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A New Algorithm for the Discrete Cosine
Transform of Arbitrary Number of Points

MEGHANAD D. WAGH anD H. GANESH

Abstract—An alternate algorithm to compute the discrete cosine
transform (DCT) of sequences of arbitrary number of points is pro-
posed. The algorithm consists of partitioning the DCT kernel into
submatrices which by proper row and column shuffling and negations
can be made equivalent to the group tables (or parts of them) of ap-
propriate Abelian groups. The computations pertaining to the sub-
matrices can be carried out using multidimensional cyclic convolutions.
Algorithms are also developed to perform the computations associated
with the submatrices that are parts of larger group tables. The new
algorithms are more versatile and generally better in terms of the
computational complexity in comparison with the existing algo-
rithms.

Index Terms—Computational complexity, cyclic convolution,
discrete cosine transform.

1. INTRODUCTION

HE discrete cosine transform (DCT) defined by Ahmed
et al. [1} in 1974 has recently found a number of appli-
cations in the area of digital image processing {2]-[8]. The
DCT approximates the optimal Karhunen-Loeve transform
better than most other orthogonal transforms including the
discrete Fourier transform (DFT) {1], [8], [9]). However, the
utility of a transform is governed not only by its optimality but
also by its computational simplicity and therefore there have
been several attempts in recent years to find efficient algo-
rithms for the DCT [10]-[13].
The DCT of an N-point sequence y(i), i =0,1,--- ,N—1
is defined as [1]

¥(0) = ‘—f— "g'o' »0),

Y(j)=':>5o' MGy, =12 N=1, (1)

where M(j, i) = (2/N) cos(j(2i + 1)w/2N).

We restrict ourselves to real data sequences. Furthermore,
since a scaling of every transform component by a constant
factor does not alter its applicability, we ignore the factor
(2/N) in M(j, i) and compute Y(0) as 1/4/2 (»(0) + y(1)
+---+y(N-1)).

Among all the methods available to compute (1), those
proposed in [11]-[13] appear to be best for various sequence
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lengths. When N is a power of 2, the algorithm [11] computes
DCT directly in N logy N — 3N /2 4 4 real multiplications and
3N/2 (loga N — 1) + 2 real additions. The procedures of [12]
and [13], on the other hand, compute DCT through a DFT of
real data. It is assumed here that two real L-point DFT’s are
computed through one complex L-point DFT and L complex
additions [14], and that the complex DFT is implemented
through the WFTA [15]. Each real L-point DFT then requires
Mw(L) real multiplications and Ay (L) + L real additions
where Mu(L) and Ay (L) denote the number of multiplica-
tions and additions, respectively, in Winograd's algorithm [15]
of length L. The DCT algorithm of [12] applicable for even
N, calls for a real N point DFT followed by (N/2 — 1) complex
multiplications, thus requiring a total of My (N) + 2N — 4
real multiplications and Ay (N) + 2N — 2 real additions. The
algorithm of [13], applicable for arbitrary NV, requires the
evaluation of the real part of a real 2/V-point DFT followed by
N real multiplications. It thus involves My (2N) + N real
multiplications and Ay/(2N) + N real additions.

In this paper, a new DCT algorithm based on the short-
length cyclic convolutions is proposed. This algorithm is gen-
erally more efficient than the algorithms mentioned earlier and
is applicable to sequences with arbitrary number of points.

Section H of this paper presents the required group theoretic
fundamentals and briefly reviews the earlier work in this di-
rection. The DCT algorithms are constructed in Section 1V
using the theoretical background developed in Section II1. The
construction is illustrated throughout with an algorithm of a
10-point DCT. Finally, the computational complexity of the
algorithm developed is analyzed and compared with that of
the conventional algorithms {11]-[13] in Section V.

1. GROUP TABLES AND TRANSFORM COMPUTATION

In this paper we will be concerned with Abelian groups of
positive integers relatively prime to NV and less than N under
the operation of multiplication modulo MV for integer N's. The
group and the group operation will be denoted by 4(/N) and
®. The inverse of g will be denoted by ©g, ng will mean g @
g® - -ntimes,andheg=hd(0g).g.hed.

Example 1: The integers {1,3,7,9,11,13,17, 19, 21, 23,
27,29, 31, 33, 37, 39] from a group 4(40) under the operation
of multiplication modulo 40. In this group, 17 @ 37 = 629 mod
40=29,9® 11 = 99 mod 40 = 19, etc. Similarly, ©13 = 37
because 37 ® 13 = 1, ©21 = 2] because 21 ® 21 = |, etc.//

The structure of 4(V) is fully determined by the value of
N. In general, one has the following results (see [16, Theorems
111.2.m and 111.2.p]).
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1) A(ry-ra) == A(ry) X A(rs) whenged (r), ry) = 1, where
=~ denotes isomorphism and X, the direct product of
groups.

