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ABSTRACT

As process technologies scale into nanometer region, new
opportunities as well as challenges arise. Some emerging
nanotechnology devices that are promising candidates to
replace the CMOS technology are particularly suitable for
threshold logic implementations. While most conventional
Boolean gates, including AND, OR, NOT, NAND, and NOR,
can be implemented by a single threshold gate, exclusive-OR
(XOR) is an important exception. This represents a signifi-
cant obstacle, since XORs are essential building blocks for
all finite field arithmetic operations over GF(2𝑚), which in
turn are used in various applications. In this paper, we pro-
pose efficient architectures with finite fan-ins for XORs based
on threshold gates, and our architectures greatly outperform
architectures obtained by first expressing an XOR based on
other Boolean gates and then using their threshold logic im-
plementations. Our work in this paper is novel in two aspects.
First, in addition to two-input XORs, we also investigate
multi-input XORs, because they are suitable for threshold
logic implementation and are very instrumental in finite field
arithmetic operations. Second, our architectures differ from
previous implementations of XORs based on threshold logic
in that our architectures assume bounded fan-in, which is
critical to the reliability to nanotechnology devices.

Index Terms— Nanotechnology, threshold logic, finite
field

1. INTRODUCTION

According to the International Technology Roadmap of Semi-
conductors (ITRS) [1], the conventional CMOS technology
has great challenge in further scaling. Although new materi-
als and device structures can keep the CMOS scaling for the
next several years, the CMOS scaling would reach the fun-
damental limits eventually. Some emerging nanotechnology,
such as resonant tunneling diodes (RTDs), quantum cellular
automata (QCA), and single electron transistors (SETs), have
nanoscale structure and are promising candidates to replace
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the CMOS technology [2]. These new nanotechnology de-
vices promise to have smaller feature size, higher speed and
lower power consumption. Even at system level design they
present two advantages. Firstly they easily realize threshold
gates (see Fig. 1). Threshold gates are often more power-
ful than Boolean gates, and can implement complex Boolean
functions with a single gate [3]. Thus the hardware com-
plexity of larger systems implemented using nanotechnology
tends to be a lot smaller. Secondly, the outputs of the thresh-
old gates built with nanotechnology are self-latched. This
provides a natural way of pipelining these systems in most
signal processing applications.

Several applications dealing with real-valued signals have
already been realized using nanotechnology-based threshold
gates [4–7]. However, there is an equally important class of
signal processing applications using finite fields, such as error
correcting coding and cryptography [8]. Unfortunately, the
applications using finite fields have not been realized using
nanotechnology.

The main obstacle for the nanotechnology-based imple-
mentations of applications of finite fields of characteristic
two, denoted as GF(2𝑚), is that they require exclusive-ORs
(XORs) to realize all arithmetic operations over GF(2𝑚).
Unlike most conventional Boolean gates such as AND, OR,
NOT, NAND, and NOR, XOR cannot be realized as a single
threshold gate. Thus the translation of a finite field architec-
ture to nanotechnology merely by replacing a conventional
gate with an appropriate combination of threshold gates be-
comes overly complex.

In this paper we address this obstacle by investigating ef-
ficient architectures of XORs based on threshold gates. The
work in this paper is novel in two aspects. First, based on the
CMOS technology, two-input XORs are the focus, whereas
in this work multi-input XORs have been investigated. This
is motivated by the applications as well as the properties of
threshold gates. Many finite field arithmetic operations over
GF(2𝑚), such as the polynomial basis multiplication [9,10] or
the Massey-Omura (MO) multiplication [11], require multi-
input XORs. Furthermore, multi-input XORs can take full
advantage the more powerful threshold gates. Second, while
the implementation of XORs based on threshold logic was in-
vestigated theoretically (see, for example, [3, 12]), these pre-
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vious works usually did not account for the fan-in, whereas
our work assumes a fan-in bound 𝐵. The fan-in is a criti-
cal factor for both reliability and performance. The reliability
of the nanotechnology threshold gates decreases sharply with
the fan-in. Also, threshold gates with large fan-ins tend to
have slower switching speeds.

