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It has been shown that a transform satisfying a generalized form of the convolution
theorem can be described by the group character table of an appropriate finite Abelian
group G. Exact correspondence between the transform properties and the underlying
group properties is established and it has been demonstrated that many of the digital signal
processing problems may be solved efficiently using the group theoretic approach. Sets of
permutations are fully characterized such that a permutational convolution defined with
respect to them can be converted into a transform product by some invertible transform.

1. INTRODUCTION

Recent years have seen a rapid development of digital signal processing (DSP)
techniques. A major part of the activity in this field is confined to a search for efficient
discrete orthogonal transforms and investigation of their properties. In this paper,
it has been shown that all those transform matrices used in DSP which satisfy a gener-
alized version of the convolution theorem can be identified with the character tables
of finite Abelian groups. This allows a group theoretic approach in the solution of many
DSP problems resulting in a considerable saving of effort.

This methodology, amply illustrated in this paper through examples, is not only
more efficient as compared to the usual matrix methods, but also provides a better
understanding and unified approach in dealing with many of the discrete orthogonal
transforms.

2. GRouP THEORETIC PRELIMINARIES

All the groups considered here are finite Abelian. Let G = {g,, gy ,..., gn_1} be
such a group.! Then it is known that there are exactly N homomorphisms ¢, , ¢, ,..., dx_y

! Additive notations will be used (identity =0) throughout for the group and ng, g€ G, will
denote g + g + **-n times. Note that since G is Abelian, n(g + h) = ng - nh, for all g, h € G.
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212 KANETKAR AND WAGH

from G into the multiplicative group of the complex field. The complex character table
of G is an N X N matrix M defined by

MG.j) = 4dgD  ij =0, L N — 1. M

From (1), it is clear that the columns of M can be labeled with the elements of G and
the rows with the homomorphisms.

The following properties of the group character tables are well known [5, Chap. 5;
9, Chap. 3]:

(P1) zj"_‘o‘ M(i,f) - M*(k,j) = N3(i, k), where the asterisk denotes the complex
conjugate and & is the Kronecker delta.

(P2) If G =Gy X Gy X ** X G, then the character table of G is the Kronecker
product of the character tables of G;, G, ,..., G, .

(P3) Since Vge G, g¥ = identity of G, (¢{g))N =1 Vi. This implies that M(i,5)
is an Nth root of unity for 0 <4, < N — 1 and | M(5,f)| = 1.

If
G =~ Cpy X Cpy X = X Cp, @

where C, = {a;) is a cyclic group of order n, with generator a4, the group elements
may be ordered lemcographxcally as

& = J1ay + jaay + - +ja,, | (3)

where jj , fa ..., Jr are obtained from the unique rc_:pi'esentation of j

j = <Jl ’js ""!jr>

. ) . . ) )
== fyghty *** Ny - Jalghy o e 4 oot - Jegfy 1 Sy O0<is<m—1,

to give
M=FM®Fn.®°°'®an,’ &)

where F,, is a Fourier matrix of order », and X denotes the Kronecker product.

As is evident from (5), when G = CN, M is the discrete Fourier transform (DFT)
kernel of order N.If G = C, x Cy X -+ X Cy(ntimes), M is the kernel of the Hadamard
transform (HT) of order 2% If G = C, X Cp X ++ X Cp (n times), M is the kernel
of the class of generalized Walsh transforms studied by Chang and Thomas [4]. Finally,
it may be pointed out that any character table M as given by (5) is the generalized
Hadamard transform (lem{n, , 1 ,..., #,}, 5475 *+* 1,) of Butson [2].