2) A(p") =~ C(p—1)p=-t when p is an odd prime and Cg
denotes a cyclic group of order R.

3) AQ27) = Cy X C-2if n 2 3, A(2) ={1}and 4(22) =
C,.

Example | (Cont’d.): A(40) ~ A(8) X A(5) = C3 X C5
X Ca. !/

Furthermore, if A(N) 2 C,, X Cpy X - - - X C,,. it is obvious
that one can find subgroups in 4(N) that are isomorphic to
Cny. Cay - 7 -, Cp, such that the group A(N) is an internal di-
rect product of these subgroups. Any element of 4(/V) can then
be expressed uniquely as a sum of the elements of these
subgroups. The subgroups then are called the splitting
subgroups.

Example 1 (Cont'd.): A(40) = {1, 19} X {1, 21} X {1, 3,9,
27} where it is easy to verify that the three subgroups are cyclic
groups of orders 2, 2, and 4,

Note:19@®19=1,21021=1,3803=9,903=27,27
® 3 = landany # € A(40) can be obtainedash =g, ® g, ®
g23=gi1g.g3mod 40 where g1 € {1, 19}, g2 € {1,21}and g3 €
{1,3,9,27}. Forexample,17= 190 1 ©3,31=19621 @9,
21=1@218l,etc. /

One canindex a sequence U(i) of lengthN=ny-ny-- - n,
with reference to any group G = C,, X Cpy X -+ - X C,,. Let
a, denote the generator of C,,,, i.., {(a;) = Cp, 1 <t <r.Then
a sequence component may be interchangeably referred to as
u(i),i e {0,1,---, N — l}or u(g) g € G where for some i),
i, i, (0<ii<=m-—1),g=(a1®ia;® - ®i,a, and
i has the unique representation i = iynan3 - - - n, + isn3ng - - n,
+ - tin,+ i,

For example, a sequence u(i) of length 18 will be indexed
with reference to the group C3 X C3 X C3 = (a) X {(b) X {(c)
as, u(0), u(c), u(b), u(b @ c), u(2b), u(2b & c), u(a), u(a &
Adou(@adb)u(adbec)u(a® 2b), -, u(Qa® 26 ®
c).

We now define a generalized convolution with respect to an
Abelian group G [17]. Index the sequences u and v by the el-
ements of G. Then their convolved sequence w is given by

w(h) = 3 u(ge(heyg).
ge G

It has been shown earlier [18] that this convolution with re-
spect 10 G ¢ Gy, X Cpy X - - - X G, can be computed through
W =U * V where U, V, and W are r-dimensional arrays de-
fined as

U(ilr g 757, ir) = u(ilal ® izaz - irar).
V(i iz, - i) =v(ha) @ a, & -~ @ ia,),

(3)
0<i;=n —1,1 =1 =rand *denotes an r-dimensional cy-
clic convolution. Note that each of U, ¥, and W has |G| points.
Using Agarwal-Cooley algorithms [19] this convolution thus
can be evaluated in M, « M - - - M, multiplications where M,
is the number of multiplications required for a cyclic convo-
lution of length ,. Obviously, when G is a cyclic group, the

W(il- i21 T, 'r) = w(ilal ® l"_)ﬂz e o irar)-
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generalized convolution is identical to the usual cyclic convo-
lution. Convolution with respect to G can sometimes be used
to multiply a matrix and column vector as the following the-
orem of [18] shows.

Theorem 1: Consider the computation of Y(j) = Z;c 4M(J,
i)y (i), j € B. If there exists a group G and the functions ¥,:G
— B, Y9G — A;98,,6,:G — {1, —1}and f:G — @, the set of
complex numbers, such that

i) ¢, and ¥, are one-one and onto,

i) M(1h,Yag) = 01(h)ox(g)f(h @ g). V hge G,
then Y 1h) = 8,(h)w(h), h € G where w is the convolution
with respect to G of the sequences u and v defined as u(g) =
Sf(g). v(g) = 6:(6g)yv(¥2(0 g)). g € G.

Proof: Refer to [18]. /!