The main results in this paper are two classes of thresh-
old architectures with bounded fan-ins of an 𝑛-input XOR.
The first, called the Boolean class, expresses the XOR in
a two-stage NAND circuit implemented through threshold
gates. The second, referred to as the majority class, also has a
two-level implementation and uses only generalized majority
gates in the first level. Since one can implement an 𝑛-input
XOR as a tree of two-input XORs, each of which can be
expressed based on other Boolean gates and implemented by
their threshold gates, we refer to this approach as direct con-
version and use it as a basis for comparison. It turns out the
architectures obtained by direct conversion are the same as
Boolean class architectures with 𝐵 = 3. Hence, our Boolean
class architectures provide a variety of tradeoffs between
hardware and time complexities beyond the direct conversion
architectures. Our analysis results also show that the major-
ity class performs better than the Boolean class as well as
the architectures by direct conversion in both the hardware
and time complexity, because the majority class takes better
advantage of the more powerful nature of threshold gates.

The rest of the paper is organized as following. In Sec. 2,
we introduce threshold logic and a nanotechnology device,
resonant tunneling diode. Sec. 3 presents our threshold archi-
tectures for XORs. Sec. 4 computes and compares the com-
plexities of various designs.

Fig. 1. (a) Threshold gate computing 𝑓 =
[𝑥1, 𝑥2, 𝑥3; 1,−1, 2; 2]; (b) RTD implementation.

2. BACKGROUND

2.1. Threshold logic

For 𝑛 ≥ 1, a threshold function 𝑓 with 𝑛 inputs 𝑥1, 𝑥2, ⋅ ⋅ ⋅ , 𝑥𝑛

is a Boolean function whose output is determined by [3]

𝑓(𝑥1, 𝑥2, ⋅ ⋅ ⋅ , 𝑥𝑛) =

{
1 if

∑𝑛
𝑖=1 𝑤𝑖𝑥𝑖 ≥ 𝑇

0 otherwise
(1)

where the real value 𝑤𝑖 is called the weight of 𝑥𝑖 and the
real value 𝑇 , the threshold. In this paper we represent this
threshold function as [𝑥1, 𝑥2, ⋅ ⋅ ⋅ , 𝑥𝑛;𝑤1, 𝑤2, ⋅ ⋅ ⋅ , 𝑤𝑛;𝑇 ],
and for simplicity sometimes denote it as 𝑓 = [x;w;𝑇 ],
where x = (𝑥1, 𝑥2, ⋅ ⋅ ⋅ , 𝑥𝑛) and w = (𝑤1, 𝑤2, ⋅ ⋅ ⋅ , 𝑤𝑛).
The physical entity realizing a threshold function is called
a threshold gate. Fig. 1(a) illustrates a threshold function
𝑓 = [𝑥1, 𝑥2, 𝑥3;𝑤1 = 1, 𝑤2 = −1, 𝑤3 = 2;𝑇 = 2], which
corresponds to a Boolean expression 𝑓 = (𝑥1 + 𝑥2) ⋅ 𝑥3,
where “+” and “⋅” denote OR and AND, respectively.

For the Boolean functions NOT and 𝑛-input AND, OR,
NAND, and NOR, each corresponds to a single threshold
function: [𝑥;−1; 0] is the NOT gate, [x; 1, 1, ⋅ ⋅ ⋅ , 1;𝑛] and
[x; 1, 1, ⋅ ⋅ ⋅ , 1; 1] are 𝑛-input AND and OR, respectively,
[x;−1,−1, ⋅ ⋅ ⋅ ,−1; 0] and [x;−1,−1, ⋅ ⋅ ⋅ ,−1; 1−𝑛] equal
𝑛-input NAND and NOR, respectively. Unfortunately, an
XOR cannot be expressed as a single threshold function.

Certain threshold functions are of particular interest. An
𝑛-input threshold function with all unit weights and a thresh-
old ⌊(𝑛 + 1)/2⌋ is called a majority function. A threshold
function with all unit weights but an arbitrary threshold is
called a generalized majority function. Henceforth we denote
a generalized 𝑛-input majority gate with a threshold 𝑘 by 𝑡𝑛𝑘 .

2.2. Resonant tunneling diode (RTD) technology

Among the new nanotechnologies, RTD is one of the most
promising (see, e.g., [5]). Hence, in this work we focus on
RTD implementations of threshold gates. RTD is a diode
with resonant tunneling structure. It has a negative differen-
tial resistance, i.e., if one increases voltage across it, current
through it initially increases and after reaching a certain peak,
drops down to zero again. If two RTDs are tied in series and
a control voltage across them is swept from low to high, then
at the end, the RTD with the higher peak current bears all the
applied voltage. The peak value of the current depends on the
area of the RTD. By replacing each of these RTDs by multiple
RTDs in parallel, and selectively adding them into the circuit
with input variables, one can change the effective area of the
top and bottom RTDs. The voltage at the junction of the two
sets of the RTDs is thus decided by the comparison of the two
sets of areas. Fig. 1(b) shows an RTD implementation of a
threshold function 𝑓 = [𝑥1, 𝑥2, 𝑥3; 1,−1, 2; 2], where 𝐶𝑙𝑘 is
the control voltage, the threshold is composed of two RTDs,
and the output composed of a load RTD and a driver RTD.

