate of M,
is N'* M~! and the inverse transform may be defined as

N1

) = T M) XE, 0<j<N—L
Nk-o

Relabeling x( j) and X(k) as %, and X, respectively and using (3), (6) becomes,

X=Y @)%, heG ™)

g9€g
For a permutation « of the elements of G, (7) gives

Xn =3 #ulg) %, = Zcéu(ag) X s ®

9€G

where X is the transform of the sequence X415 - Kanetkar and Wagh (1977) have
shown that if a € 4(G), the automorphism group of G, then X is merely a
shuffled version of X, i.e.,

Xo=Xu, heG, )

where  is a permutation of the group elements.

In this paper, it is shown that u € 4(G) and can therefore be described by:
a matrix S, transforming the basis of G. The relationship between S, and
matrix S, describing a € 4(G) is found out. Finally, all the permutations to
which the transform is invariant are found out. '

-

2. A COMPLETE SOLUTION TO THE PERMUTATION PROBLEM OF THE GTT

It is first shown that u € 4(G). Combining (7), (8) and (9), which hold good
for all the x sequences

$un(8) = da(eg), Vg, heG (10)

643/41/2-3
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Thus,
Putr+1)(8) = Pnyany(og)
IR |
= un(8)  $un(8) = Punirun(8)  ° (1)

Since (11) is true for all g e G,
wlhy + hy) = phy + phy

which shows that u is 2 homomorphism. Moreover, as p is a permutation, it is
one-one. Thus € A(G) and can be described by a r X r matrix S, which
transforms the basis of G ~ C,,1 X C,.z X C,,a b C,,' as (Kanetkar and
Wagh, 1977)

M = g <> KK = KkYS, . (12)
Since « € A(G), it can also be described by a matrix S, as
ag; = gy = KjD = DS (13)
Equations (5), (10), (12), and (13) then give '
KEY DS iyt = <kY S.Djy (14)

Since (14) is true for all &) and {j,
DS = S,D.

Matrix S, may therefore be obtained from S, as

S, 7) = Sal7s 7) disld;;

=S8, mfmn, 1<4i j<r

(15)

It is easy to show that the elements of S, obtained through (15) are indeed
integers. Firstly, it is shown by Kanetkar and Wagh (1977) that to find S, , G
must be expressed as C,ll X C,,g o X C,,' where n,, n,,..., n, are powers of
primes. Consider the image of @; under the automorphism «, ag; = g, . Then

from (13),
Kuy =(0,0,0,1,0,.., 0)S,

where only jth component of the vector on the right hand side is nonzero. Thus

) = (Su(4s 1)y Saljs e Sul s 7))
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and from (1),

8u = Su(js Day + S,(j, )ay + -+ + S,(j, 7)a, (16)

But since o is an automorphism of G, order of g, is equal to the order of a; ,
Le., n;. Therefore, the order of each of the terms S,(j, i)a; must divide n;.
But the order of S,(j, #)a; also divides the order of 4, , i.e. n;, and therefore if
.ged(n; , m;) = 1, S,(j, i) = O giving from (15) S, (¢, j) = 0.

On the other hand if n; | n;, S,(i, j) of (15) is obviously an integer and if
n; | n; , the order of a,S,(j, 7) is n,jged(n; , S,(j, 7)) giving

n; n;
ged(n, SGH 1" T | SO
again showing that S,(4, j) in (15) is an integer. Finally, recall from (8) and )
that a permulation «~1 of the x components described by S,-; results in a per-
mutation  of the X components described by S, of (15).

Some special cases of (15) are worth investigating. Consider an elementary
abelian group C,, X C, X - x C, which is the underlying group of a GWT.
In this case, n; = n,,1 < 7,j < r and therefore 8§, is the transpose of the inverse
of S,-1 in mod p field, i.e.,

i

Su = (S,

This result is already known (Karpovsky., 1976, Theorem 1.4.5).