[1l. GENERALIZED CONVOLUTION OF SEQUENCES
WITH REDUNDANCIES

Sometimes it might not be possible to find G, ), ¥, etc.,
satisfying the conditions of Theorem 1. Fortunately, in DCT
computation, whenever this happens, index sets 4 and B can
be extended to find a suitable group and the functions. Theo-
rem ! can then be used to compute the DCT as a convolution
over a larger group G. This is proved in Theorem 2 of this
section. The extensions of sequences however, introduce re-
dundancies which may be exploited to reduce the computa-
tional complexity as shown in Theorems 3 and 4.

Consider a group G containing an order 2 element . The
set of coset representatives of {1, af in G will be denoted by
Go

Example 2: A(50) = {1,3,9,27,31, 43, 29,37, 11, 33, 49,
47,41,23,19,7,21,13, 39, 17} and contains a = 49. Then G,
=11, 3,9, 27, 31, 43, 29, 37, 11, 33}. (Note that G, is not a
group.) /

Theorem 2 (Extension of Theorem 1): If a group G and
functions ¥1:Go — B, ¥2:G, — A; 6,, 65:G, — {1, —1}and f:G
~—+ @ exist such that,

i) ¥, Y2 are one-one and onto,

ii) f(g®a)=/(g).ge G, and

iii) M(1h, ¥2g) = 81(h)oxg)f(h @ g), V h, g € G, then,
Y(¥rh) = 6,(h)w(h), h € G,, where w is the convolution with
respect to G of the sequences v and v defined as

u(g) =/(g)/2.g € Gandv(g) = dx(g')y(Y2¢'). g€ G
where
g =96gifoege G,
=ao6gifogd G,.

Proof: Extend the functions ¥y, ¥», 6;,and 8, to G as, ¥ (g

® o) =18, ¥2(g ® @) =8,8,(g ® @) = di(g) and dx(g @
@) = 03(g), g € G,. Then index sets B and A get extended to
B u B’ and 4 u A’, respectively, where

B={Yiglge Ga). B ={Viglge G.g ¢ Gd}
A=Yglge Gl A’ ={Yglge G g ¢ Ga}

These extended index sets and functions satisfy the require-
ments of Theorem 1 giving the stated result. /!
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Often, one comes across situations in which conditions i) and
iii) of Theorem 2 are satisfied and in place of ii) one has

iy fg@a)=-/(g). g€G.
Procedure of Theorem 2 can then still be used to compute ¥
but for the redefinition of the sequence v as

v(g) = 0a(g)02(g")y(¥28"). g€ G

where g’ = ©g,0,(g) = 1,if6g e Goand g’ = @ © g, 04(g)
= —] otherwise.

Note that now, v(g @ a) = —v(g), g € G, whereas in
Theorem 2,v(g ® a) = v(g). g€ G.

Theorem 3: Let a € G be an order 2 element such that u(g)
=u(g ® a),v(g) =v(g ® a), Vg € G. Then their convolu-
tion w can be computed as a multidimensional cyclic convo-
lution of patterns with only |G|/2 points each.

Proof: Onecanexpress Gas G = Con X Cpy X Cpy X -+ - X
C,, where a € Can. Then in (3), one has U(iy, iy, - - - i,) = U(iy
+ 2n-|' iz. cee, ,") V(ih ,'2’ . ,i,) = V(i| + 2n-|. ,'2' cee
ir)

0<sih<2m'-1,0=5i=<n-1, 2<t=r.

Consequently,

Wiy ia, -, 0= Wi+ 27 i, -+ 0y)
and W =2.U sV

where U’, V7, and W” are identical o U, V, and W, respectively,
except that their first index i) varies only from 0 to pLut Il
Thus W can be computed as an r-dimensional cyclic convo-
lution of two patterns with 27! X n; X n3 X - - - X n, points.
/i

Example 3: Convolutionof u = (05723105723 1) and
v=(223460223460) with respect to C4 X C3. Then from

(2) and (3)
0 2 2 2 4 2 4
v=1}s 3 s 3. ¥=12 6 2 6|
71 7 1 303 0
Therefore,
0 2 : 2 4
U=1s5 3. V=12 ¢
1 30
and
43 57 86 114
W=2U«V' =2.-155 331 =1]110 66]}.
46 72 92 144

Finally,
86 114 86 114
W={110 66 100 66
92 144 92 144
and
w=1{86 110 92 114 66 144 86 110
92 114 66 144}

Note that the computation of the convolution was effected
through U’ * ¥’ where each U’ and V” has hdlf the number of
points of those of U and V. //

Theorem 4: Let a € G be an order 2 element such that u(g)
= —u(g ® a),v(g) = —v(g ® a), V g € G. Then the number
of operations required to evaluate their convolution with re-
spect to G can be considerably reduced.