The transform whose kernel M is a character table of some finite Abelian group
(not necessarily with ordered elements which give M in the form (5)) will be referred
to as the Group Theoretic Transform (GTT) in this work although some authors
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[1, 3, 10, 11] have called it “Fourier transform over Abelian groups’ or “a system of
Walsh functions in a generalized sense” [12].
The transform vector X is related to the signal vector x through (1) as

X0) =Y ¢dg)x(i), 0<i<N—L

=0

Relabeling X(7) as X, , where ¢ is the homomorphism corresponding to the ith row,
and x(j) as x, , where g is the jth element of the group (given by (3) and (4)) and hence
the element associated with the jth column of M, one gets

Xy = ZG¢(g) Xg -

From (P1), the inverse transform could be defined as

5=y IH- X, ©)

where the summation is taken over all the homomorphisms ¢.

3. PERMUTATIONAL PROPERTIES OF THE GROUP THEORETIC TRANSFORMS
Let % be a vector obtained by

X, =x

o‘ly ]
where ¢! is a permutation of the elements of G. & is thus clearly a sequence obtained
by permuting the components of x. Let X be the transform of %, i.e.,

Ko =2 6@, =3 bloz) .

9€G g9€G

In this section, we determine ¢’s under some relations between X and X.

THEOREM 1. | X, | = | X, | for all $ and all complex signal vectors iffo(g) =g+ h
Jor some fixed he G for all g G.

Proof. Obvious. |

Since k is an arbitrary element of G, there are exactly N permutations of complex
signal components which preserve the transform component’s modulus.

In the case of a DFT, the group elements are ordered as g; = ja, where G = {(a).
In this case, if & = ka, 0 << & <X N — 1, then these permutations are g; — g, + h =
(j + k)a = g1 moan Which is a cyclic shift of the signal samples by —#% units. In
the case of the HT, these permutations turn out to be dyadic shifts.
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THEOREM 2. A permutation o1 of the signal components merely permutes the GTT
components iff o is an automorphism of the group G.

Proof. 1f X is a permuted version of X, the component X, of X is the same as some
component X of X. Then

Y dog)xw, =Y He)x, .

9€G geG

Since this equation is true for all x sequences,

$(og) = $(g)- .
Now, Vg, ke G,

Blo(g + k) = $(g + k) = () (k)
= ¢(ag) ¢(ch)
= ¢(og + oh).

Thus o is a homomorphism and therefore an automorphism of G. Conversely, if o
is an automorphism,

$(0g) = ($o)(g) = H(g)-

Since ¢o is clearly a homomorphism and the character table covers all the homo-
morphisms,

X_d,:X&. l

In the case of a DFT, G = Cy = <a) and therefore the automorphism group 4(G)

of Gis the group of mappings defined by og; = kg; = (kj)a = &x; » where ged(k, N) = 1.
This result matches with that of Gold and Rader [8, p. 170). When G = C, X C, X -
(n times), A(G) is known to be the general linear group GL,(p), the group of nXxn
nonsingular matrices over GF(p). Thus in the case of the generalized Walsh transform
[4] or HT (for p = 2), these permutations can be easily determined and their number is
7, p. 223] i

LA@G) = (p" — 1)(p" — pXp" — p7) - (p" — p™).

In general, the automorphism ¢ € 4(G) is uniquely related to a matrix T transforming
the basis of G through

og; =& = <KJ» =<&PHT,

where j) and () are the row vectors corresponding to the representatlons of ]
and j, respectively, given by (3) and (4). If G~C, x C, X - X C, , where n/’s
are prime powers for 1 <{ 7 < r, then the matrix T satisfies the followmg conditions
[7, Sects. 55, 58 and Exercise 15 on p. 229]:
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@D 0SS TE)<n.
(i) T@,j5) =0, if ged(n; , ny) == 1.
i) (ndns) | TG g, i ] .
(iv) For any prime p | | G|, if set S, is defined as S, = {i | p | n;}, then the matrlx

T, obtained by restricting T to the rows and columns belongmg to S, is nonsingular
modulo P .

This enables one to compute all the automorphisms of any Abelian group.

