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F inally, our approach was heavily based on  the use of 
Shannon-Fan0 codes, and  not on  the optimal Huffman 
codes. The  problem is much more involved and  challenging 
when Huffman codes are considered. Pioneering work on  
this difficult problem has been  performed by Longo  [ 181, 
[19], Nemetz and  Simon [20], [21]. In the papers of Longo  
[ 181, [ 191  the informational divergence H( P IlQ) plays an  
important role in the problem. 
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A New Structured Design Me thod for 
Convolutions over F inite F ields , 

Part I 
MEGHANAD D. WAGH, MEMBER, IEEE, AND SALVATORE D. MORGERA, MEMBER, IEEE 

Abstract-The structure of bilinear cyclic convolution algorithms is 
explored over finite fields. The algorithms derived are valid for any length 
not divisible by the field characteristic and are based upon the small length 
polynomial multiplication algorithms. The multiplicative complexity of 
these algorithms is small and depends on the field of constants. The linear 
transformation matrices A, B (premultiplication), and C (postmultiplica- 
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tion) defining the algorithm have block structures which are related to one 
another. The rows of A and B and the columns of C are maximal length 
recurrent sequences. Because of the highly regular structure of A, B, and 
C, the algorithms can be very easily designed even for large lengths. The 
application of these algorithms to the decoding of Reed-Solomon codes is 
also examined. 

I. INTRODUCTION 

C YCLIC convolution of discrete sequences plays an  
important role in signal processing. It is useful for 

describing the output of a  linear-time-invariant finite im- 
pulse response system to a  periodic input, and  it is the 
basis for computing other necessary signal processing re- 
sults. Furthermore, linear convolution, important for pre- 
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dieting system responses to nonperiodic inputs, polynomial 
products, and large integer products, may be computed 
through cyclic convolutions. Signal processing transforms 
and, in particular, the discrete Fourier transform can also 
be calculated via cyclic convolution. 

Consequently a large number of papers dealing with 
cyclic convolution of real and complex sequences have 
recently appeared [ l]-[ 141. By comparison, convolution of 
finite field sequences, though equally important, has re- 
ceived quite a bit less attention. Early approaches to com- 
putational algorithms for cyclic convolution were based 
upon two facts: 1) If the length N of the sequences can be 
factored in mutually prime factors n,, n2,. . . , nk, then the 
cyclic convolution can be computed as a k-dimensional 
cyclic convolution with length in the i th dimension being 
n,. 2) The algorithm of a factor length n, may be obtained 
by viewing the convolution as a product of two polynomi- 
als in z modulo z”~ - 1 and evaluating it by first finding 
the partial products modulo each factor of z”~ - 1 and 
then combining these using the Chinese remainder theorem 
to get the required convolution. 

The design of an efficient algorithm (i.e., one with a 
small computational complexity) of length ni is quite com- 
plicated and time consuming. The strategy normally 
adopted is to design good algorithms as per fact 2) only for 
a few small ni values and combine these small length 
algorithms using multidimensional techniques to obtain 
algorithms for longer lengths. This approach, however, has 
some disadvantages. The only efficient algorithms known 
in the literature [l] are for lengths between 2 and 9.’ Based 
on these, a total of only 47 algorithms may be constructed 
using multidimensional techniques. This means that the 
application of cyclic convolution has to be tailored to fit 
one of these available lengths. In addition, the small length 
algorithms are efficient only over the complex number field 
and though sometimes it is possible to modify them to 
obtain convolution over the required finite field, the mod- 
ified algorithm may not be efficient. Finally, the algorithms 
obtained in this fashion have very little regular structure 
which may be exploited in the designing of efficient hard- 
ware or software. More recent efforts to introduce some 
regularity into the algorithm has led to the discovery of 
polynomial transforms [ 12]-[ 141. Though algorithms ob- 
tained in this manner are a little more regular than the 
earlier Agarwal-Cooley algorithms [l], they still lack a 
completely regular structure. 

In this paper we present a new approach to obtain a 
length N cyclic convolution bilinear algorithm over the 
field GF (p”), where p is a prime and m is an arbitrary 
positive integer, for any N not divisible by p. We show that 
when constrained with only the multiplicative complexity, 
as is generally the case with finite field operations, it is 
possible to design the algorithm very quickly by using the 
principles outlined in this paper. The approach, we feel, is 
the only systematic structured design method available for 
this type of algorithm development. 

‘This statement is not strictly true if one also is using convolution 
algorithms based on number theoretic transforms. 

The information about the field of constants is incorpo- 
rated in the design of the algorithm. Consequently, the 
multiplicative complexity of the algorithm depends not 
only on its length, but also on the field of constants. This 
direct approach yields much more efficient algorithms than 
those obtained by modifying algorithms designed for the 
complex number field. The algorithm obtained here is 
bilinear in nature and the matrices defining it are very 
highly structured. 

This paper is organized in the following manner. Section 
II develops the necessary mathematical background. Ac- 
tual design of the algorithm is discussed in Sections III and 
IV. These designs are illustrated through examples in Sec- 
tion V and their computational complexity is examined in 
Section VI. Finally, Section VII demonstrates the applica- 
tion of the algorithms developed for the decoding of 
Reed-Solomon codes. 

II. MATHEMATICALPRELIMINARIES 

The mathematical preliminaries fundamental to the con- 
tent of this work are presented in this section. In particular, 
we show that a bilinear algorithm with field of constants 
GF (p) designed for input data over GF(p) also works 
when the input data is over GF (pm). We also introduce a 
certain partitioning of integer sets which gives rise to the 
algorithm in the form presented here. 

Lemma 1: A bilinear algorithm (with field of constants 
GF (p)) which is valid for input data over GF ( p) is also 
valid for input data over GF (pm). 

Proof: Consider the following algorithm to evaluate 
the bilinear form w = u * o when u and o are vectors over 
GF (p): w = C(Au x Bu), where A, B, and C are matrices 
of appropriate dimensions over GF(p) and x denotes a 
component-by-component multiplication of vectors. We 
now prove that w can be computed in the same manner 
even if u and o are vectors over GF(pm). To show this, 
note that in this case, we can express u and v as 

m-l m-1 
u = c upi, v = c Vjd, 

i=O j=O 

where ui and vj are vectors over GF(p) and (Y is the 
primitive element of GF ( p”). Then using bilinearity, we 
obtain 

w = ( ~gLia~)*(;~~vja~) = ;g ;$2+ju,*vj). 

Further, since ui and vj are over GF (p), we may use the 
algorithm to compute ui * vj. Thus 

m-l m-l 
w=c c d+t(Aui x Bvj) 

i-0 j=O 

I 

m-l m-l 
= c C c (Auiai x Bu,aj) 

ix0 j-0 I 

= C[ (_1~~~ui~‘) X iB~~~Vja’~] = C(‘u’Bv). 
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Thus, the same algorithm can be  used to compute u  * v 
even when u  and  v are vectors over GF  (pm). 

The  important notion of cyclotomic sets is now intro- 
duced. Let N be  of the formp” - 1. Partition the integers 0  
through N - 1  into sets S,,, Si,, Si,, . . . . A set Si is gener-  
ated by starting from the smallest integer i not covered in 
an  earlier set and  defining its other members  as 

S, = {i, ipmodN,ip2modN,ip3modN;..}. 