Proof: Proceeding as in the earlier proof, one now has

Ui iy - - ) = ~Uli 4+ 277V 0y, -0 i)

V(i iy - - i) = =V + 274 iy, i)
0<i£2"1=1,0Z2i,25n—-1, 2Z51<r. (4
Thus, W(iy, iy, -, 0,y = =W(i; + 2771, iy, -+, i) and one
needs to compute Wonlyfor0 <i; <2"!'-=1,0<i, <n —

1,2 <t < r. The use of fast algorithms [19] to compute the
r-dimensional cyclic convolution of U and V calls for a linear
transformation of these patterns. It can be verified that for U,
V satisfying (4), many of the components of the transformed
sequences are zero and operations due to them are saved. //

Based on the algorithms of [19], one can easily construct
modified algorithms as given in. Appendix A to convolve se-
quences satisfying the conditions of Theorem 4 for G = Can,
n=1,23 When G = Cau X Cpy X Cpy X ... X Cp, the
modified algorithm of convolution with respect to G can be
obtained by combining the modified algorithm for Ca» with
the cyclic algorithms of lengths ny, n3, . . ., n,. Table I com-
pares the number of operations required to implement the
convolution of sequences satisfying Theorems 3 and 4 with
those of [19].

Example 4: Convolutionof u =(0572310-5~7-2-3
—1)and V=(223460-2-2 -3 -4 —60) with respect to
Cs X Cs. As in Example 3, one now has

02 0 -2 2 4 -2 -4
U=1]5 3 =5 =3jandV=1]2 6 -2 -6].
71 -7 -1 30 -3 0

To compute U * ¥ as per [19], write Uand V as U = {uo, u,,
—ug, =1}, V = lvg, 01, =g, —01} where ug, uy, 0o, v stand for
the columns. Applying the modified Algorithm 2 of Appendix
A, one has

0 -4 4
co=110], o= 41, o= 16
14 12 16
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The product m; = c;d; is now to be interpreted as a length-3
cyclic convolution of ¢; and d; as per [19]. One then has

142 28 112
mo= 102}, m; =136}, and my=] 88
164 20 160

Finally, going back to Algorithm 2 of Appendix A,

30 114
Wog = =Wy = 14 y W= —w3= 661].
4 144

Thus*
30 114 -30 -—114
wW=114 66 -—14 —66
4 144 -4 144

orw=1[30414114144 66 —30 —4 —14 —114 —144 —66}.
/!

IV. DEVELOPMENT OF THE ALGORITHMS

The computation of all those DCT components for which
ged (j, 2N) = 1 is done together. First consider the case 1| N,
i.e., t dividing V. Utilizing the properties of the cosine function,
(1) can be written as

Yo = B, X0
where

Xs() = Zie aM (. D), (i),

A=10<i<N/2|gedi+ LN =5l (5)
x (i) = z,(i)) — z(Nft = 1 =),
i= 0,1, N2l =1, (6)
() =T (=1)yGi + dNJD),
d=0
i=0,1,--- Nit-1. (7)

|-} denotes the integer part. Unless the context demands x;
will be referred to merely as x. Further, because X;(j;) =
X (o) if Gy + j2)/(2N/s) or (ji = j2)/(2N/s) is an'even in-
teger and X;(j;) = X;(j2) if it is an odd integer, one may
partition the set of j’s under consideration into subsets such
that ji, j, will belong to the same subset iff (2N/s)|(j + j2)
or {j; — j2). Equation (5) then needs to be evaluated only for
j € B where B denotes the representatives of these subsets. It
will be shown later that 4 and B have the same number of el-
ements,

Example 5: Computation of the DCT of length N = 10 of
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TABLE |
A COMPARISON OF THE COMPUTATIONAL COMPLEXITY OF THE
UsuAL CYCLIC CONVOLUTION ALGORITHMS [19] AND THE
MODIFIED ALGORITHMS VALID FOR SEQUENCES SATISFYING
CONDITIONS OF THEOREMS 3 AND 4

Sequence Usual Modified Algorithms
length Algorithms[19] For Theorem 3 For Theorem 4
Mults. Adds Muits. Adds. ;ulfs. Adds.
2 2 4 i [} [ 0
4 5 15 2 4 3 3
8 14 46 5 i5 9 15

y=(02113-1002-1). Possible values of ¢ dividing N are
I,2and 5.