4. CONVOLUTIONAL PROPERTY OF THE GROUP THEORETIC TRANSFORMS

When G is a cyclic group, the sequence

= Z XgYn—g s keG, Q)

9€G

-

turns out to be the cyclic convolution of x and y. Therefore, in general, (7) may be
called a convolution associated with a group G. It is easy to show from (7) that

Zé = XéYé fof au ¢, (8)

where X, Y, and Z are the GT'T’s of x, y, and 2, respectively, w.r.t. G. Conversely,
(8) implies (7). Thus every GTT is uniquely associated with a convolution as in (7).
The concept of convolution may be further generalized by defining the permutational
convolution of x and y w.r.t. a set £ of N permutations o,’s of 4 = {0, 1, 2,..., N — 1}
to be a sequence =z given by
N-1
2(j) = Z‘o 26 y(of), =01, ,N—1 9)

A transform is said to satisfy a permutational convolution theorem (PCT) w.r.t. X if
Z=X"Y, ' (10)

where X, Y, and Z are the transforms of x, y, and 2, respectwely, and () denotes the
' componentwise product (i.e., Z(k) = X(k) Y(k), 2k =0, 1,..., N — 1).

5. CHARACTERIZATION OF GROUP THEORETIC TRANSFORMS

THeOREM 3. An invertible transform which satisfies a PCT must be a GTT.

Proof. Letmgy,m, .., my_, denote the columns of M. Then the transform vector X
is given by
N-1.

X =Y ma).
{=0
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If x() = 8(i,4,) and y(5) = 8(s, %), then X =m, and ¥ =m, . As the transform
satisfies the PCT,

N-1
mil'm& =X' Y=Z = jzo "Ijz(j)

N—-1N-1 . .

= Z Z m;x(i) y(ost)
j=0 i=0
N-1 .

== ): m;y(0st)
i=0

-y m, (1)
jeAldyig)

where A(i; , i) = {j | 01y = 45}. The set A satisfies the following propertirs:
Ay, i) N A ,3) =¢  if iy #15, (12)

for j € A(iy , i) N A(ty , i5) implies 0,(i;) = 4, = 13 . Further,
U 4G ,4) =4 (13)
i,ed

because for any j € 4, o,(i,) equals some 7, in 4 implying j € A(7) , 7). It can now be
shown that for any i, j € 4, A(i,§) # ¢ because otherwise from (12) and (13), there exist
some s, £ € 4 such that

Al ) = ¢ or my-m; =0, (14)
A(i,s) ¢ or  myem, %0, (15)
SEA(j) t) or mycmg=ms+ ", (16)

where the RHS of (16) is the sum of distinct columns of M (including m,). Multiplying
(16) by m; (componentwise), the LHS = 0, but from (12) and (15), the RHS is the
sum of one or more distinct columns of M. This contradicts the nonsingularity of M.
Hence, A(i, , ;) # ¢ for any 4, ,4,€ 4 and from (12) and (13), | A(f; ,%,)| = 1 and Z
is transitive. Let A(7; , i5) = {i}. Then (11) shows thatm, -m; =m, . Thus the columns
of M are closed under component-by-component multiplication. Also, no element of
M is zero because otherwise the transitivity of 2 and (11) would imply that the row
which has a zero is a zero row, again contradicting the nonsingularity of M. Since the
set of columns is finite and each component of a column is nonzero, it is obvious that
the columns form a group G. Each row of M is therefore a homomorphic image of G.
These rows are also linearly independent as M is invertible. M is therefore the character
table of G and hence M is the kernel of the GTT with the underlying Abelian group G. i

Without loss of generality, it may be assumed that the column which acts as the

i
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identity of the group G is the leftmost column of M, i.e., m, . Obviously, all the com-

ponents of m, are equal to unity.
From Theorem 3, it is clear that G is related to Z, the set of N permutations defining
the convolution as in (9). The following corollary explicitly defines G in terms of Z.

CoroLLARY 1. Any o € 2 is of order 2 and the set 0,2 forms a group G' ~ G.