Since ip”mod  N = i, each set S, is finite. We  denote the 
number  of elements in S, by ui and  the set of indices 
{i,, i,, i,, . . . } by S. We  list below the properties of the ui 
which will be  used later. Proofs of these properties are 
given in Appendix I. 

Pl) 0  E S and  a0  = 1. 
P2) G iven any divisor t of n  (including t = 1  when 

p  * 2), 0  = (p” - l)/(p’ - 1) E S and  a0  = t. 
P3) For any nonzero i E S, it is possible to find a  8  E S 

having the form given in P2) for some t, such that i 
is a  mu ltiple of 0  and  ui = ue. 

P4) W ith 19  as in P2) and  (Y, a  primitive element of 
GF(p”), a6  generates the subfield GF(p”@) of 
GF  ( p” ) and, consequently, ue  1  n  . 

P5) From P3) and  P4), for any i E S, uiln and  (Y~ E 
GF(p”1). 

The  following example illustrates the notion of cyclo- 
tomic sets. 

Example: W ith p  = 2  and  N = 24  - 1  = 15, we have 

so = (01, a, = 1  
S, = {1,2,4,8}, u, = 4  
s, = {3,6,12,9), a3  = 4  
s, = (5, w, us = 2  

It is then well known that w can be  obtained from U and  
V, the Fourier transforms of u  and  v in GF(p”) as 

N-l 

w(k) = (l/N) c U(j)V(j)a-‘“, O<k<N-1, 
j=O 

where (Y is a  primitive element of GF  (p”). We  choose to 
carry out this summation first over the elements of a  set Si 
to give w,(k) and  then over all such sets. Thus, 

W(k) = C w,(k)> (1) 
ieS 

where 
wi(k) = (l/N) c U(j)V(j)K’“. 

iES 
(2) 

We  now show that by using bilinear small degree poly- 
nomial mu ltiplication algorithms (some of which are given 
in Appendix II), we can design bilinear algorithms over 
GF  (p) for (2). 

Theorem 1: The  vector wi can be  computed from the u  
and  v vectors by a  bilinear algorithm over GF  (p). 

Proof: When  i = 0, 

w,(k) = (l/N) c (‘) c (‘> = C,(A,u x B,v), (:I) j;::v 1) 

where A,, B,, and  C,, are length N vectors 

A,=[1 1  ... 11; B,=A,; C,=A;/N. 
For nonzero i values, since any j E Si can be  expressed as 
ip’modN,l=O,l;~~,~~- l ,wehave 

N-l 

U(j) = 1  u(k)&“, j = ip’. 
k=O 

Note, however, that u(k) E GF(p) and, consequently, 

s, = {7,14,13, ll}, u, = 4; s = {0,1,3,5,7}. b4w 

Note that since n  = 4, its only divisors are 2  and  4  and  8  Thus, 
corresponding to these as in P2) are 5  and  1, respectively. N-l 

Both of these integers belong to S. The  other nonzero U(j) = c (u( k)cyik)P’ = 
members  3  and  7  of S are both mu ltiples of 1  and  u3  = u7  k=O 

= u, as indicated by P3). 

III. ALGORITHM CONSTRUCTION 

The  cyclic convolution of sequences u  and  v of length N 
is a  sequence w defined as 

N-l 

w(k) = c u(i)v((k - i )mod N), O<kfN-1 
i=O 

and denoted by w = u  * v. In this section we design a  
bilinear algorithm to compute this cyclic convolution when 
the data sequences are over GF  ( p”),‘the field of constants 
is GF  ( p), and  the length N = p” - 1  for some integer n. 
By the reasoning given in Section II, it is sufficient to 
assume that the components of u  and  v are also from 
@(P). 

= u(k). 

N-l 

1 
P’ 

= (U(i))“‘. 

Similarly, V(j) = (V(i)) J”. Equation (2) now becomes 
ai- 1 

w,(k) = (l/N) c (U(i)Y(i)ly-ik)P’. (3) 
I=0 

Note that 
N-l 

U(i) = c u(k)aik, 
k=O 

(4) 

and  i is a  mu ltiple of some 8  = (p” - l)/( ~“0  - 1) E S 
from P3) of Section II. Therefore, U(i) is a  polynomial in 
(YO. Moreover, from P4), the m inimal polynomial over 
GF  ( p) of (Y’ is of degree a,. Using the m inimal polynomial 
to reduce the u,th and  higher powers of (Y’, U(i) can be  
reduced to a  polynomial in (Y’ of degree ue  - 1. Each 
coefficient of this polynomial is obtained by a  linear com- 
bination (over GF  ( p)) of the components of u. Similarly, 
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V(i) can be reduced to a polynomial in (Y’ of degree a, - 1 
with coefficients expressed as linear combinations of the 
components of v. At this stage, one may use bilinear small 
degree polynomial multiplication algorithms (given in Ap- 
pendix II) over GF (p) to obtain the coefficients rm of the 
product polynomial U(i)V(i) in (Y’ of degree 200 - 2. To 
prove the theorem, it is therefore sufficient to show that 
wi( k) (for any k) can be expressed as a linear combination 
of the r,,, coefficients over GF (p). 

Using the product polynomial in (3), one has 
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cation of the 00 - 1 degree polynomials U(i) and V(i) in 
(Y’. Similarly, Aeu and Bev provide the linear forms re- 
quired for the multiplication of the 00 - 1 degree poly- 
nomials U(O) and V(O) in (Y’. Since in both the cases the 
polynomial degrees are the same, identical multiplication 
algorithms could be used. Note, however, from (4) that the 
coefficient of aik in U(i) is u(k), whereas, in U(O), it is 
u((i/Qk mod ( N/8)).2 Thus, if u(k) is replaced by 
u((i/@kmod(N/B)) f or all k in the polynomial U(i), we 
obtain the polynomial U(8). Therefore, the linear forms 

wick) = (l/N) k :I: [[~~02r~aemja-ik]p’ 

of-1 20*-2 

= (l/N) c c r,( aem-ik)P’ 
I=0 m=O 
200-2 

A,u are seen to be the same as A,gC where u is obtained 
from u by replacing every u(k) by u(( i/@)k mod (N/B)). 
This proves the relation between Ai and A,. Identical 
arguments applied to V(i) and V(e) give the relation 
between Bi and Be. 

Finally, from (5) we have 

we((V%mod@V)) 
= (l/N) c r,tr(cuempik), 

m=O 

where the trace function tr ( a) [ 161, tr: GF (~“0) + GF (p), 
is defined as 

o,- 1 

t’(P) = C BP’, /3 E GF(p”0). 
I=0 

Note that since (Y’, (Y~ E GF (p”“), aem - ik E GF (~“0). 
Thus, w;(k) in (5) is always a linear combination over 
GF (p) of the r,‘s. 

Theorem 1 asserts that there exist matrices Ai, Bi, and C, 
over GF(p) such that wi = Ci(Aiu X Biv). We then im- 
mediately obtain from (1) the bilinear algorithm over 
GF(p) for was 

From Theorem 2, it is obvious that we need only obtain 
A,, Be, and Co for all 8 E S of the type 0 = ( p” - l)/( p”@ 
- 1). Note that for such a 8, (Y’ is the root of a primitive 
polynomial of degree 00 over GF( p). This polynomial, 
denoted by PO, is given by 

where C = [C,,, Ci,, * a. 1, A = [AC, AZ, *a. ]T and B = 
[B& Bc, * * * IT; i,, i,, . . . E S. 