When ¢ = 1, Y(1), Y(3), Y(7), and Y(9) are being com-
puted. One has, then, Y(j) = X(j) + X5(j) where

X=X

i€l0,1,3,4

XsU) = T MU.Dxi(0).

'M(I' i)xl(i)- j € {l’ 39 7a 9}9 (8)

je il )
and x, = (1011 4). Note that for (1, s) = (1, 5),since A isa
one element set so should be B. The set of j’s is {1, 3,7, 9. One
can use the value of 2N /s = 4 to show that all the elements of
this set are in the same subset as defined earlier. Thus one may
take B = {1}in (9) and, X5(3) = ~Xs(1) as (3 + 1)/(2N/s) is
odd and similarly Xs(7), = Xs(9) = Xs(1) as (7 + 1)/ (2N/s)
and (9 — 1)/(2N/s) are even. When ¢ = 2, Y(2), and Y'(6) are
computed as Y(j) = X{j) where

MU Dxali). j € 12,6

X = ¥ (10)

€10,1)
and x; = (-3, 3).
When t = 5, Y(5) is being computed as Y(j) = X,(j)
where
X)) = ¥ MG ixs(i), jels) (1)
ie {0}
and x5 = (5). //

It will now be shown that a certain choice of G, ¥, {3, 1,
02, and f converts (5) for j € B into a convolution with respect
toG.Let L = N/st and H = A(4L). Thena =2L — 1 and B
=2L + 1 € H and are of order 2. The choice of G is dictated
by the nature of {a) and (8).

First, at least one of (a) or {B) should be a splitting
subgroup of H because if neither of them is splitting subgroups,
then both o and B should have square-roots modulo 4L. But
aff = —1 (mod 4L). Thus —1 should have a square-root mo-
dulo 4L which is impossible. So we have the following two
cases.

Case 1: If both (a) and () are splitting subgroups of H,
i.e., H 2 (@) X {8) X G, one can establish a one-one corre-
spondence between the elements of G and B as under. For
every g € G, there exist integers n and d; such that

g=(-mi+a oL

. (12)
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for some j € B. If (12) is satisfied, j is defined as yg. The
one-onc and onto nature of ¥, is proved in Appendix B.
Equation (12) also defines 6, as 6;(g) = (—1)4%. Similarly, one
may find integers n; and 4, satisfying

g=(—1"Q2i+1)/s+d>-2L (13)

where g € G, i € A. This establishes a one-one correspondence
between the elements of G and A. The proof for this is omitted
as it runs parallel to that of (12). We then define

Yag = iand by(g) = (=D
Furthermore, by choosing f as

S(g) = cos (gm/2L), (14)

it can be verified that the requirements of Theorem | are sat-
isfied and (5) may be computed by defining sequences u and
vasu(g) = cos (gw/2L) and v(g) = 62(0g)x,(¥2(Sg)). g €
G and convolving them with respect to G to get the sequence
w related to X; as X;(Y1h) = &,(h)w(h), h € G.

Example 5 (Cont'd.): For (1, s) = 1 [computation of (8)].
L = 10. Structure of H = A(40), from Example | is 4(40) =
{1, 19} X {1, 21} X {1, 3,9, 27} = (@) X (B) X G. Equations
(12) and (13) are satisfied for the following values of ny, d,,
and ny, d3. [Equation (13) is computed for ©g rather than for
g because one needs 65(©g) and ¥2(6g).]

geG, m dv VYigeB ©g
1 0 0 2 1
3 0 0 6 7
geG n dy YigeB ©g ny dr Y20g)€ A
1 0 0 1 1 0 0 0
3 0 0 3 27 0 1 3
9 0 0 9 9 0 0 4
27 0 i 7 3 0 0 1

Finally a convolution with respect to G (which is a cyclic
convolution of length 4 as G = C4) of U and V gives W,
where

U = (cos(w /20), cos(37/20),
| cos(9w/20), cos(271/20)),
V= (xl(O), "X|(3). X|(4), Xl(] )) = (], -1,4, 0) and
W=UxV=(X(1). Xi(3), Xi(9). =X:(7))

= (2.068, —1.913, 3.216, 2.954). '

For (1, s) = (1, 5) [computation of (9)], L =2, H = A(8) =
Cy X Cy=1{1,3} X {1, 5} = (@) X (B). Thus G = {1} and X5(1)
is a convolution with respect to G (i.e., a simple multiplication)
of U = (cos (7/4)) and (x1(2)) = (1). Thus Xs(1) = 0.707.
Similarly, for (z, 5) = (5, 1) [computation of (1 1)],G ={1}and
X1(1) = (cos (m/4)) - xs(0) = 3.535. 1/

Case 2: If only one of (a) or (B) is a splitting subgroup of
H,then H =~ (a) X G or H =~ () X G. We assume here that
H =~ () X G but the case of H = (a) X G may be worked
out similarly.