Proof. From the proof of Theorem 3 and especially (11), it is obvious that o,(i) = j
iff m; - m; = m,, . Because m; and m; commute, o, is of order 2. Further, o,(f) = j iff
m; = m;" and oo, (i) = ¢ iff m, = m; - mz.

Now consider a function f: G — 0,2 defined by f(m,) = 040, . It should then be
shown that f is an isomorphism. Consider the image of f(m, - m;), where m, = m; - m; .

f(m; - mj) = f(m,) = oyo,, .
But
00,(4) = v, (17)

iff m, =m, -m;' =m, m'-m;'. Substituting m, - m;l = m, gives oy0,(u) = w
and m, = m,, - m;* gives o,0;(w) = v. Thus,

a905(000(%)) = v. (18)
Comparing (17) and (18), which are true for all 4,

00, = 005 * Gy0;
or

f(m; - m;) = f(m,) - f(my).
Thus f is a homomorphism. Further, if f(m,) = f(m,),
0g0i(4) = 005(4) = v (say).

This implies m, = m, - m;* = m, - m;" and gives m; = m;. This shows that f is an
isomorphism and completes the proof. |

Note that since 02 = G, for any o € Z, 040 € G’ and therefore its inverse oo, € G'.
Hence

G’ = (00y) G' = (00,)(0pZ) = 2.
The converse of this corollary is Theorem 4.
THEOREM 4. Given a set X of N permutations of A = {0, 1,..., N — 1} such that

o? is an identity permutation for all o € X and for some o € Z, 02 ~ G, an Abelian group,
then the GTT over G satisfies the PCT w.r.t. Z.
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Proof. Since oZ is an Abelian group of order equal to | 4], it is transitive. Hence
3 is transitive and one could denote by ¢ that o € X which takes (some fixed) se 4 to i.
Thus :

ofs) =i, ied. (19)

From the remark after Corollary 1 and the proof of Theorem 3, 0,2 = 0Z ~ G ~ group
of columns of M. Let m; be the image of 0,0; under this isomorphism. The convolution
py associated with the GTT takes i to j iff m; -m; = my, ie.,

0,0,0,0; = 040y . ‘ (20)

We now show that (20) leads to o;(f) = j which would imply that ¢’s are the permuta-
tions associated with the GTT. Combining (19) and (20),

a,04(i) = (0,0:)(e:0:)(os))

= o,0;0s)  as'Gis Abelian and the order of o; is 2,
= a () from (19). 1§

Theorem 4 identifies all those sets 2 of permutations for which there exist transforms
which convert convolutions defined as in (9) into products of transforms as in (10).

The following two examples illustrate the determination of transform (if it exists)
which satisfies the PCT w.r.t. the given set of permutations 2.

Exampie 1. Let 4 = {0, 1,...,7} and Z = {0, , 0y ..., 07}, Where in cycle notation,

oo = (1 3)2 6), a; = (0 41 6)2 3)(5 7),
oy = (0 1)(2 43 5)6 7), a5 = (0 5)4 ),
s = (0 7)(1 2)(3 6)4 5), a5 = (0 3X1 5)2 74 6),

0= (0 61 )2 534 and o, = (0 2)(1 43 7X5 6).

It can be observed that all the permutations are of order two and that 0,2 forms an
Abelian group isomorphic to Cy X Cy = <{a) X {b) with the following correspondence
(any other o € X in place of o, would have given the same group by the remark after
Corollary 1):

o405 = (0 TX(1 6)2 3)4 5)— b,

o0, = (0 5X(1 3)2 6)4 7) — 2a,
0,0, =(0256)1734) —aq

005 = (0 4)(1 2)(3 6)5 7) —~2a + b,
0,40, = identity permutation — 0,

005 =(0652)1437) —3a,
0,06 —=(03512467) —a+b,
00, =(0153Y2764) —>3a+b
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From Theorem 4, the required transform kernel is thus the character table of Cy X C,
whose columns are headed by the group elements b, 24, 4, 2a + 5, 0,... (in that order).
This transform kernel is given below:

-

1 1 1 1 1 1 1 1
1 —1 i —1 1 —i i —i
1 1 —1 1 1 -1 —1 -1
1 -1 — -1 1 i —i i
-1 1 1 —1 1 i -1 -1
-1 —1 i 1 1 —7 —i )
-1 1 -1 =1 1 —1 1 1
-1 -1 —i 1 1 i i —i

Note that the ordering of rows is arbitrary. The eight homomorphisms are defined
by #(i,a + ih) = ($(a))($(b))’2, where ¢(a) could be 1, #, —1, or —1 and ¢(b) could
be 1 or —1 (i = V1)

ExampLE 2. Let 4 = {0, 1,2, 3} and 2 = {gy, 0y, 03, 03}, Where

g, = (1 3), a = (0 1)(2 3),
o, =(02)(13), and a3=(03)1 2).
Then
040, = identity permutation, o0, = (0 3 2 1),
o0y = (0 2), gg05 = (0 1 2 3).

Since 0,2 does not form a group ((ogo1)(ceoz) = (0 1)X2 3) ¢ ,2), by Corollary 1,
there is no invertible transform which would satisfy a PCT w.r.t. this Z. Note that
if the invertibility condition is relaxed, the transform defined by an all-zero matrix
satisfies a PCT w.r.t. any given 2.

6. ExTensioNs OovER FINITE FiELbs AND FINITE RINGS

The GTT kernel M defined in earlier sections has rows which are homomorphisms
from G into the complex field. If this field is replaced by any finite field F, then still
there are exactly | G| distinct homomorphisms provided that an 7th primitive root
of unity exists in that finite field (i.e., 7 | (| F | — 1)), where r is the exponent of the
group (i.e., the maximum order of any group element). By setting the rows of M equal
to the images of G under these homomorphisms, one can still get a perfectly valid defini-
tion of a character table and hence 2 GTT for which all the earlier results will apply
(except that Theorem 1 will become modified as X; = $(h) X,)-

Further, ensuring that ged(| F |, N) = 1 guarantees the invertibility of N. The inverse
GTT can therefore be defined as in (6).
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Fourier transform (GTT for a cyclic group) over finite fields has been studied by
Pollard [13].

When the field is replaced by a finite ring R, one can still definea GTT ina generalized
sense as the set of homomorphisms from G into the multiplicative group of R. Further,
if I is any maximal ideal of R and r, the exponent of G, then R/I is isomorphic to a finite
field and existence of an rth primitive root of unity in R/I is guaranteed if 7 | (| R/I'| — 1).
Arguments in this direction lead one to the following necessary and sufficient condition
for the existence of the GTT in a finite ring:

r | ged{(| RIL | — 1), (| RIL | — D)y | RIL | — 1)},

where I, , I, ..., I, are all the maximal ideals of R. This result has also been proved
by Dubios and Venetsanopoulos [6]. All the results of the earlier sections (except the
minor modification of Theorem 1) are then applicable to these transforms.

7. CONCLUSIONS

It has been shown in this paper that some of the properties of the GTT can be easily
determined if it is realized that the GTT matrix is really the character table of an
appropriate Abelian group. The establishment of a correspondence between the group
theory and the digital transform theory allows a free flow of ideas from the highly
developed group algebra to the digital signal processing domain. For example, it has
been shown that the signal component permutations which permute the transform
components are really the automorphisms of the underlying group. Since the auto-
morphism group of a finite Abelian group can be completely and easily determined,
all such permutations may be specified. Further, investigation of the properties of the
automorphism group might reveal more details of these permutations.

The GTTs are fully characterized. These are the only invertible transforms which
satisfy a permutational convolution theorem. Conversely, the permutational convolutions
which can be converted into the transform products by any invertible transform are
also characterized.
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