From (6), it is clear that the key to the design of a 
bilinear algorithm over GF(p) to convolve sequences of 
lengthp” - 1 lies in the construction of the matrices Ai, Bi, 
and Ci for all i E S. Referring to P3) of Section II, for 
every nonzero i E S it is possible to find a 8 = (p” - 1) 
/( p”~ - 1) E S such that i is a multiple of 8 and a, = a,. It 
is shown in the following theorem that for each such i and 
0, the matrices Ai, Bi, and Ci are related to matrices A,, Be, 
and C,, respectively. Theorem 3 then discusses the struc- 
ture of A,, Be, and C,, allowing construction of the algo- 
rithm using (6). 

w = C(Au x Bv), (6) 
Pe(x) = (x - 2)(x - &)(x - C-X@) *. . (x - aepO’“y 

when these factors are multiplied, all the coefficients in the 
PO(x) polynomial turn out to be in GF ( p). If 

P,(x) = x0@ - a,xQ-’ - a2xue-2 - . . . - aOO, (7) 

then it is known that a linear periodic recurrent sequence 
{xi} of elements of GF(p) with period ~“8 - 1 can be 
obtained from the difference equation 

xi = a,x,-, + a2xie2 + **a + a,Bxi-OB (8) 
with an arbitrary nonzero initial condition. This sequence 
is known as a maximal length recurrent sequence (MLRS) 
and exhibits pseudorandom properties. We will refer to it 
as a MLRS generated by PO, since the coefficients in (8) are 
derived from those of PO. Theorem 2: For i, 0 E S, if 8 Ii, ue = ui and 0 = 

(p” - l)/( pa@ - l), then 

AiCY, 8) = A,(y, (i/e)amod(N/e)), 
Bib, 8) = Beh (i/e)~mod(N/e)), 
C;(Y, 8) = Ce((i/e>ymod(N/B), 6). 

The reciprocal polynomial of PO, denoted by P- e, can be 
expressed as 

P-e(X) = (X - tl-“)(X - (ll-‘“) 

. cx _ a-W). . . cx _ a-ep-‘). 

The reciprocal polynomial P- 0 also has degree 00, is primi- 

‘~(0) = Er$ u(k)@. Suppose the coefficient of aik is u(k’). Then 
Ok’ = ikmod N or k’ = (i,@)kmod(N/B). 

Proof: The Ai and B, matrices are used in the design 
of the algorithm (see proof of Theorem 1) to deliver the 
linear forms in u(k)% and v(k)‘s suitable for the multipli- 

=- k Ic:rmtr(a em - w/e mwN/e))) 

=- 1: Ico2r,tr(as.l-“) = w,(y), 

which immediately provides the relation between Ci and 
G 
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tive, and  generates a  MLRS from the difference equation 
x, = a;s,_, + a;xiez + *. * + a&xi- ~B, (9) 

where the coefficients a;, a;, . . . , a’ are picked from the 
polynomial expression for P- e(~), Z., 

p-e(x) = x% - a;xv’ - 4xv2 - . . . - (f,* 

Theorem 3  gives the connection between the MLRS’s 
and  the A,,, B,, and  C, matrices. 

each row of A, is a  MLRS generated by Pe. The  proof for 
Be is similar. To  prove the last part of the theorem, note 
from (5) that 

20*-2 

we(k) = (l/N) c rmtr(aemPek) 
m=O 

Theorem 3: The  rows of A, and  B, are the maximal 
length recurrent sequences (MLRS’s) generated by Pe and  
the columns of C, are MLRS’s generated by P- 0. 

Proof: Consider 
N-l as*- 1 

U(O) = c u(k)@ = c h(a’)j, (10) 
k=O j=O 

where the second expression is obtained by using the fact 
that c? is a  root of Ps. For any j fj is a  linear combination 
(over GF( p)) of the u(k)‘s as the coefficients of Pe are 
from GF(p). Let 

N-l 

fj = kICoRj(k)u(k), Rj(k> E GF(P)* (11) 

and  recall that the trace function is a  linear function. Using 
the polynomial expression for P-, and  the fact that 
p- e(a - ‘) = 0, we have 

a-e0e = 5  a$  - ecoe -I) or 5  u+xe’ = 1. (14) 
I=1 I= 1 

Consider the expression for any k > a, 

/c,ojw,(k - I) = (l/N) 5  .;Z”~2r~tr(asm-e(k-i)~. 
I=1 m=O 

By using the linearity of the trace function and  (14), the 
expression becomes 

,gl a;we(k - 1) = (1/N)2~2r, tr ( 5  +x-~(‘---‘)) 
m=O I=1 

20*-2 

We first show that the sequence of components of the 
vector Rj = [Rj(0), Rj(l), .+. , R,(N - l)] is a  MLRS 
generated by Pe. From (10) and  (1 I), we have 

= (l/N) C r,tr(a-e(k-m)) = tie(k), 
m=O 

N-l N-l a,- 1 

c u(k)mek = c u(k) c ~,~k)(~sY 

which immediately shows that the columns in the Ce matrix 
are MLRS’s generated by the polynomial P- 0  through the 
difference (9). 

To  compute the elements of any row of A,, we would 
generally be  required to express U(8) as a  degree ee  - 1  
polynomial as in (10); express each 6  as a  linear combina- 
tion of u( k)‘s; and  finally, knowing the linear forms in fj’s 
which occur in the mu ltiplication of polynomials of degree 
ae  - 1  (Appendix II), find the required linear forms in 
u(k)‘s by replacing eachfj by an  expression in u(k)‘s. 

However, an  application of Theorems 2  and  3  simplifies 
this procedure to the following steps which constitute a  
new structured design method for convolutions over finite 
fields. 

or 
k=O k=O j=O 

q- 1 

(a’)” = c Rj(k)&. 
j=O 

Since Pe(ae) = 0, from (7) we obtain 
k > a, that 

(a”)” = fJ a[(ay 
I=1 

Combining (13) with (12) yields 
q- 1 9 q!- 1 

(12) 

for any integer 

(13) 

c cwejRj(k) = c &I~)~-’ = c aej c a,Rj(k - Z) 
j=O I=1 j=O I= 1 

or 

Rj(k) = 5  alR,(k - 1). 
I= 1 

Comparing with (8), it is obvious that Rj is a  MLRS 
generated by PO. 

Now AOu gives the linear forms in fi’s used in the 
mu ltiplication U(fl)V(e). This means  that each row of A, 
is a  linear combination (over GF( p)) of the Rj row 
vectors. Since a  linear combination of maximal length 
recurrent sequences generated by the same polynomial is 
again a  maximal length recurrent sequence, it follows that 

Step I: Since the algorithm to be  obtained is data inde- 
pendent,  considering a  particular data sequence u(k) = 0, 
k > 00, we can express fk as fk = u(k), k = 0, 1, . * . ,ee - 
1. Thus, the linear forms in fk’s involved in the mu ltiplica- 
tion of polynomials of degree 00  - 1  (Appendix II) directly 
become the linear forms in u(k)‘s, k = 0, 1, . . * , ee  - 1. 
The  first ue  elements of any row of A,q may, therefore, be  
immediately written down. 