The permutation which corresponds to the automorphism -1, when applied
to the signal components will result in an identical permutation of the transform
components if 4 = oL, The transform, in this case is said to be invariant to the
permutation a1, : ‘

In the case of a DFT, which is a GTT over a cyclic group Cy , S,.1 = [c]
where ged(c, N) = 1. Then S, = [¢~! mod N]. Thus the transform is invariant
to a permutation which correspond to an automorphism S,-, = [c] iff ¢ = 1
mod N. The number of such automorphisms can be easily found out. Let
be the number of prime divisors of N. Then the group A(G) is a direct product
of ¢ cyclic groups of even order where (Schenkman, 1965, Theorem II1.2.m)

n— 1 if 2| Nbutd+ N
4 t = (n if Nisoddor4 Nbut8+N
n+ 1 if 8|N

The number of elements of A(G) of order two, i.e., the number of permutations
to which the transform is invariant, is then equal to 2¢,

- It is also possible to show that if all of #, , 7, ,..., n, are relative primes in pairs
then the number of permutations to which the GT'T is invariant is the product
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of the number of such permutations of the individual cyclic groups. In this case
the automorphism matrix S,-: has the form

SE) =0 if i#j
and S,-(4, i) = ¢; where ged(c; , n;) = 1. Equation (15) then gi;}es

S =0 if i#j
and

S,(4, i) = ¢;' mod n; , 1<<igr.
Thus, for S, = 5,1, ¢ =1modn,,i=1,2,..,r, which gives the number
of permutations to which the GTT is invariant.
In the case of a more complicated transform kernel F; @ F, ® F, , it may be

shown that the automorphisms matrix S, is one of the following twelve
matrices:

10 0] 1 0 0] 10 0]
R=010|, R=J011], R=|010
0 0 1] 0 0 1] 0 1 1)
10 0] 10 0] 10 0]
R,=10o0 1], R=[011], R=1|001
0 1 0 0 1 0 0 1 1]
2 0 0] 2 0 0] 2 0 0]
R,={0 10|, R=[011, R=[010
0 0 1] 0 0 1] 0 1 1]
2 0 0] 2 0 0] 2 0 0]
Ro=10 0 1], Ry=|[0 11|, Re=]0 01
0 1 0] 0 1 0 0 1 1]

It is easy to verify that (15) gives the corresponding permutation S, in the
transform domain as '

S, Rk, R, R, R, Ry R, R, Ry% Ry, Ry, Ry Ry

a

S,

“

Rl Ra R2 R4 R6 R5 R7 RQ R8 RIO R12 Rll

Thus this GTT is invariant to the permutations described by the matrices
R,,R,,R,and Ry,.
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3. TRANSFORMS OF SIGNALS WHICH ARE CONSTANT OVER ORBITS

In this section the transforms of signals with a certain kind of redundancy
are investigated. Consider the partitioning of group elements into what are
known as orbits. Two group elements g, , g, are in the same orbit 7' if 3 « € A(G);
s.t. ag; = g, . One can then prove the following theorem:

" THEOREM 1. If the signal is constant over each of the orbit, then so is the
transform.

Proof. It was shown in section 2 that if the signal components are permuted
according to any o' € A(G) then the transform components also permute
according to some u € A(G). But if the signal components are constant over
orbits, then the signal is invariant to a~!, and the transform is also invariant to
# € A(G). As o runs over A(G), u runs over A(G). Thus transform is constant
over each orbit. Q.E.D.

