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ABSTRACT

Multistage interconnection networks (MINs) and in
particular, banyan networks, constitute a viable alternative
to the expensive crossbar switches for packet
communication. This paper describes an analysis and
simulation of banyan networks based on buffers of various
sizes connected at the input link of each node. A
generalized model to estimate performance indices is
developed. It is demonstrated that while buffering
produces a considerable improvement in performance,
optimum buffer size depends on the average input load.
Analytic estimates are substantiated by simulation results.

1. INTRODUCTION

Performance of large-scale, multiprocessor systems
rests primarily on an efficient design of the network
interconnecting the processors to the memory modules.
The function of this network is to provide a link between
any processor and any memory module. Interconnection
networks range from the least expensive but extremely
slow time-shared bus to the high bandwidth but very
expensive crossbar network. As a viable alternative to
crossbar switches, multistage interconnection networks
(MINs) have assumed widespread interest in recent times
[1]-[S]. Among these networks, self-routing ones like the
Delta [S] and Omega [3] are popular because of the ease
in setting the switches by a destination tag generated by
the processor. A specific type of Delta network, known
as the banyan network, is being considered in this paper.

Any MIN, unlike a crossbar network, is a blocking
network even if no two processors request the same
memory module. A conflict arises when two or more
processors need the same link between two successive
stages in reaching their destinations. Due to this
interference, a subset of processors may be blocked, thus
degrading the performance. Further, we consider random
request patterns such that any number of processors might
request the same memory module. It may be noted that
the performance of a crossbar is also degraded when the
requests are random [6].

In this paper we analyze the performance of banyan
networks based on first-in-first-out register queues or data
buffers placed at the input links of each switch or node.
Results demonstrate considerable improvement in the
performance due to the buffers. The network is defined
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in Section II. Section III discusses the performance of
the unbuffered banyan network. A discrete Markov chain
model of the banyan network based on single-buffered
nodes is developed in Section IV. In Section V we
simplify the model, which is then generalized for buffers
of arbitrary size in  Section VI. We also discuss the
behavior of the performance indices with respect to the
size of the buffer, size of the network, and the applied
load in this section. In Section VII we present some
simulation results. Section VIII summarizes the paper and
contain some concluding remarks.

II. DEFINITIONS

A network is a directed graph with three types of
nodes: processor nodes with indegree 0, memory nodes
with outdegree 0, and switches which have positive
indegree and outdegree. Each graph edge represents a
link going from a node to a successor. A banyan network
is defined [2] to be a network with a unique path from
each processor to each memory module which implies that
the links leading to a node and from a node form trees.
An n stage banyan network has processors attached to
stage 0 and memories to stage n+I. All outputs from
stage i are connected to inputs to stage i+1. It is a
uniform network in which all switches at the same stage
have the same number of input and output ports. A
banyan network of degree k is a network built of k X k
switches and supports k" processor/memory pairs. Fig.1
shows a 2° X 2° banyan network.
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Fig. 1. A 2° by 2° banyan network.

The routing algorithm is very simple. The most



significant bit of the binary destination tag selects the
upper (0) or lower (1) output of the stage 1 switch
towhich the request is applied. The next bit selects the
stage 2 switch output, and so on. If two or more requests
arrive at one switch and request the same output link
then a conflict occurs. Then we assume that one request
is randomly selected and forwarded while the others are
blocked or discarded. In reality, a blocked request will be
resubmitted. But for simplicity we generally assume that
a blocked request is ignored. Previous studies [7] have
shown that the performance under random request
patterns is not substantially affected by the above
assumption.

The requests are assumed to be generated by
identically distributed random processes. Conflicts are
resolved randomly. Thus [8] due to the uniqueness of
paths in banyans we have the following:

i) Patterns of packet arrivals at the inputs of the same
switch are independent.

ii) All input packets are independently and equiprobably
directed to each output link.