Step 2: The  remaining portion of each row of A,g is then 
completed by using the difference (8) based on  P,g. 

Step 3: Be is also designed using the same procedure. 
Step 4: Equation (5) is evaluated for k = 0, 1, . . * ,ee - 1  

to obtain the first 00  rows of Co. 
Step 5: Each column of C, is then completed by using 

the difference equation (9) based on  P-,. (The MLRS 
generated by P-, can also be  obtained by reading back- 
wards the MLRS generated by P,.) 
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Step 6: Once A,, Be, and C, are obtained for all 8 of the 
type 8 = (p” - l)/(p”@ - l), the matrices Ai, Bi, and Ci 
for other i E S are obtained using Theorem 2. 

Step 7: Finally, the matrices A, B, and C used in the 
bilinear algorithm over GF(p) for convolving u and 2) of 
lengths p” - 1 are constructed through (6). 

IV. CONVOLUTIONS OF FACTOR LENGTHS 

The major drawback of the algorithms developed in the 
earlier section seems to be the restriction of the convolu- 
tion length top” - 1 when the field of constants is GF ( p). 
This is corrected to a great extent in this section where we 
show that essentially the same procedure, as outlined earlier, 
can be used to design convolution algorithms of any length 
N relatively prime to p. 

We first show that given any such N (relatively prime to 
p) we can always find an integer n > 0 such that N is a 
factor of p” - 1. We then demonstrate the simple construc- 
tion of the algorithm of length N from that of length 
p” - 1. 

Lemma 2: If p t N, there exists a positive integer n such 
that N I( p” - 1). 

Proof: Note that pmod N belongs to the set of in- 
tegers less than N and relatively prime to N which form a 
group under the operation of multiplication mod N. Let 
the order of this group be n. The order of any group 
element must then divide n, or (p mod N)” = 1 mod N or 
p” = 1 mod N and thus N ]( p” - 1). 

To construct an algorithm of length N, assume first that 
the algorithm of length p” - 1 has been constructed as 
described in Section III. In other words, the integers 
(0, 1, 2, * * * 9 P” - 2) have been partitioned into sets 
si,> si,9 ’ * ’ as in Section II, S has been defined as S = 
(i,, i2, * - * >, and the relevant matrices Ai,, Ai2, . . . ; 
Bi,, B,,, . . . ; C,,, Ci2, * * . ; i,, i,, * * * E $5 which occur in the 
algorithm of length p” - 1 have been constructed as in 
Section III. 

Let N’ denote (p” - 1)/N and define the set S, as 
5, = {i E SI N’li}. 

The following theorem provides the algorithm for length N. 

Theorem 4: The cyclic convolution w of the sequences u 
and u of length N over GF(pm) can be obtained as 
w = C’(A’u X B’v), where C’ = (N’ mod p)[C$ C$ . . . 1, 
A’ = [A:?, AiT, . . . ]r, and B’ = [Bz!,‘, B;2T, . . . IT; 
i,, i,, * * * E S,. The Ai and B;, i E S, are the matrices 
formed by the first N columns of Ai and Bi, respectively; 
and C;, i E S, are the matrices formed by the first N rows 
of the Ci matrix. 

Proof: We first construct sequences u and v of length 
p” - 1 as E = (u, U, . . . , U) and B = (o, z), . * * , 0). Then it 
is simple to check that vv = u * 5 is also periodic with 
period N, and that 

W = (N’mod p)w. 05) 
Further, the algorithm of length p” - 1 provides 

iv = C(Au x Ba), (16) 

where the terms Aii and Bii can be simplified as Ati = 
[A;, A:, . . . IT ii = [AT, AiT,. . . lTu, where 2 

N’-1 

&(k, j) = c A,(k, j + IN), iES. (17) 
I=0 

Clearly, we have x0 = (N’mod p)Ab. For any nonzero 
i E S, we can find a 8 = (p” - l)/(p”o - 1) such that Q’ 
from P3). From Theorem 3, the rows of A, are the MLRS’s 
generated by the primitive polynomial of IX’. This yields 

Ae(k, j) = tr(pkaej), 08) 

where pk is an element of GF (p”) chosen to satisfy (18) 
for the first n values of j. Further, from Theorem 2, the 
rows of Ai are obtained by sampling those of A, with 
period (i/Q and hence 

A,(k, j) = tr(/3;“). (19) 
Since tr is a linear function, (17) and (19) imply 

&(k, j) = tr ( B;i’~$o’ai’“). (20) 

If aiN f 1, the summation of (Y powers in (20) is 

b N’s - l)/(#’ - 1) = 0. 

On the other hand, if aiN = 1, the same summation is 
N’ mod p. Thus, 

A similar observation may also be made with regard to 
the matrix Bi. The required result then follows directly 
from (15)-(17) and (21) and the fact that the conditions 
i E S and aiN = 1 together are equivalent to a single 
condition i E S,. 

Theorem 4 allows us to design a cyclic convolution 
algorithm for any length N (not divisible by p) from an 
algorithm of length p” - 1 provided NJ( p” - 1). Though 
many values of n may satisfy this condition, practical 
considerations suggest that we choose the smallest such ~1. 
Furthermore, when N itself is of the form p” - 1 as in 
Section III, N’ = 1 and hence, S, = S, A’ = A, B’ = B, 
and C’ = C. Thus, the algorithm design of Section III is 
only a special case of the more general procedure outlined 
in this section. 

V. EXAMPLES 

In this section we demonstrate the application of the 
design method developed in Sections III and IV to con- 
struct certain cyclic convolution algorithms. 

A. Length 1.5 Algorithm over the Field of Constants GF(2) 

In this case, So = {0}, S, = {1,2,4, S}, S, = {3,6,12,9>, 
S, = (5, lo}, S, = {7,14,13, ll}; thus, S = (0, 1,3,5,7}. 
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Let (Y denote the primitive element of GF  (24) satisfying When  8  = 5, us = 2  and  Algorithm B of Appendix II can 
1  + (Y + a4  = 0. The  only B’s of the form 8  = (2” - ,1)/(2f be  used to obtain the first two columns of A, directly. The  
- 1) = 15/(2’ - 1) for some integer 1  in this case are 1  remaining portion of A, can be  filled in by extending each 
(for t = 4) and  5  (for t = 2). When  8  = I, P,(x) = row of A, by the MLRS generated by P,(x) = (x - a’)(~ 
(x - a)(~ - a2)(x - a4)(x - 2) = x4 + x + 1. Since ut - a”) = x2 + x + 1, name ly, 
= 4, using Algorithm D of Appendix II, we obtain the first 
four columns of A, as 1  0  1, 1  0  1, **a . 