Note that now a € G. It may be verified that defining ¥).
V3, 81, 82, and f as in Case 1, the requirements of Theorem 2
are satisfied except that

flg ® a) = cos((a ® g)w/2L)
= cos(agm/2L) as & denotes mult.mod 4L
= cos((2L — 1)gm/2L)
= —cos(gm/2L) = —/(g).
Therefore, following the remark after Theorem 2, one gets the
algorithm, in this case, as X (Y 1h) = 01(h)w(h), h € G,
where w is the convolution with respect to G of sequences « and
v defined as
u(g) = —u(g ® a) = cos(gm/2L)/2,
v(g) = —v(g @ a) = 62(g')0a(g)x1(¥2g). g € Ga

where

geG.

ifege G,
otherwise.

g =6g
=aOg

Note that u * ¢ can be evaluated efficiently as in Theorem
4,

Example 5 (Cont’d.): For (1. 5) = (2,1) (computation of
(10)L=5a=9,andB=11.4(4L) = {1, 11} X{1,3,9,7}
= (B) X G. Thus G, = {1, 3}. Equations (12) and (13) are
satisfied by following values of n), ), n3, and d,.) (Equation
(13) is computed for g’ rather than for g because one needs
62(g’) and Y2g")

g na dy YgeA 0.(8)
1 0 0 0 1
0 0 1 -1

Finally, a convolution with respect to G (which is a cyclic
convolution of length 4 as G = Cy4) of U and V gives W
where

U = (cos (x/10)/2, cos (37/10)/2,
— cos (m/10)/2, —cos (37/10)/2)
V= (x2(0), =x2(1), =x2(0), x2(1)) = (=3, -3, 3,3).

Thus U = V = W = (—1.089, ~4.617, 1.089, 4.617) or
(—1.089, —4.617) = (X1(2), X,(6)).

Note that since U and V satisfy conditions of Theorem 4,
one can use modified Algorithm 2 of Appendix A to implement
this convolution. i

Fort | N, (1) can be reduced to

Y(j) = (=12, (AN/t]) + i'&%’m Xs() (15)
where
XsU)=i§A M, i) x,(i). (16)
xi(i) = 2G) + 22 Njt = 1 = i),
P=0, 1, LNiJ =1 (17)
() = ':gy(wdz/v/:). i=0.1, 2Nt =1

A=10<i<Nft)jged(2i +1,2N/1)=s}.  (18)
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Furthermore, because of the arguments similar to those in the
case of 7| N, (16) need be computed only for j € B, where B
is a set defined as earlier.

Example 5 (Cont’d.): The only value of 1JN but 1| 2N is 4
and for this Y(4) and Y(8) are being computed. One then
has

Y(4) = —24(2) + X1(4)
Y(8) = z4(2) + X1(8)

where

Xi0) = %” M. i) xa(i),  je (a8 (19)

24-—-(—],2,1,3,2), X4=(1,5). //

Let L = 2N/stand H = A(2L). Thena=2L —1¢€ Hisof
order 2. The choice of G is dictated by the nature of («) and
the following two cases arise:

Case 3: If (a) is a splitting subgroupof H, H =~ (a) X G.
One can then establish a one-one onto relation between the
group elements g and the elements j of B as

g= (-—1)"'];+de. (20)

Then Y12 and 6,(g) are defined as j and (—1)9!, respectively.
¥ can be obtained as in (13) and 6, may be taken as 6;(g) =
1, V g € G. Finally, choosing f as

Sf(g) = cos(gm/L) 1)

requirements of Theorem 1 may be shown to be satisfied.
Consequently, the required algorithm for (16) will read as

Xs($rh) =0)(h)w(h), heG
where w is the convolution with respect to G of the sequences
u and v defined as
u(g) = cos(gm/L),

v(g) = x;(Y2(0g)). VYgeG.