The fan-in of a threshold gate in RTD nanotechnology
needs to be bounded for both reliability and performance.
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Fig. 2. Threshold implementation of two-input XOR gate (a)
SOP-type (b) NOR-type and (c) NAND-type. All three use
threshold gates with a fan-in of only two.

Fig. 3. Majority class implementation of 𝑠 = 𝑥1⊕𝑥2 ⋅ ⋅ ⋅⊕𝑥𝑛.

First, it is known that the reliability of an RTD threshold gate
decreases sharply with the fan-in due to noise, fluctuation of
supply voltage, and manufacture deviations (see [7] and the
references therein). Second, the switching speed of RTDs de-
pends on the ratio of load to drive peak currents [13]. The
closer the ratio is to one, the slower the RTDs switch. Since
a large gate with more inputs is more likely to produce a ratio
closer to one than a small gate, it also suggests that the fan-in
of an RTD threshold gate be bounded. A maximum fan-in of
seven inputs was suggested for RTDs [5].

3. MULTI-INPUT XOR: THRESHOLD
IMPLEMENTATION

In this section, we first present a traditional manner of imple-
menting an 𝑛-input XOR, and then propose new designs.

3.1. Direct conversion

Although an XOR cannot be expressed as a single thresh-
old function, one can first express an XOR based on other

Boolean gates and then use their threshold logic implementa-
tions. We refer to this approach as direct conversion.

One can implement an 𝑛-input XOR through a binary tree
of two-input XORs. A two-input XOR 𝑠 = 𝑎 ⊕ 𝑏 can be ex-

pressed as 𝑠 = 𝑎�̄� + �̄�𝑏, 𝑠 = �̄�+ �̄�+ 𝑎+ 𝑏, or 𝑠 = 𝑎�̄� �̄�𝑏,
and implemented as shown in Fig. 2. Among the three imple-
mentations in Fig. 2, the NAND-type implementation has the
smallest hardware complexity and is therefore chosen in our
implementation.

3.2. XOR with a small number of inputs

We consider two classes of architectures without considering
the fan-in bound, which is valid when the number of inputs to
an XOR is sufficiently small.

3.2.1. Boolean class of implementations

We can use Boolean algebra to express an 𝑛-input XOR based
on two levels of NANDs. Since NANDs can be implemented
as threshold gates, this provides a two-level implementation,
called the Boolean class implementation.

Let 𝑠 denote the XOR of 𝑥1 𝑥2, . . ., 𝑥𝑛. One can express
𝑠 in a sum-of-product (SOP) form. The NAND implemen-
tation of such a form is obtained simply by using a NAND
to combine the literals in each product term and combining
the outputs of these NANDs with another NAND. For ex-
ample, a three-input XOR 𝑠 = 𝑎 ⊕ 𝑏 ⊕ 𝑐 can be expressed

as 𝑠 = 𝑎𝑏𝑐 𝑎𝑏𝑐 𝑎𝑏𝑐 𝑎𝑏𝑐. Note that there are 2𝑛−1 product
terms in the SOP expression of an 𝑛-input XOR. Since the last
threshold gate has inputs from each of these terms, this imple-
mentation is possible only when the fan-in bound 𝐵 satisfies
𝐵 ≥ 2𝑛−1.

3.2.2. Majority class of implementations

It is also possible to devise a two-level implementation of an
𝑛-input XOR so that all the gates in the first level are gener-
alized majority gates [3, 12]. For an 𝑛-input XOR 𝑠 = 𝑥1 ⊕
𝑥2⊕⋅ ⋅ ⋅⊕𝑥𝑛, let the generalized majority functions 𝑡𝑛𝑖 ’s with
even threshold 𝑖’s be the intermediate variables. Then, 𝑠 =
[𝑥1, 𝑥2, ⋅ ⋅ ⋅ , 𝑥𝑛, 𝑡

𝑛
2 , 𝑡

𝑛
4 , ⋅ ⋅ ⋅ , 𝑡𝑛2⌊𝑛

2 ⌋; 1, 1, ⋅ ⋅ ⋅ , 1,−2,−2, ⋅ ⋅ ⋅ ,−2; 1], which can be implemented as shown in Fig. 3. This
implementation consists of two stages. The first stage is to
compute how many pairs of ones there are in the inputs. The
second stage subtracts all pairs of ones from 𝑛. The result
is either one (odd number of ones) or zero (even number of
ones).