Thus 

[ 

101101101101101 
A,=011011011011011.  

110110110110110 1  

F inally, from the symmetry of Algorithms B and  D (with 
I 0  0  0  respect to the x and  y sequences),  we have that the matrix 
0  1  0  0  B equals the matrix A where, A = [A& AT, AT, AT, ATIT, 
1  1  0  0  A, = [1 1  . . * 11. 
0  0  1  0  

A, = 0  0  0  1  ..a . 
To  compute the C matrix we must again begin by 

choosing 8  = 1. Since et = 4, (5) needs to be  evaluated for 
0  0  1  1  k = 0, 1,2,3 to get the first four rows of C,. The  rm’s in (5) 
1  0  1  0  refer to the coefficients of the product polynomial in 
0  1  0  1  

-1 1  1  1  
Algorithm D of Appendix II, and  can be  expressed in 
terms of the mu ltiplications m i. We  now have from (5), 

The  nine rows of A, correspond to m , to m8  of Algo- 6 

rithm D. To  fill up  the remaining portion of A,, we extend 
each row of A, by the MLRS generated by P,(x), name ly, 

w,(k) = i c r,tr(cYk). 
m=O 

We  then obtain 

A, = 

A, = 

and  

100010011010111 
010011010111100 
110001001101011 
001001101011110 
000100110101111 
001101011110001 
101011110001001 
010111100010011 

.llllO  0  010  011010  
Sampling the rows of A, with a  sampling period 3  and  7, in accord with Theorem 2, we have A, and  A, as 

A, = 

100011000110001 
000110001100011 
100101001010010 
001010010100101 
011110111101111 
010100101001010 
101001010010100 
011000110001100 

-110 0  0110  0  0110  0  0  

-111010110010001 
010001111010110 
101011001000111 
000111101011001 
011110101100100 
011001000111101 
111101011001000 
001111010110010 

-110 010  0  01111010 
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The trace function can be shown to have the following Finally, when 8 = 5, us = 2 and (5) needs to be evaluated 
values over GF (24) to get the first two rows of C,. We now obtain from (5) 

tr(a’) = (A: i=3,6,7,9,11,12,13,14; 
otherwise. 

We also have (l/l 5) = 1 in GF (2). Using these results we 
obtain 

2 

Wg(k) = & C rmtr(a5m-5k), 
m=O 

w,(O) = r3 + r6 where tr denotes the function from GF(2”) + GF(2) de- 
= m , + m , + m2 + m3 + m5 + m6 + m7 + m8, fined by tr (j3) = /3 + p2, or 

w,(l) = r, + r4 = m , + m , + m3 + m4 + m7, 
w,(2) = r. + r, + r5 = m , + m2 + m , + m4 + m5, 

tr(l) = 0, tr(a’) = tr(a’O) = 1. 

w,(3) = r. + rl + r2 + r6 = m , + m2 + m3 + m4 + me. Also note that the rm’s in (5) now refer to the coefficients 
Thus, the first four rows of C, are of the product polynomial in Algorithm B of Appendix II, 

1 1 0 1 
-T and can be expressed in terms of the m ,‘s; thus 

1 1 1 0 = 1 0 1 1 w5(0) r,+r,=m,+m,, 

1 1 1 1 
c, = 0 1 1 1 **a . w,(l) = r. + r2 = m , + m ,. 

1 0 1 0 
1 0 0 1 These relations provide the first three rows of C,. The 
1 1 0 0 remaining portion of C, is filled by completing each col- 

-1 0 0 0 umn using the MLRS generated by P- 5(x), which is 
The remaining rows of C, are obtained by simply extend- 
ing each column by the pseudorandom sequence generated *** by the reciprocal polynomial of 1 + x + x4, i.e., 1 + x3 1 0 1, 1 0 1, . 

+ x4. This sequence is 

110101100100011,1101*~*. 
Thus 

r 
l lOIOllOOIOOOllT 
111010110010001 
101100100011110 
111101011001000 

c,=011110101100100. 
101011001000111 
100100011110101 
110010001111010 

-1 0 0 0 1 1 1 1 0 1 0 1 1 0 o- 
Sampling the columns of C, with a period 3 or 7 in accord with (8) immediately provides C, and C, as 

c, = 

and 

c, = 

111101111011110 
101001010010100 
111011110111101 
110001100011000 
011110111101111 
100011000110001 
110111101111011 
100101001010010 

~101111011110111 

T 

10lll lOOOIOOllOT 
111100010011010 
100110101111000 
110001001101011 
000100110101111. 
101011110001001 
111000100110101 
100010011010111 

.l 1 0 1 0 1 1 1 1 0 0 0 1 0 o- 
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Proceeding in this manner,  we obtain 

[ 

1101101  
c5=0 110 110  

1011011 

F inally choosing C, = [ 1  1  . . . l]r we obtain C as C = 
[Co c, c3 c, c51. 

B. Length p  - 1  Algorithm over a  F ield of Constants GF  ( p) 

In this case, for each i Si = {i), aj = 1, and  S = 
al, 2, . * . 9  p  - 2}. The  matrices A, and  B, are 1  X 
(p - 1) matrices whose first elements are 1, from Algo- 
rithm A of Appendix II, and  the remaining elements are 
fill& ;,; 5: the MLRS over GF( p) of period (p - 1) 
generated by P,(x). For other values of i, the Aj or Bi row 
vectors are obtained by sampling A, with a  sampling 
period i. This gives the A and  B matrices. The  C matrix is 
constructed in a  similar fashion, except that P- ,(x) is used 
in its construction. It is easy to show that the (p - 1) X (p 
- 1) A and  B matrices so constructed are Fourier matrices 
and  C, an  inverse Fourier matrix. Thus, the conventional 
approach of computing the convolution through the prod- 
uct of Fourier transforms is a  special case of the general  
technique presented here when the field of constants is 
expanded to contain the Nth roots of unity. 

C. Length 5  Algorithm over a  F ield of Constants GF  (2) 

Since 5]24 - 1  = 15, we may base the length 5  algorithm 
on  the length 15  algorithm of Section V-A. Clearly S, = 
(0,3} and, therefore, using the matrices A,,, A,, CO, C, of 
the length 15  algorithm we obtain the matrices of length 5  
algorithm from Theorem 4  as 

A=B= 1  0  0  0  I 1  0  1  1  

I 

llolooololT 
1000011011 

0  
1011011000 
1110110000 1 

and 

c= I 
,l 1  1  1  1  0  1  1  1  1  
1101110100 
1111010001.  
1100010111 
1001011101 1  

The  three examples presented here illustrate a  wide 
variety of algorithms that may be  generated using the 
procedures of this paper. The  computational complexity of 
these algorithms is investigated in the next section. 

VI. COMPUTATIONALCOMPLEXITY 

It is clear from Sections III and  IV that the construction 
of the algorithm is based on  the algorithms for mu ltiplying 
two a0  - 1  degree polynomials for all possible values of 
0  E S,. But P2) of Section II shows that when N equals or 
divides p” - 1, these ue’s are divisors of IZ. Thus the 
availability of good  degree t - 1  polynomial mu ltiplication 
algorithms for all the divisors t of n  is desirable for the 
application of the technique described. The  mu ltiplicative 
complexity of the new algorithm is also directly dependent  

10110110r  
1  1  0  1  1  0  1  1  . 
01101101 I 

TABLE1 
COMPLEXITYOFCYCLICCONVOLUTIONALALGORITHM 

OVER A FIELD OF CONSTANTSGF(~)  

Length N No. of Mults. M(N) M(W/N 
3 4 1.3333 
I 13 1.8571 

15 31 2.0661 
63 178 2.8254 

255 841 3.2980 
511 2029 3.9707 

4095 18295 4.4676 

TABLE II 
COMPLEX~TYOFCYCLICCONVOLUTIONALALGORITI IM 

OVER A FIELD OF CONSTANTS GF(3) 

Length N No. of Mults. M(N) M(N)/N 
2 2 I 
8 11 1.375 

26 50 1.9231 
80 173 2.1625 

728 2147 2.9492 

TABLE111 
COMPLEXITIESOFCYCLICCONVOLUTIONSOFSOMEFACTOR 

LENGTHSOVERA FIELDOF CONSTANTSGF(~)  

Length N No. of Mults. M(N) M(N)/N 
5 10 2 
9 22 2.4444 

13 55 4.2308 
17 55 3.2353 
21 52 2.4162 
35 130 3.7143 
45 157 3.4889 
51 166 3.2549 
65 280 4.3011’ 
13 289 3.9589 
85 280 3.2941 

117 508 4.3419 
315 1285 4.0794 

upon the complexities of the polynomial mu ltiplication 
algorithms. 