Case 4: When (a) is not a splitting subgroup of H,let G =
H.Now a € G. By defining ¥, ¥, 8;, 82, and f as in Case 3,
it can be easily verified that the requirements of Theorem 2
are fulfilled. In particular, now f(g ® @) = f(g). g € G.
(Compare with Case 2.) The algorithm in this case thus reads
as

u(g) = u(g ® a) = cos(gm/L)/2
v(g) =v(g®a)=x,(Y2g")., g€ Ca

where

g =96g ifege G,
=abg otherwise.

Theorem 3 may be utilized to evaluate this convolution effi-
ciently.

Example 5 (Cont™d.): For (1, s) = (4, 1) [computation of
(19)],onehas L = 5, H = AQ2L) = C4. Thus G = C4 = (3)
=1{1,3,9, 7}. Note that a = 9 € G. Corresponding to (20) and

IEEE TRANSACTIONS ON COMPUTERS, VOL. C-29, NO. 4, APRIL 1980

(13) we have [(13) is evaluated for g’ rather than for g as one
needs y2g’]

ge€G, m dy Yige B ©g g ny dy Yg'e A
1 0 O 4 1 1 0 O 0
3 1 1 8 7 3 0 0 1

Thus a convolution with respect to C4 of W and V gives
X1(j), where

U = (cos (m/5)/2,cos (37/5)/2,
cos (w/5)/2, cos (37/5)/2)

V= (x4(0), xa(1). x4(0). x4(1))
=( 5 1 5)
W=U=xV=(X(4), —Xi(8). X,(4). —X,(8))

from Theorem 3, U * V can be evaluated as a length-2 cyclic
convolution of (cos (w/5), cos (37/5)) and (1 5) to give
(X1(4), =X(8)) = (—0.736, 3.736). /!

V. COMPUTATIONAL COMPLEXITY

The algorithm developed has three computational stages.

i) For every 1, (1 < N, t|2N), compute x, sequences
through (6), (7), (17), and (18).

ii) Use the x,’s so computed in various convolutional al-
gorithms,

iti) Recombine the results of the convolutions as per (5) and
(15) to get the transform.

We now analyze the computational complexity of each of
these stages.

i) No multiplications are involved at this stage. The number
of additions involved is substantially reduced by adopting the
following scheme (proofs omitted as they can be easily con-
structed).

To Compute x,’s for t{N

Let p be the largest integer satisfying 27 < N, 27| N. Then
one needs to compute x,,, 1= 0,1, ..., p. Define ro(i) = y(i),
i=0,1,...,N—1,

ra(i) = rp-1(i) +r,,_|(N/2"" -1=i),

i=0,1,...,N2"=1, 1 <nZp.
Then
Xon(§) = ra(i) = ra(N/27 = 1 =),
i=0,1,...,IN2 ) —1, 0<n<p

These involve 2N (1 — 1/27) + | N/2P*1] additions. To com-
pute x;, from x,, where 1}, 73] N and ¢, = ki, for an odd integer
k, one may use

0 (i) = “ifz’ (=1)x,,(i + Na/t)
2

= X (=D)¥x,(Njtz =1 =i = Ng/ty)
q=Lk72)+1

requiring only (k — 1) | N/21, ] additions.
To Compute x,’s for tyN
Such 1’s exist iff NV is not a power of 2. Then
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TABLE 1l
A COMPARISON OF THE COMPUTATIONAL COMPLEXITY OF THE
NEW DCT ALGORITHM WITH THE BEST OF THE CONVENTIONAL
DCT ALGORITHM [11]-[13] AND THE WFTA [15]

e

Secuence tlew DTT

Conventional DCT

WFTA

Myltiplicat- Adzitions

length Myltiplicar- Ac¢gitions ‘fultiplicat- Agditions
ions. ions ions

3 3 & 7 24 2 9
4 9 9 6 8 0 12
5 € 15 15 54 -] 22
7 9 34 23 100 8 a3
8 14 32 16 26 2 34
9 13 46 29 126 10 54
13 21 1o 53 300 20 137
21 37 195 73 384 26 171
29 96 381 219 1018 95 480
30 53 269 90 250 34 222
3 81 418 191 1080 80 509
33 85 423 157 876 62 405
60 130 728 184 562 68 504
65 151 1048 315 2190 125 1030
99 325 1983 559 3630 230 1716
129 613 2573 1045 5748 458 2745
258 1229 6943 1428 6004 916 5748
S 3097 17955 6071 35236 2780 17107
631 8361 40626 17351 86296 8360 42517
1262 16723 83774 19240 87556 16720 86296

Xop1 (i) = rp(i) + rp(Nj2P = 1 = i),
i=0,1,...,LN2PH ] - 1.
This calls for | N/2P*! | additions.
Similarly, to get x;, from x,, where 1,, 1[N and 1, = kt,,
one may use