The threshold gate of the second stage has the maximum
fan-in amongst all the gates and it equals ⌊3𝑛/2⌋. Thus these
designs are useful only when 𝐵 ≥ ⌊3𝑛/2⌋.

3.3. XOR with a large number of inputs

When the number of inputs for an XOR exceeds the fan-in
bound, the implementations in Sec. 3.2 cannot be used di-
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Fig. 4. 𝑛-input XOR realized as a tree of 𝐵′-input XORs,
where 𝑛 = 𝐵′𝑙 for some 𝑙.

rectly. Instead, an 𝑛-input XOR is realized using a tree of
𝐵′-input XOR gates as shown in Fig. 4. For given 𝐵 and 𝑛,
the height of the tree 𝑙 is chosen to be the smallest number
satisfying 𝑛 ≤ 𝐵′𝑙, and 𝐵′ is chosen so that no gate in the
tree exceeds the fan-in bound 𝐵.

If the Boolean class implementation is used for the 𝐵′-
input XORs, then from the results in Sec. 3.2.1, 𝐵 ≥ 2𝐵

′−1,
which gives 𝐵′ = 1+ ⌊log2 𝐵⌋. Alternatively, if the majority
class implementation is used, then from Section 3.2.2, 𝐵 ≥
⌊3𝐵′/2⌋. This gives 𝐵′ = ⌊(2𝐵 + 1)/3⌋.

4. COMPLEXITY OF MULTI-INPUT XOR

We now investigate the hardware and time complexities of
various designs presented in Section 3. Let a Boolean func-
tion of 𝑛 variables be realized as a network of 𝑘 threshold
functions 𝑓𝑖(x) = [x𝑖;w𝑖;𝑇𝑖] with x𝑖 = (𝑥𝑖

1, ⋅ ⋅ ⋅ , 𝑥𝑖
𝑛𝑖
) and

w𝑖 = (𝑤𝑖
1, ⋅ ⋅ ⋅ , 𝑤𝑖

𝑛𝑖
) for 𝑖 = 1, ⋅ ⋅ ⋅ , 𝑘. The total area of the

implementation, including the sum of areas of all the RTD
gates as well as the load and the driver RTDs, is given by
𝐴(𝑛) =

∑𝑘
𝑖=1(

∑𝑛𝑖

𝑗=1 ∣𝑤𝑖
𝑗 ∣+ ∣𝑇𝑖∣) + 2𝑘. The total number of

gates in the design is given by 𝐺(𝑛) = 𝑘. In addition, because
the devices in nanotechnology are so small, the area occupied
by interconnects between different devices is significant and
hence needs to be accounted for. The number of interconnects
𝐼(𝑛) is given by 𝐼(𝑛) =

∑𝑘
𝑖=1 𝑛𝑖. Finally, we compute the

latency 𝐿(𝑛) of a design by identifying the longest path from
the input to the output.

4.1. Complexity of an XOR with a small number of inputs

The following two lemmas evaluate the complexity of our two
classes of XOR designs in Sec. 3.2.

Lemma 4.1. The complexity of an 𝑛-input Boolean class
XOR with 𝑛 ≤ 1 + ⌊log2 𝐵⌋ is given by 𝐴(𝑛) = 3(𝑛 +
2)2𝑛−2 + 1, 𝐺(𝑛) = 2𝑛−1 + 1, 𝐼(𝑛) = (𝑛 + 1)2𝑛−1, and
𝐿(𝑛) = 2.

Proof. Since in this design there are only two stages, 𝐿(𝑛) =
2. There are 2𝑛−1 𝑛-input gates in the first stage and one
gate with 2𝑛−1 inputs in the second stage. Hence, 𝐺(𝑛) =
2𝑛−1 + 1 and 𝐼(𝑛) = 𝑛2𝑛−1 + 2𝑛−1 = (𝑛+ 1)2𝑛−1.