The  field of constants is always a  subfield of the field 
over which the data sequences are defined. We  assume that 
the only time  consuming operation is the product of ele- 
ments of this larger field. Thus, since the matrices A, B, 
and  C contain elements from the field of constants, these 
matrices mu ltiply with vectors without contributing much 
to the overall complexity. The  total complexity of the 
algorithm therefore equals the total number  of mu ltiplica- 
tions one  encounters in the product Au X Bv. From the 
number  of rows in the matrices A or B, we may express the 
total complexity, M(N), of the length N algorithm as 

where R( 1) denotes the mu ltiplicative complexity of degree 
1  - 1  polynomial mu ltiplication. Tables I through IV list 
the values of M(N) for various lengths N and  field of 
constants GF  (2) and  GF  (3). 
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TABLE IV 
COMPLEXITIESOFCYCLICCONVOLUTIONSOFSOMEFACTOR 

LENGTHSOVERAFIELDOFCONSTANTSGF(~) 

Length N No. of Mults. M(N) M(N)/N 

TABLE V 
COMPLEXITYOFCYCLICCONVOLUTIONALALGORITHM 

OVERA FIELDOFCONSTANTSGF(~) 

Length N No. of Mults. M(N) M(N),% 
4 5 1.25 
5 10 2.0 
7 19 2.7143 

10 20 2.0 
13 25 1.9231 
14 38 2.7143 
16 29 1.8125 
20 41 2.05 
28 77 2.75 
40 83 2.075 
52 125 2.4039 
56 155 2.1679 
91 259 2.8462 

104 275 2.6442 
182 518 2.8462 
362 1061 2.9148 

The results of this paper including the technique to 
design the bilinear algorithm remain valid even if the prime 
p is replaced everywhere by a power of p. This increases 
the field of constants and thereby reduces the number of 
multiplications, consistent with the results of [17]. Table V 
lists the complexities of some of the cyclic convolution 
algorithms based on GF (4). By comparing Tables I and V, 
we can see that if the data sequences are over GF(2”) 
(n > 2) then by enlarging the field of constants from 
GF(2) to GF(4) saves approximately 30 percent of the 
multiplications. The practical disadvantage of this enlarge- 
ment of the field of constants is that the matrices A, B, and 
C would now have elements from GF(4) rather than from 
GF(2) and therefore their products with vectors may be 
more time consuming. 

The computational superiority of the results obtained here 
may be appreciated by comparing them with earlier results. 
Reed, Truong, Miller, and Benjauthrit [ 181 have obtained 
cyclic convolution algorithms for data sequences over 
GF(2”). Their algorithm of length 15 over the field of 
constants GF (2) uses 40 multiplications which is almost 29 
percent more than our algorithm of the same length. The 
advantage is clearly due to the fact that our algorithm is 
designed for length 15 whereas theirs is obtained from 
algorithms of lengths 3 and 5. Another method of obtain- 
ing the algorithms over finite fields is to adapt the available 
algorithms over the field of rationals to suit the finite 
fields. For example, reducing every constant in the 
Agarwal-Cooley cyclic convolution algorithms [l] modulo 
2, one may obtain algorithms with field of constants GF (2). 
Using this approach, a cyclic convolution over GF(2) of 
length 63, will thus be evaluated through convolutions of 
lengths 7 and 9, requiring a total of 19 X 22 = 418 multi- 
plications, which is more than double the number of multi- 
plications required in our algorithm. It is, however, true 
that because of the transformation of the constants, the 
algorithms adapted to finite fields might be computa- 
tionally less complex than the original algorithms over the 
rationals. But, it is generally very hard to identify the 
redundant multiplications. Finally, it may be mentioned 

15 21 1.4 
63 123 1.95234 

255 561 2.2 
4095 12201 2.9795 

that the earlier methods rely on constructing the algorithms 
of small lengths using the Chinese remainder theorem and 
obtaining algorithms of large lengths by combining those 
of smaller lengths. Those methods can therefore be used 
only if the given length N is factored into relatively prime 
factors such that algorithm for each factor is available. For 
example, when N = 255 = 17 . 4 . 3, these methods fail 
because an algorithm of length 17 is not available, whereas, 
our methods give this algorithm using only 3.3 multiplica- 
tions per point. 

The computational effort in computing Au, Bv, and Cm 
(where u and v are the data vectors and m is the vector 
Au x Bv) has been neglected so far. However, it is also 
possible to reduce this as well, using the theorems devel- 
oped in this paper, as the following few preliminary results 
show. 

a) For every i E S,, the rows of Ai are MLRS’s over the 
field of constants, GF(p), based on the same primitive 
polynomial of degree n, where n is the smallest integer such 
that Nip” - 1 (Theorem 3). Since only n MLRS’s gener- 
ated by a primitive polynomial of degree n may be linearly 
independent over GF ( p), it follows that only n rows of Ai 
are linearly independent. Therefore to compute Aiu, it is 
sufficient to compute the product of these n rows with u 
and then obtain the remaining components of the product 
vector from these n products. To illustrate this, consider 
matrix A, of Example 1 of Section V with N = 15. The 
only rows of this matrix which are linearly independent 
over GF (2) are rows 1,2,4, and 5. Denote the product A,u 
by the vector a, with components al(i), i = 1,2, . . . ,9. To 
compute the a, vector, we may first evaluate a,(l), a,(2), 
a,(4), and a,(5) and then obtain the remaining elements as 
a,(3) = a,(l) + a,(2), a,(6) = a,(4) + a,(5), a,(7) = a,(l) 
+ a,(4), a,(8) = a,(2) + a,(5), and a,(9) = a,(7) + a,(8). 

The initial computation of a,(l), a,(2), a,(4), and a,(5) is 
also straightforward. Since the corresponding rows of A, 
are MLRS’s over GF(2) from the same polynomial, they 
have [N/2] = 8 l’s each. Rows 1 and 2 have matching l’s 
at exactly 4 positions; rows 1, 2, and 3 have matching l’s at 
exactly 2 positions; rows 3 and 4 have exactly 4 matching 
l’s, etc. These matching positions may be exploited to 
reduce the total number of additions. 

b) If for some i E S,, iI N, then all the rows of that Ai 
are periodic with a period N/i (Theorem 2). Thus to 
multiply Aj and u, we may first add every N/ith compo- 
nent of u and then multiply the compressed u with the 
nonperiodic portion of Ai. Thus, for the matrix A, of 
Example 1 of Section V, 3 divides N = 15 and hence 
A,u = A<E, where AI is the matrix of the first five columns 
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of A, and  U is a  vector defined by 
u(i) = u(i) + u(i + 5) + u(i + lo), i = O ,l, **a ,4. 

