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Abstract — This paper shows that by adding a small number of strategically placed edges, one can lower the
diameter of de Bruijn graphs. The enhanced de Bruijn graph of dimension n on alphabet of size k has k™
vertices, a node degree bounded by k*> and a diameter of |n/2]. We obtain a simple routing algorithm and
show that the average distance between a pair of nodes in the new graph is about 50% less than the original
de Bruijn graph. We prove that the new graph is isomorphic to a direct product of two de Bruijn graphs.
We also discuss embedding of de Bruijn graphs and Hypercubes into the new graph.

1 Introduction

There has been a considerable interest in de Bruijn graphs for applications ranging from
distributed hash tables and peer-to-peer networks to parallel machines and optical architec-
tures [1-4]. In this paper we show that by adding a small number of strategically placed
edges, one can lower the diameter of the graph substantially. The new graph, which we call
as the Enhanced de Bruijn Graph (EDB) retains all the good properties of the de Bruijn
graph such as the constant node degree and ability to map many algorithmic structures
including maximal binary trees and cycles of all lengths. We obtain the routing strategy
and the diameter of the E DB and show that it is isomorphic to a product of two de Bruijn
graphs. It is also possible to map a standard de Bruijn graph on EDB. In addition, we give
an embedding of a hypercube in the EDB and characterize it by its dilation and congestion.

A generalized directed de Bruijn graph DB (k,n) has k™ vertices, each labeled with a
string of n symbols from the set Z, = {0,1,...,k — 1}. n 1s called the degree of the

de Bruijn graph. A vertex (e;_1,€n_2,-..,€1,€0), €; € Z of DB (k,n) is connected to all
vertices (€, 2,€, 3,...,€1,€0,%), £ € Zg. Clearly, the node degree of DB (k,n) is at most



k. A generalized bidirectional de Bruijn graph DB(k,n) uses the same set of vertices as

%
DB (k,n). It has all the edges of DB (k,n) and in addition, has edges from any vertex
(én-1,€n 2,...,€1,€9) to all vertices (y,e, 1,€n 2,...,€1), Yy € Z. Thus the edges in both

DB(k,n) and DB (k,n) connect the same pairs of vertices, but in the latter, they are bidi-
rectional.
We now define the two new graphs which form the subject of this paper. The directed

enhanced de Bruijn graph EDB (k,n) is defined on the same set of vertices as DB (k,n), but

with a connectivity as follows. A vertex (e,_1,€,—2, ...,€1,e0) EEDB (k,n) is connected to
n? vertices (€n—2,€n—3, - - -, €[n/2|s Ys €ln/2|-2; - - - €0, L), for T,y € Z.

Similarly, the bidirectional enhanced de Bruijn graph EDB(k,n) is defined as a graph
which has the same vertices as the graph DB(k, n), but with each vertex (e, 1,€e, 2,...,€1,
eo) € EDB(k,n) connected to 2n? vertices (e,-2,€n-3,---,€n/2, Y, €ln/2|—2,- - -, €0, &) and
(z, en—1,€n—2,---,€[m/2],Y> €[m/2]-1,- - -, €1), for all 0 <z, y < k.

Note that edges in both EDB (k,n) and in EDB(k,n) connect the same pair of nodes, but
in_)the latter’s case, they are bidirectional. They both have a bounded node degree and have
DB (k,n) and DB(k,n) respectively as their subgraphs. This implies that any algorithms
using the original de Bruijn graphs can run on these graphs without any performance loss.

In the rest of the paper, we let £ = 2, i.e., the set of alphabet over which the vertex labels
are defined is limited to {0,1}. This has the important practical implication of limiting the
node degree to 4 for the directed graph and to 8 for the bidirectional graph. However, most
of the results obtained herein can be extended to any k.