The weights of all the inputs to all the gates in this design
are either 1 or -1. The threshold of a gate implementing a
product term with 𝑖 variables complemented is 1 + 𝑖 − 𝑛.
Note that 𝑖 takes all possible odd values and there are

(
𝑛
𝑖

)
distinct product terms corresponding to an 𝑖. The threshold of
the gate in the last stage is 0. Thus the area of the design is
𝐴(𝑛) = 3(𝑛+ 2)2𝑛−2 + 1.

Lemma 4.2. The complexity of an 𝑛-input majority class
XOR with 𝑛 ≤ ⌊(2𝐵+1)/3⌋ is given by 𝐴(𝑛) = ⌊𝑛/2⌋⌊(3𝑛+
10)/2⌋+𝑛+3, 𝐺(𝑛) = 1+⌊𝑛/2⌋, 𝐼(𝑛) = (𝑛+1)⌊𝑛/2⌋+𝑛
and 𝐿(𝑛) = 2.

Proof. For this design, there are ⌊𝑛2 ⌋ gates with 𝑛 inputs in
the first stage and one gate with 𝑛+ ⌊𝑛2 ⌋ inputs in the second
stage. Hence, 𝐺(𝑛) = 1 + ⌊𝑛/2⌋, 𝐼(𝑛) = (𝑛+ 1)⌊𝑛/2⌋+ 𝑛
and 𝐿(𝑛) = 2.

All the gates in the first stage have a weight of 1 while 𝑛
inputs of the gate in the second stage have weights 1 and the
remaining ⌊𝑛/2⌋ inputs have a weight of −2. The threshold
of the 𝑖-th gate, 1 ≤ 𝑖 ≤ ⌊𝑛/2⌋, has a weight 2𝑖, while the
gate in the second stage has a weight of 1. Thus one gets
𝐴(𝑛) = ⌊𝑛/2⌋⌊(3𝑛+ 10)/2⌋+ 𝑛+ 3.

According to Lemma 4.2, the area and interconnect com-
plexities of an 𝑛-input XOR increase quadratically with 𝑛.

4.2. Complexity of an XOR with a large number of inputs

When the number of inputs to an XOR is large, one uses the
designs in Sec. 3.3. In this case the XOR is implemented
through a tree of 𝐵′-input XORs as illustrated in Fig. 4. For
mathematical convenience, assume that 𝑛 = 𝐵′𝑙 for some 𝑙.
That is, the tree is complete with height 𝑙 = log𝐵′ 𝑛. Thus the
implementation involves (𝐵′𝑙− 1)/(𝐵′− 1) 𝐵′-input XORs.

Since 𝐵′ depends explicitly on the fan-in bound 𝐵, we use
𝐵 as a parameter in the complexities. For example, instead of
𝐴(𝑛), we will now use the notation 𝐴(𝑛,𝐵).

If the 𝐵′-input XORs use a Boolean class implementa-
tion, then as shown in Sec. 3.3, 𝐵′ = 1 + ⌊log2 𝐵⌋. Using
the complexity from Lemma 4.1 for each 𝐵′-input XOR, the
complexity of an 𝑛-input XOR with the fan-in bound 𝐵 is
thus given by

𝐴(𝑛,𝐵) = (𝑛−1)[3(⌊log2 𝐵⌋+3)2⌊log2 𝐵⌋−1+1] / ⌊log2 𝐵⌋,
𝐺(𝑛,𝐵) = (𝑛− 1)[(2⌊log2 𝐵⌋ + 1)] / ⌊log2 𝐵⌋, and

𝐼(𝑛,𝐵) = (𝑛− 1)[(⌊log2 𝐵⌋+ 2)2⌊log2 𝐵⌋] / ⌊log2 𝐵⌋.
The latency of this network, 𝐿(𝑛,𝐵) = 2⌈log⌊1+log2 𝐵⌋ 𝑛⌉.

If on the other hand, the 𝐵′-input XORs use a major-
ity class implementation, then as shown in Sec. 3.3, 𝐵′ =
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⌊(2𝐵 + 1)/3⌋. Using the complexity from Lemma 4.2 for
each 𝐵′-input XOR, the complexity of an 𝑛-input XOR is
thus given by

𝐴(𝑛,𝐵) =
𝑛− 1

⌊ 2𝐵−2
3 ⌋ (⌊

𝐵

3
⌋2+⌊2𝐵 + 16

3
⌋⌊𝐵

3
⌋+⌊2𝐵 + 10

3
⌋),

𝐺(𝑛,𝐵) =
𝑛− 1

⌊ 2𝐵−2
3 ⌋ ⋅ (⌊

𝐵

3
⌋+ 1), and

𝐼(𝑛,𝐵) =
𝑛− 1

⌊ 2𝐵−2
3 ⌋ [⌊

2𝐵 + 4

3
⌋⌊𝐵

3
⌋+ ⌊2𝐵 + 1

3
⌋].