Remarks a) and  b) also apply to the matrix B. To  
simplify the product Cm, we may use similar principles. 

c) For any i E S,, the columns of C are MLRS’s based 
on  the same primitive polynomial. If n  is the smallest 
integer such that N ] p” - 1, then any row of Ci can be  
expressed as a  linear sum (over GF( p)) of at most n  
immediately previous rows. The  linear relation is the dif- 
ference equation based on  the m inimal polynomial of (Y- ‘. 
To  illustrate this, consider matrix C, of Example 1  of 
Section V. It is based on  the m inimal polynomial 1  + x3 + 
x4, and  hence it may be  verified that any k th row of C, 
(k > 4) is equal  to the sum over GF  (2) of the (k - 4)th 
and  (k - 1)th rows of C,. This means  that the product 
C,m, (where m , is that portion of m  which mu ltiplies C,) 
can be  computed by first evaluating only the first four 
components and  then calculating the remaining compo- 
nents through one  addition each. 

d) If i E S, and  iI N, then the rows of Ci are periodic 
with period N/i. Hence the product C,m, is also periodic 
with the same period. 

Application of these principles generally results in a  
smaller number  of additions in the algorithm. The  algorithm 
for cyclic convolution of length 5  over GF(2) derived as 
Example 3  of Section V, for example, has an  additive 
complexity of only 27. 

VII. APPLICATION TO THE DECODING OF 
REED-SOLOMON CODES 

Decoding of Reed-Solomon codes over GF(2”) in an  
efficient manner  calls for the computation of a  discrete 
Fourier transform (DFT) of length N’ = 2” - 1  over the 
field GF(2”) [18]. The  standard method of implementing 
the DFT through the fast Fourier transformation (FFT) 
may not, however, be  suitable in this case because N’ may 
not be  factorizable into a  sufficiently large number  of 
factors.3 

In particular, if N’ is a  prime, one  cannot construct the 
required DFT algorithm by combining the algorithms of 
smaller lengths. The  only efficient method of computing 
such DFT’s of prime lengths N’ is by relating them to the 
cyclic convolution of length N’ - 1  as pointed out by 
Rader [20]. 

Thus, if N’ is prime, the DFT, X, of the length N’ 
sequence, x, is obtained in GF  (2”) as 

N’-1 

i=O 

x(g N’-l-j)=~(o)+~(j), j=O,l,...,N’-2, 

where w is the cyclic convolution of the length N’ - 1  

3When N’ is factored as N’ = r, r2 . r,, the FFT  requires M, = N’. 
(r, + r, + + rk - k) multiplications. If rk is further factored as r, = 
s,sz then the FFT  will require M2  = N’(r, + r, + + r, _, + s, + s2 
- (k + 1)) multiplications. Since M, - M T  = N’(r‘ - s, - s1 + 1) = _  , 
N’(s,s, - s, - s2 + 1) > 0, we have i, < n?,. Thus, the larger the num- 
ber of factors, the more efficient the FFT  is. 

TABLE VI 
COMPLEXITY OF THE DISCRETE FOURIER TRANSFORM 

OF PRIME LENGTH N’ = 2” - 1 OVER GF (2”) 

Multiplicative Complexity 
n Length N’ M  M/N’ 

2 3 3 l .OQOO 
3 7 12 1.7143 
5 31 93 3.OcOO 
7 127 534 4.2047 

13 8191 54 885 6.7006 

sequences u  and  v defined as 

u(i) = x(g’mod  N’) 
and  

v(j) = &-‘-‘, i=O,l, ..f , N’ - 2, 

(Y being a  primitive element of GF  (2”) and  g, the generator 
of the mu ltiplicative group of integers (1,2, . . . , N’ - l}. 

Note that the computation of u  from x, or X from w is 
only a  permutation (and an  addition in the second case) 
which can be  predetermined and  programmed. The  compu- 
tational effort involved thus lies in the evaluation of the 
cyclic convolution w from u  and  v. This cyclic convolution 
is of length N’ - 1  = 2” - 2  and  can be  performed as a  
two-dimensional convolution, since 2” - 2  factors into rel- 
atively prime factors as 2” - 2  = 2N where N = 2”-’ - 1. 
The  cyclic convolution algorithm of length 2  is given in 
Appendix III and  the algorithms of lengths N = 2” -i - 1  
are derived in the ma in body of this work. The  mu ltiplica- 
tive complexity of the resultant DFT algorithm is sum- 
marized in Table VI. 

A comparison of these results with those of Reed et al., 
[ 181  shows that our methods, when applicable, produce 
algorithms of lower mu ltiplicative complexities. In particu- 
lar, for n  = 5, (length 31  DFT over GF(32)), Reed et al., 
require 120  mu ltiplications ([18, table I]), whereas, our 
algorithm requires only 93. 

VIII. CONCLUSION 

Most of the efficient convolution algorithms available in 
the literature are too specialized and  are not applicable to a  
wide variety of lengths. In addition, the available algo- 
rithms have been  designed with specific fields in m ind. If 
the user prefers to work over a  different field, the adapted 
algorithm may not be  optimal from a  computational com- 
plexity standpoint. 

In this work, we have developed a  structured design 
approach for obtaining convolution algorithms over finite 
fields. The  algorithms obtained are bilinear in nature, a  
dense distribution of lengths is available and  the computa- 
tional complexity is dependent  on  the field of constants. 
The  bilinearity permits the convolution algorithm to be  
accomplished via transformations by three rectangular 
matrices much in the manner  of Agarwal and  Cooley. 
However, the design method presented here allows the 
matrices to be  determined in an  easy systematic fashion 
without resort to symbolic man ipulation or tedious calcula- 
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tions. Only those lengths divisible by the field characteris- 
tics are not available. This represents a much m ilder re- 
striction on algorithm utility. Furthermore, the design itself 
takes into account the underlying field and, therefore, 
represents a more optimal approach. 

The algorithm design uses certain notions from the tradi- 
tional view of a convolution as a product of Fourier 
transforms as opposed to the more recent formulation in 
terms of the Cook-Toom algorithm and the multidimen- 
sional techniques. The new algorithm is based on a number 
of results which reveal that the bilinear transformation 
matrices may be partitioned into submatrices, each of 
which corresponds to a specific cyclotomic set (Theorem 
1). It is also shown that only a few of these submatrices are 
“fundamental” and the rest may be determined from these 
(Theorem 2). In addition, each fundamental submatrix is 
intimately related to a maximal length recurrent sequence 
(MLRS) (Theorem 3). Thus, the bilinear transformation 
matrices are constructed by filling the rows and columns of 
the submatrices by MLRS’s whose initial conditions are 
determined by small degree polynomial multiplication al- 
gorithms. The computational complexity of the resultant 
algorithm is determined by the complexity of the small 
polynomial multiplication algorithms involved, the un- 
derlying field, and the overall length. Examples of the 
procedure are presented for lengths 5 and 15 algorithms 
over GF (2”), and the lengthp - 1 algorithm over GF ( p). 