2 Routing and diameter

Routing strategy and diameter are important properties of any interconnection network.
A lower diameter and a good routing strategy imply lower communication delays in the peer-
to-peer networks as well as g} the parallel computers utilizing the network. When k = 2,
each of the 2" vertices in EDB (k,n) has an n-bit binary label and has edges to at most
four other vertices. We now provide a simple routing from vertex vy = (ap_1,Gpn_2,-- -, Go)
to vertex vy = (bp_1,bn_2,...,b9). Let z; denote the vertices along the path. Then the
following algorithm provides a path from v; to vs.

1. Let o = v; and 7 = 0.

2. Let T; = (cn—la Cpn—92y---, Co).
Go to the node i1 = (Cn—2, Cn=3,- - -, Cln/2]s bn—1—is Cln/2] =2, - - - , C0, DT j21—1-i)-

3. If ;41 = vo, then the path is complete.
Otherwise increment 7 by 1 and go back to step 2.



As an illustration, consider EDB(2,6). To go from (asay...ag) to (bsbs...by) the path
is: (asaqazasa1a9) — (agazbsaiagbe) — (aszbsbyagboby) — (bsbsbsbabiby). Similarly, In another
network, EDB(2,7), the path is: (agasasazasaiag) — (asasazbearapbs) — (asa3bsbsanbsbs)
— (a3bgbsbsbsbaby) — (bebsbabsbabyiby).

Note that the path is complete when the destination is reached and one does not have
to do all the [n/2] hops. But clearly the maximum distance between any pair of vertices

—
of EDB(2,n) is [n/2]. Further, the distance between vertices (00...0) and (11...1) is
exactly [n/2]. Therefore we have the following result.

—
Theorem 1. The diameter of EDB (2,n) is [n/2].

For EDB(2,n), similar path can be worked out, but one may be able to shift in either
direction. Consequently one has

Theorem 2. The diameter of EDB(2,n) is |n/2].

In case of EDB(2,n), it is also possible to get a shorter path than the one that is shown
here by comparing the source and destination label strings and then using a set of left shifts
followed by a set of right shifts and then doing a few more left shifts. But for most practical
applications, such a complicated strategy does not pay off.

3 Mappings

Mapping of one graph on another is important for several reasons. Firstly, matching
the algorithm structure to the network architecture minimizes communication overheads. In
addition, if a well known topology can be mapped on a new architecture, then all the algo-
rithms developed for the known topology may be quickly translated for the new ar(@)ecture.
With this in mind, we provide three results in this section. We show that the EDB (2,n)
and EDB(2,n) are isomorphic to products of de Bruijn networks. In addition, a hypercube
with 2" vertices may be mapped to EDB(2,n) with a dilation bounded above by [n/4].

Theorem 3. The enhanced de Bruijn graphs are isomorphic to direct product of de Bruijn
graphs. In particular,

— — —
EDB(k,n) = DB(k, [n/2])xDB (k, |n/2]).
EDB(k.n) = DB(k, [n/2]) x DB(, |n/2)).
EDB(2,n) = DB(2 [n/2))xDB(2, [n/2])
EDB(2,n) = DB(2,[n/2]) x DB(2, [n/2))

Proof. We prove only the first of these egl)livalences. Oth(;,r proofs are similar. To show
the isomorphism between EDB (k,n) and DB (k,[n/2])xDB (k,|n/2]), define a mapping



6 :EDB (k,n) — DB (k, [n/2])x DB (k, |n/2]) as

¢(en—1,---,€0) = (En—1,--,€[ns2)) X (€[ns2)—1,- - - €0)-

OE) can easily show that the mapping ¢ is one-to-one and onto. Further, any edge in
EDB (k,n),

(enfla €n—2;---,€1, 60) - (en72: €n—3;---,€n/2), Y, €n/2]-25-- -5 €0 CL'), T,y € Zk
— —
corresponds to the following edge in DB (k, [n/2])xDB (k, |n/2]):

((anl, Cp—2y .-y GLn/QJ), (eLn/ijla ..., 61, 60)) —
(en—Qa €n—3,---,€[n/2]s y)a (e|_n/2j—2’ .-+, €0, 33)), T,y € Zk:

— — —
Thus the two graphs EDB (k,n) and DB (k, [n/2]|)xDB (k,|n/2]) are isomorphic. i

On the other hand, normal generalized de Bruijn network, DB(k,n), can also be mapped
on EDB(k,n) as the following theorem shows.