We assume that each 2 X 2 crossbar switch or
node is capable of passing two packets concurrently if they
are directed to different output links. Each input link of
a node contains data buffers. Buffers are uniform such
that identical buffers are placed at every input link, or
else none of the links contain any buffer. These buffers
serve as temporary storage for the packets. A packet
blocked in some intermediate stage can take refuge in the
corresponding buffer until it is unblocked and able to
move forward. Also, different nodes on a path can
operate on different packets at the same time. This
pipelining effect should increase the throughput.
However, a full buffer will obstruct packets. Cumulatively,
this may cause a ’backlash’ such that the packets are
unable to enter the network at the very first stage.
Buffers will also tend to increase the minimum possible
delay experienced by any packet because at heavy loads
packets will generally pass through an entire buffer at
every stage. So intuitively, buffers have both advantages
as well as drawbacks.

II. UNBUFFERED BANYAN NETWORKS
This analysis is similar to Patel’s[5]. The
assumptions are as follows:

i) At every cycle every processor issues an independent
request with a probability p;

ii)  Requests are uniformly distributed among the
memories;

iii) Blocked requests are ignored.

In any given cycle, for a single k X k node,

probability(an input port receives a request to a particular
output port) = p/k

probability(an input port does not receive a request to a
particular output port) = (1 - p/k).

158

probability(a particular output port is not requested)
= (1-p/k)f

probability(an output port is selected by at least one
processor) = 1 - (1 - p/k)*

Now consider a k” X k” banyan. Since the outputs
from a node at stage i become the inputs to a node at
stage i+, we obtain the following recurrence relation:

p(m) = 1- (1 - (1/k)*p(m-1))", M

where p(m) = probability(there is a packet on any
particular input at the m-th stage of the network). The
boundary condition of this recurrence relation is p(0) =
L, where L is the offered load. For k = 2, we get p(m)
= 1 - (1 -5p(m-1))". The asymptotic solution to this
recurrence can be obtained as in Kruskal and Snir [8]:

)

Unfortunately, for each initial value p(0) we need
a different constant c. Moreover, for small p(0) the
approximation (2) is not good. We present an asymptotic
formula which is an excellent approximation for low values
of p(0) and m.

p(m-1)[1-.25p(m-1)]

p(m-2)[1-.25p(m-2)][1-.25p(m-2) +.0625p*(m-2)]

p(m-3)[1-.25p(m-3)][1-.25p(m-3) +.0625p*(m-3)]
[1-25p(m-3)+.125p*(m-3)-.03p*(m-3) +.004p*(m-3)]

p(m) = 4/m(1 - In(m)/m + c¢/m).

p(m)

Since p(m) decreases monotonically to zero, one may
neglect the third and higher order terms and approximate
it as
p(m) = p(m-i){1-25p(m-i)+.0625p*(m-i}][1-.25p(m-i)]'
= p(0)[1-.25p(0)+.0625p*(0)][1-.25p(0)]™. 3)

Equation (3) is a fairly good approximation even when
p(0) is 0.5 as demonstrated by the plot in Fig. 2.

IV. A DISCRETE MARKOV CHAIN MODEL

We consider n-stage banyan networks built with 2
X 2 nodes, each node having a buffer of size one at each
of its input links. To exactly model such a network with
a discrete Markov chain the number of states will be
enormous and the problem soon becomes intractable. In
order to reduce the number of states the following
assumptions [9] are made:

i) Packets are generated by independent, uniform, random
processes at the network input ports. Furthermore, the
destination addresses are uniformly distributed over the
set of the output addresses. Thus a node at any stage is
statistically indistinguishable from any other node at the
same stage; hence the state of a stage can be modeled
by a single node.

g'i) The two buffers in the same node are statistically
independent because the input addresses are from disjoint
sets of input links at the first stage. Thus the state of a
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Fig.2. Performance of unbuffered Banyan network
when p(0)= 0.5.

node can be modeled by a single buffer; hence the state
of a stage is reduced to the state of a single buffer.
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Fig.3. Four possible switch configurations.

At the beginning of each clock cycle a node can
always be in one of the four configurations, as shown in
Fig. 3. But each of these configurations may not be
equiprobable or independent of the previous cycle. A
buffer with a packet that was blocked while trying to
reach the upper output link will again try to accomplish
the same in the next cycle; hence that particular node will
definitely be in either of the two configurations shown in
Figs. 3(a) and 3(b). So instead of keeping just two state
variables for an empty and a full buffer, we introduce two
more states to incorporate the effect of blocking. Later
we will simplify our model by removing these two
variables and find out whether that causes any substantial
effect or not. We now describe our model.