Lk/2)
xp, (i) = éo x.,(i + 2gN/1y)
q-

k-

>

q=Lk/2)+]

+ X0y (2NJt2 = 1= i = 2gN/t;)

i=0,1,...,INn] -1,
requiring only (k — 1) N/t ] additions.
Note from (15) that when t}N, z,(L N/t]) also is required
which could be computed as

21 (LN/2P*1]) = rp(LN/2P*1))
requiring no extra operations and for 1, = kt,,

Lk/2)=1
(V) =S LN+ 20N/ + 2LV )
q-
requiring only | K /2] additions.
Finally, to compute Y(0). one needs to sum up all the y
components. Let m be the smallest odd prime dividing N.
Then

PO+ +...+pWN=-1)

=S angmi) + AN,

i=0
requiring only | 7/2 ] additions. When N is a power of 2, y(0)
+y(1)+...+y(N=1)=rp(0)+ry(1) requiring only one
addition.

ii) Todetermine the computational complexity of stage ii),
note that each (1, s) pair leads to a multidimensional cyclic
convolution decided by the group which in turn is determined
by N/ts. The complexity of this stage is therefore obtained by
summing of the complexities of these convolutions over all
possible (z, s) pairs.

iii) This stage also does not involve any multiplications. Let
S, denote the total number of s values possible for any r and
Ji, the number of ;s satisfying

{1 <j<N-=1|ged(i, 2N) = 1}.

Then the total additions required in this stage is

FOmat T s

1IN SN

(22)

where the two summations correspond to (5) and (15).

Example 6: For N = 10, p = 1. x, and x; can be obtained
in(2-10) (1 =1/2) +|10/4] = 12 additions. x5 can be ob-
tained from x, in (5 — 1) [ 10/10] = 4 additions. x4 can be
obtained in| 10/4] = 2 additions. y(0) + . ..+ y(9) is obtained
from x4in | 5/2] = 2 additions. Thus stage i) requires 20 ad-
ditions. Possible (1, s) pairsare (1, 1), (1,5),(2,1),(5,1),and
(4,1). For (1, 5) = (1,1), H = A(4N/1s) = C3 X C3 X Cg.
Thus G = C4. Convolution with respect to C4 requires 5 mul-
tiplications and 15 additions. Similarly for (7, s) = (1, 5) or
(5, 1), one needs a convolution with respect to G = {1} requiring
only a single multiplication. For (1, s) = (2, 1), G = C4 and
a € G. Therefore Theorem 4 is applicable for this convolution.
From Table I, this requires 3 multiplications and 3 additions.
For (1, 5) = (4,1),G = C4. Theorem 3 is now applicable and
from Table I the convolution requires 2 multiplications and
4 additions. Stage ii) thus needs 12 multiplications and 22
additions. From the given (z, s) pairs, S$; = 2,5, =1,Ss=1,
S4 = 1. Also the number of j's satisfying (22) gives J, = 4, J,
=2,Js=1and J4 = 2. Thus stage iii) requires 6 additions.
Therefore the DCT of length 10 can be evaluated using the
algorithm of this paper in 12 multiplications and 48 additions.
As against this, the algorithm of [12] requires 26 multiplica-
tions and 62 additions and that of [13] requires 30 multipli-
cations and 118 additions. /i

The complexity of the new DCT algorithm is compared in
Table Tl with that of the best of [11]-[13]. It also lists the
complexity of the WFTA [15].
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or (g1 — g2). Thus, there are four possibilities:
girtg=2Llorg ==-g:+2L=g,8 q,
sirtg=4Llorg = -g2+4L=g,® a ® B,
g1—g2=2lorg=g2+2L=g:80
gr—g2=0o0rg =g

where @ denotes the group operation of multiplication modulo
4L. The first three cases are not possible because «e. € G but
both g). g2 € G.

Onto

Any b € B gives ged(b/t, 2L) = 1 or ged(h/t mod 2L. 2L)
= 1.

Let b/t mod 2L = (b/1) + k 2L

Thus (b/t) mod 2L = (b/t) + k 2L = h € H. Thercarc four
cases each of which satisfy (12) with the following value of n
and d.

he G n=0 d=0

h®a=—(b)+ (1 —k)2Le G

hepB= b+ (1 +k)2Le G

headpB=—(bt)+(2—k)2Le G
n=1 d=2-k.

n=1 d=1-k
n=0 d=1+k
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