Theorem 4. One can embed the DB(k,n) in EDB(k,n) with unit dilation, load and con-
gestion.

Proof. Vertices of both DB(k,n) and EDB(k,n) are n bit strings made up from symbols
in Z,. We map vertices with same labels to one another and show that all the edges of
the DB(k,n) are still present in EDB(k,n). Consider an edge (8W,Wa) of DB(k,n),
where o, 8 € Z, and W € Z'. On the other hand, each edge of EDB(k,n) has the form
(BU~V,UsVa) for o, B,7,0 € Zy, U € Z,"?171 and V e Z,"271. Note that different
values of a and ¢ provide the different edges from vertex SU~YV. By choosing only those
edges for whom 0 = 7, one can see that the chosen edges of EDB(k,n) have the form
(BU~V,U~V ). Finally, by representing string UyV by W € Zp~!, these edges take exactly
the same form as the edges of a DB(k,n). i

We now show an embedding of the Hypercube into EDB(2,n).

Theorem 5. There exists an embedding f of hypercube of dim n, H,, into EDB(2,n) with
dilation less than or equal to [n/4].

Proof. Define mapping ¢ of the vertices of H, into EDB(2,n) as follows. If vertex
(Tn_1%n_2...%9) € H, has even parity, then map it to a vertex of EDB(2,n) of the same
label. Otherwise, map it to vertex obtained by rotating the label right by [n/4] bits, i.e., to
label T, 41-1 ... %1Z0 . . . T[pn/a1+1%[n/47- Clearly this vertex mapping is one-to-one.



Consider an edge (u,v) in H,. The binary strings v and v must be different in exactly
one bit. Since their parity is different, they would be mapped to EDB(2,n) vertices whose
labels are rotated versions of one another by [n/4] rotations except they also differ in one
bit. For example, for n = 9, if u and v differ in bit 1, then the vertices to which they are
mapped will look like @ = (agaragasasazasaiag) and v = (ay@iapasaragasagas). Recall that
in EDB(2,n), all edges look either like left shifts of labels except that the bits at positions
0 and |n/2| can be assigned arbitrary binary values; or as right shifts with bits at positions
[n/2] — 1 and n — 1 assigned arbitrary binary values. The single bit in which images of
rotated v and v differ cannot be more than [n/4] away from the positions where the bits
are changed in an edge. Thus one can lay out a path between @ and v of a length not more
than [n/4]. |

One can prove that the mapping presented in Theorem 5 has a vertex congestion bounded
by 2[n/4]([n/4] — 1) and an edge congestion of max{1,2[n/4]([n/4] —1)}.

4 Average distance

As shown in Sec. 2, the diameter of the extended de Bruijn network EDB(2,n), is |n/2]
which is less than half of the diameter n of the standard de Bruijn network DB(2,n). But
in many applications, this worst distance is not as important as the average distance. We
have therefore compared the average distance between any pair of vertices in the enhanced
network EDB(2,n) with the standard de Bruijn network DB(2,n), and the product of de
Bruijn networks PDB(2,n) as defined in [5].

For each network, two curves are plotted corresponding to the directed and bidirectional
networks. It can be seen that as expected, the average distance in a directional graph is larger
than its bidirectional counterpart. The Average distance of enhanced de Bruijn networks is
much superior to that of other networks. For example, in directional networks of degree 14
(n = 14), while de Bruijn and product de Bruijn networks have average distances of 12.36
and 10.84 respectively, the enhanced de Bruijn network has an average distance of only 6.58.
For bidirectional networks, these numbers are 11.52, 9.30 and 6.26 respectively.

As a final comment, the enhanced de Bruijn networks presented here admit the same kind
of algebraic models based on finite fields presented in [6]. Using these models, one would be
able to explore the structural properties and mappings of these networks to a much greater
depth.
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Figure 1: Average distances in (Standard, Product and Enhanced) de Bruijn graphs.
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