Finally, the latency in this case is given by 2⌈log⌊(2𝐵+1)/3⌋ 𝑛⌉.
Note that all three parameters characterizing the hardware
complexity, 𝐴(𝑛,𝐵), 𝐺(𝑛,𝐵) and 𝐼(𝑛,𝐵), are linearly pro-
portional to 𝐵 and for a constant 𝐵, have an order 𝑂(𝑛).

In Tab. 1, we give the closed-form expressions of area,
numbers of gates and interconnects, and latency of three
classes of 𝑛-input XOR with respect to different 𝐵.
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For a small 𝑛, the fan-in bound is not an issue and an XOR
can be implemented in two stages. The area and the num-
bers of gates and interconnects of the Boolean class XORs
are given by exponential functions of 𝑛. In contrast, the area
and number of interconnects of the majority class XORs are
given by quadratic functions of 𝑛.

For a large 𝑛, an 𝑛-input XOR is decomposed into a tree
of 𝐵′-input XORs to satisfy the fan-in bound. The area,
numbers of gates and interconnects, and latency of the three
classes of XORs are compared in Figs. 5, 6, 7, and 8, respec-
tively, where the expressions under the conditions 𝐵 ≤ 2𝑛−1

and 𝐵 ≤ ⌊ 3𝑛2 ⌋ in Tab. 1 are depicted for 𝐵 = 3, 4, ⋅ ⋅ ⋅ , 7.
Though the closed-form expressions in Tab. 1 are derived
for some discrete values 𝑛 = 𝐵′𝑙, we assume the expres-
sions are valid for all 𝑛 with 𝐵 ≤ 2𝑛−1 or 𝐵 ≤ ⌊ 3𝑛2 ⌋. All
three classes of XORs have linear complexity. The direct
conversion has the same hardware complexities and latency
as the Boolean class with 𝐵 = 3, which implies that the
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Table 1. Comparison of hardware complexities and latency for two classes of 𝑛-input XORs.
Class Area Number of Gates Number of interconnects Latency

Direct conversion 13(𝑛− 1) 3(𝑛− 1) 6(𝑛− 1) 2⌈log2 𝑛⌉

Boolean
𝐵 > 2𝑛−1 3(𝑛+ 2)2𝑛−2 + 1 2𝑛−1 + 1 (𝑛+ 1)2𝑛−1 2

𝐵 ≤ 2𝑛−1
𝑛−1

⌊log2 𝐵⌋ ⋅ [3(⌊log2 𝐵⌋ 𝑛−1
⌊log2 𝐵⌋

𝑛−1
⌊log2 𝐵⌋ (⌊log2 𝐵⌋ 2⌈log⌊log2 2𝐵⌋ 𝑛⌉

+3) ⋅ 2⌊log2 𝐵⌋−1 + 1] ⋅(2⌊log2 𝐵⌋ + 1) +2)2⌊log2 𝐵⌋

Majority
𝐵 > ⌊ 3𝑛

2
⌋ ⌊𝑛

2
⌋⌊ 3𝑛+10

2
⌋+ 𝑛+ 3 ⌊𝑛

2
⌋+ 1 (𝑛+ 1)⌊𝑛

2
⌋+ 𝑛 2

𝐵 ≤ ⌊ 3𝑛
2
⌋

𝑛−1

⌊ 2𝐵−2
3

⌋ (⌊
𝐵
3
⌋2 + ⌊ 2𝐵+16

3
⌋ 𝑛−1

⌊ 2𝐵−2
3

⌋ ⋅ (⌊
𝐵
3
⌋+ 1)

𝑛−1

⌊ 2𝐵−2
3

⌋ [⌊
2𝐵+4

3
⌋⌊𝐵

3
⌋ 2⌈log⌊ 2𝐵+1

3
⌋ 𝑛⌉⋅⌊𝐵

3
⌋+ ⌊ 2𝐵+10

3
⌋) +⌊ 2𝐵+1

3
⌋]