APPENDIX I 

Proofs of Properties PI)-P5) of Section II 

With N = p” - 1, consider the correspondence of the integer 
set (0,1,2;.., N - 1) with the elements of GF(p”) as i c* ai, 
where (Y is a primitive element of GF (p”). It is obvious from the 
manner in which the sets S, are defined, nonzeroj,, j, E S, yield 
conjugate & and & ([16, p. 1011). Thus ui equals the number of 
conjugates of cxi and i E S if and only if it is the smallest power 
of ix amongst all the conjugates of (Y~. 

For any integer tin, GF(p’) c GF(p’) ([16, th. 4.4181) and 
the element a8 generates the multiplicative group of GF(p’) 
when 0 = (p” - l)/( pf - 1). Every nonzero element of GF (p’) 
is of the form a” for positive integer I’s. Since all the conjugates 
of L? belong to GF(p’), it is clear that for any conjugate aJ, 

j > 8. Hence 0 E 5. Moreover, 01’ generates the multiplicative 
group of GF(p’) implying that it should have t conjugate, i.e., 
o, = t, as stated in P2). 

For any nonzero i E s, a’ must belong to some smallest 
GF(pr) c GF (p”), in the sense that cxi does not belong to any 
subfield of GF (p’). Then with 0 defined as above, (Y~ = (Y” or 
i = 0 . 1 for some integer I. Moreover, cx’ does not belong to any 
subfield of GF (p’) implies that it has t conjugates, i.e., ui = t = 
cr,. This proves P3). 

P4) and P5) follow directly from these arguments and Pl) is 
obvious. 

APPENDIX II 

Multiplication of Polynomials of Small Degrees 

Algorithms B and C are taken from [19] and Algorithm D, is 
derived from Algorithm B by multidimensional techniques, as 
suggested in [ 191. These algorithms are valid over any field. 
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Algorithm A Degree: 0, f0 . g, = r, 
Computation: direct 1 multiplication. 

Algorithm B Degree: 1, (fO + f,z) . (go + g,z) 
= r0 + r,z + r2z2 

Computation: 3 multiplications. 
Let m,= f0 . g, 

ml =fl .gl 
m2 = (f0 + fl) . (go + gl), 

then r,=m, 
r, = -m, - m, + m2 
r, = m,. 

Algorithm C Degree: 2, ( f0 + f,z + f2z2) 
.(&To + g,z + g2z2) 

= r, + r,z + r2z2 + r3z3 + r4z4 
Computation: 6 multiplications. 
Let mo=fo.go 

ml =fl .gl 
m2 =f2. g2 

m3 = (f. + fl) . (go + gl) 
m4 = (fl + f2> . (b7 + g2> 

m5 = (f2 + fo) f k2 + go>, 

then r,=m, 
r, = -m, - m, + m3 
r, = -m, + m, - m2 + m5 
r, = -m, - m2 + m4 
r, = m2. 

Algorithm D Degree: 3, (f. + f,z + f2z2 + f3z3) 
.ko + g,z + g2z2 + w3> 

= r, + r,z + . . . + r,z6 
Computation: 9 multiplications. 
Let m,=f,.g, 

ml =fl . gl 
m2 = (f. + fl) . (80 + gl) 
m3 =f2. g2 

m4 = f3 ’ g3 
m5 = (f2 + f3> . (g2 + g3> 

m6 = (f0 + f2>. k0 + g2) 

m 7 = (f, + f3). (ET, + g3) 

m8 =(f0 +fl +f2 +f3) 

. (go + g, + g2 + g3) 
then ro=mo 

r, = -m, - m, + m2 
r,= -m,+m,-m,+m, 
r, = m. + m, - m2 f m3 + m4 - m5 

- m6 - m, + m, 
r, = -m, i- m3 - m4 t m, 
r, = -m3 - m4 + m5 
r6 = m4. 

APPENDIX III 

Cyclic Convolution of Length 2 over a Field of Characteristic 2 

w=u*v 
Computation: 
Let mo= (u(O) + u(l)) . u(0) 

m, = u(O) . (u(0) + u(l)) 
m2 = ~(1) . (40) + u(l)), 

then w(0) = m. + m2 
w(1) = m. + m,. 
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Group Codes for the M-Receiver Gaussian Broadcast 
Channel 

CHARLES DOWNEY AND JOHN K. KARLOF, MEMBER,  IEEE 

Abstract -The M-receiver Gaussian broadcast channel is a communica- 
tion system in which a single codeword is transmitted over M  distinct 
Gaussian channels and is received by M  receivers. The receivers have no 
contact with each other and the channels have different signal-to-noise 
ratios. The purpose of this correspondence is to define the concept of 
group code for the M-receiver Gaussian broadcast channel and study 
permutation codes as a special case. Such a code is generated by an initial 
vector x, a group G  of orthogonal n-by-n matrices, and a sequence of 
subgroups of G. 

I. INTRODUCTION 

The M-receiver Gaussian broadcast channel is a  model of a  
communication system in which a single codeword is transmitted 
over M  distinct Gaussian channels and is received by M  receivers. 
The receivers have no contact with each other and the channels 
have different signal-to-noise ratios. According to the signal-to- 
noise ratio of its channel, each receiver decodes a different 
amount of information from the received word. 

In 1972, Cover [4] introduced the concept of broadcast channel 
coding theory. Bergmans [I] established the capacity region of the 
two-receiver Gaussian broadcast channel. In these two papers 
random coding techniques were used. Recently, Heegard, 
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dePedro, and Wolf [5] defined permutation codes for the two- 
receiver Gaussian broadcast channel and Downey and Karlof [2] 
defined group codes for the same channel. Heegard et al. ex- 
amined the goodness of their codes in terms of error probabili- 
ties, while Downey and Karlof used the minimum distance be- 
tween codewords. 

The purpose of this correspondence is to define the concept of 
group code for the M-receiver Gaussian broadcast channel and 
study permutation codes as a special case. Such a code is gener- 
ated by an initial vector x, a  group G of orthogonal n-by-n 
matrices, and a sequence of subgroups of G. The subgroups are 
used to partition the codewords into subsets, called clouds. For 
each channel we form a different set of clouds. The codewords in 
the same cloud represent the same message to that channel’s 
receiver. We  state conditions on the subgroups and the initial 
vector that are needed to generate good codes (in terms of 
minimum distances). We  also find “optimal initial vectors” for 
certain sequences of subgroups of the groups used to generate 
variant II permutation group codes in [2], [5], and [6]. 

II. M-RECEIVER GROUP CODES 

The source in Fig. 1. contains a library of s equally likely 
codewords one of which is transmitted every T seconds over all 
M  channels. Each channel has a different signal-to-noise ratio 
with the lower channel numbers corresponding to the higher 
ratios. Receiver 1 decodes the received word as one of s = t, 
messages, receiver 2 decodes the received word as one of t, 
messages (t, > tZ), and receiver 3 decodes the received word as 
one of tj messages (t, > t, > t,); in general, receiver i decodes 
the received word as one of ti messages (t, > t, > . . . > t,). 
Therefore, according to the signal-to-noise ratio of the channel, 
each receiver extracts a different amount of information from the 
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