In the case of groups that one generally comes across, it is simple to determine
the orbits. A cyclic group Cy (which is the underlying group of the Fourier
transform of order N) has orbits defined by:

To={0} and T,={(dg)a|<a) =G, ged(g, N) =1}

where d is a divisor of N (including 1). Thus in the case of Cy , there are s - 1
orbits, where s is the number of divisors of N. For example, in the case of C,,
the orbits are

T, = {0},
T, = {a, 5a, 7a, 114},
T, = {2a, 10a},
T, = {3a, 9a},
Ty = {4a, 8a}
and
Ty = {6a}

where a is the generator of the group.
Recalling from (1) the labelling of the sequence elements by the group
elements, theorem 1 can be applied to a sequence with satisfies

x(1) = x(5) = #(7) = x(11),
x(2) = x(10),
x(3) = x(9)

and .
x(4) = x(8)
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to give in the transform domain,
X(1) = X(5) = X(7) = X(11),
X(2) = X(10),
X(3) = X©9)

b))

and
X(4) = X(8)

In the case of a transform with underlying group Coy X Cp oo X C,
where n, , n, ..., n, are relative prime in pairs, the orbits may be obtained from
the direct product of the orbits of individual cyclic groups. For example, the
orbits of C; are: {0}, {b,-2b} and those of C, are: {0}, {a, 3a} and {24} where
(> = C, and {a) = C,. Therefore, the orbits of C; X C, are: {0}, {a, 3a},
{2a}, {b, 2b},{b + a, b + 3a, 2b + a, 2b - 3a} and {b + 2a, 2b 4 2a}. Note that
these orbits are similar to those in the case of Cy, as the two groups are iso-
morphic. Again, recalling the association of the sequence and the group elements,
theorem 1 is applicable to sequences which satisfy x(1) = %(3), x(4) = x(8),
x(5) = x(7), x(9) = x(11) and x(6) = x(10).

In the case of the GWT with the underlying elementary abelian group C, x
C, -+ x C, (n times), there are only two orbits {0}, {ge G | g + 0} because
this group is a vector space over the field of integers mod p. Theorem 1 then
states that if all the sequence components except perhaps the Oth component .
are identical then all components of the transform except the Oth, are also
identical.

The analysis of this section holds good even if the orbits are defined with
respect to a subgroup A4, of the automorphism group A(G). In order to partition
the transform domain into orbits one may define

A, = {p e A(G) | for some a € 4, , $n(ag) = b.(g), Vg, b€ G}.

A, is also a subgroup of 4(G) because 1 € 4, and p, , p, € A, imply the existence
of @, o, € A, such that Vg, he G,

onl1g) = dunl(g)

and
$a(o28) = bupn(g),
giving Vg, he G,
Pa(228) = Pupl®18) = buyu(8)-
As ay0; € Ay, pyps € Ay, which shows that 4, is closed under multiplication

and being finite, is a subgroup of G. The orbits in the transform domain then
are defined with respect to 4, consisting of u’s related to «’s of 4, through (10).
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This yields a finer partitioning of the signal and transform domains. For example
for G = Cy, = <a) and 4(G) = {a;, @5, ap, ay;} Where a,@ = ia, one may
choose 4; = {a;, a;}. Then 4, = {a,, a5} and the orbits in both signal and
transform domain are: {0}, {a, 5a}, {24, 104}, {3a}, {44, 8a}, {6a}, {7a, 11a} and

{9a}.
4. CONCLUSIONS

It was shown by Kanetkar and Wagh (1977) while discussing the properties
of the GTT’s that a permutation in the signal domain which results in a per-
mulation in the transform domain of a GTT may be described by an auto-
morphism of the underlying group. In this paper, this result is extended by
showing that this permutation in the transform domain can also be described
as an automorphism of the group.

The correspondence between the two automorphisms is established which
brings out the relation between these permutations of the signal and transform
samples. It also allows one to find out the permutations to which the GTT is
invariant, i.e. the permutation matrices which commute with the transform
kernel.

Finally, it is shown that the concept of orbits in group theory can be usefully
employed in digital signal processing to compute the transforms of the signals
which are constant over certain sets of samples.

It is obvious that the results obtained in this paper are valid even if the under-
lying field is not the complex field but is a finite field in which both eth primitive
root of unity and N-! exist, where N is the order of the group and e is the
exponent, i.e. the maximum order of a group element in G.

RecEtveDp: December 2, 1977; RevISED: September 13, 1978
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