Boolean class includes the direct conversion as a special case
and hence provides more tradeoffs between hardware and
time complexities. From Fig. 5, both the Boolean class and
majority class XORs have the same area when 𝐵 = 3, the
majority class XOR is more area efficient than the Boolean
class XOR when 𝐵 = 4, 5, 6, 7. From Figs. 5, 6, and 7, the
numbers of gates and interconnects of the majority class XOR
are smaller than those of the Boolean class XOR for any 𝐵.
For example, when 𝐵 = 7, the area and the numbers of gates
and interconnects of Boolean class XOR are about twice of
those of majority class XOR with the same number of inputs.
For any given 𝐵, the latency of the majority class XOR is
smaller than that of the Boolean class XOR. In summary, for
𝐵 = 3, 4, ⋅ ⋅ ⋅ , 7, the majority class XOR is more efficient
than the Boolean class XOR.

5. CONCLUSION

Implementations of XORs are critical to all finite field arith-
metic operations over GF(2𝑚). In this paper, we focus on effi-
cient XOR implementations in RTD nanotechnology and pro-
pose two classes of threshold architectures of 𝑛-input XORs
with a fan-in bound 𝐵. By a detailed analysis, we show that
the proposed majority class outperforms the Boolean class
implementation as well as the direct conversion in terms of
both hardware and time complexities. The proposed architec-
tures also account for the fan-in issue of RTD nanotechnol-
ogy, which is crucial for both the reliability and performance.
In future work, we plan to extend our work to efficient archi-
tectures of finite field multiplications in nanotechnology.

6. REFERENCES

[1] [Online], “International technology roadmap for semi-
conductors,” available at http://www.itrs.net/Links/
2009ITRS/Home2009.htm.

[2] D. Goldhaber-Gordon, M. S. Montemerlo, J. C. Love,
G. J. Opiteck, and J. C. Ellenbogen, “Overview of na-
noelectronic devices,” Proceedings of the IEEE, vol. 85,
no. 4, pp. 521–540, April 1997.

[3] S. Muroga, Threshold Logic and Its Applications. New
York: WILEY-INTERSCIENCE, 1971.

[4] V. Annampedu and M. D. Wagh, “Reconfigurable ap-
proximate pattern matching architectures for nanotech-
nology,” Microelectronics, vol. 38, pp. 430–438, 2007.

[5] C. Pacha, U. Auer, C. Burwick, P. Glosekotter, A. Bren-
nemann, W. Prost, F. Tegude, and K. F. Goser, “Thresh-
old logic circuit design of parallel adders using resonant
tunneling devices,” IEEE Trans. VLSI Systems, vol. 8,
no. 5, pp. 558–572, October 2000.

[6] C. Pacha and K. Goser, “Design of arithmetic circuits
using resonant tunneling diodes and threshold logic,” in
Proc. of the 2nd Workshop on Innovative Circuits and
Systems for Nanoelectronics, Delft, NL, Sep. 1997, pp.
83–93.

[7] Y. Sun and M. D. Wagh, “A fan-in bounded low delay
adder for nanotechnology,” in Proc. of 2010 NanoTech
Conf., vol. 2, Anaheim, CA, July 2010, pp. 83–86.

[8] B. Sunar and C. L. Koc, “Mastrovito multiplier for all
trinomials,” IEEE Trans. Computers, vol. 48, no. 5, pp.
522–527, May 1999.

[9] E. D. Mastrovito, “VLSI architectures for computations
in Galois field,” Ph.D. Dissertation, Linkoping Univer-
sity, 1991.

[10] J. Deschamps, J. L. Imana, and G. D. Sutter, Hard-
ware Implementation of Finite-Field Arithmetic. The
McGraw-Hill Companies, 2009.

[11] J. L. Massey and J. K. Omura, “Computational method
and apparatus for finite field arithmetic,” US Patent No.
4,587,627, to OMNET Assoc., Sunnyvale CA, Washing-
ton, D.C.: Patent and Trademark Office, 1986.

[12] R. C. Minnick, “Linear-input logic,” IRE Trans. Elec-
tronic Computers, vol. EC-10, no. 1, pp. 6–16, March
1961.

[13] K. Maezawa, “Analysis of switching time of
monostable-bistable transition logic elements based on
simple model calculation,” Jpn. J. Appl. Phys., vol. 34,
no. 2B, pp. 1213–1217, February 1995.

136