In the following notation, m denotes the stage
number (1 € m < n, where n is the total number of
stages), and ¢ stands for time.
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p(0,m,t) = probability of a buffer of a stage m node being
empty at time ¢.

p(1,m¢t) = probability of a previously unblocked buffer
(of a stage m node) being full at time ¢.

p°(1,m;t) = probability of a buffer (of a stage m node),
previously blocked while going up, being full at
time ¢.

p'(1,m;t) = probability of a buffer (of a stage m node),
previously blocked while going down, being full at
time ¢.

q(m,t) = probability of a packet being offered to a buffer
of a stage m node, irrespective of whether it can
accept it or not, at time ¢.

f(m,t) = probability of a packet in a buffer of a stage m
node moving forward at time 7, given that the
buffer has an unblocked packet.

f'(m,t) = probability that a packet in a buffer of a stage
m node moves forward at time ¢, given that the
buffer has a packet blocked previously going up.

fi(m,t) = probability that a packet in a buffer of a stage
m node moves forward at time ¢, given that the
buffer has a packet blocked previously going down.

Calculation of g(m,pt): While calculating this

transition probability we consider, without loss of any
generality, the upper buffer of a node at stage m. We
express q(m,t) as the sum of four factors corresponding to
the four cases when the upper buffer of the node at stage
m-1 is full with an unblocked packet, full with a packet
blocked going up, full with a packet blocked going down,
and empty respectively. For example, if the upper buffer
at stage m-1 is full with an unblocked packet then the
probability that a packet is offered to the buffer at stage
m is derived as

[.5p(0,m-1,t)+.75p(1,m-1,t) + p*(1,m-1,t) +.75p"(1,m-1,t)].

Therefore, q(1,t) = L, the average offered load, and
q(m,t) = p(1,m-1,)[p"*(1,m-1,t)+.5p(1,m-1,t)]
+ p(0,m-1,t)[.5p(1,m-1,t) +p*(L,m-1,t)]
+ p(1,m-1,t)[.5p(0,m-1,t) +.75p(1,m-1,t) + p*(L,m-1,t)
+.75p(L,m-1,t)] + p*(1,m-1,t) form =23,..n.

Calculation of f(m,t), f*(m.t), and f'(m.t): Each of
these probabilities is computed as the product of two
factors. The first factor represents the probability that the

buffer at stage m+1 is able to accept the packet. It is
equal to [p(Om+1t) + p(Lm+Lt)f(m+1t) +
p'(L,m+ L) (m+ L,t) + p*(Lm+ 1L,t)f*(m+1,t)]. The second
factor corresponds to the probability that the packet can
get past the node at stage m. For example, if the buffer
at stage m has an unblocked packet then the second
factor is [p(O,m,t) + .75p(1,m,t) + p(1,m,t) + p*(Lm,t)].

Therefore,

f(m,t) = [p(0,m+ 1,t)+p(1,m+Lt)f(m+ 1)
+p(Lm+ L) (m+ Lt) +p(1,m+ L,t)f'(m+ 1,t)]
[p(0,m,t) +.75p(1,m,t) + p*(1,m,t) + p*(L,m,t)].

f((m,t) = [p(0,m+ 1,t)+p(1,m+ L,t)f(m+1,t)
+p'(1,m+ L)' (m+ Lt)+ p'(1,m+ 1,1)f*(m+ 1,t)]
[p(0,m,t)+.75p(1,m,t) +.5p"(1,m,t) + p°(1,m,t)].



f'(m,t) = [p(0,m+1,t)+p(l,m+1,t)f(m+1,t)
+p'(1,m+ 1,t)f'(m+ 1,t) + p*(1,m + 1,t)f*(m + 1,t)]
[p(0,mt) +.75p(1,m,t) +p*(Lm,t) + 5p*(Lm,p)],

for m = 12,..,n-1.

f(n,t) = [p(0,n,t)+.75p(1,m,t)+p°(1,n,t)+ p(1,n,t)].
f(n,t) = [p(0,n,t)+.75p(1,n,t) +.5p"(1,n,t) + p°(1,n,t)].
fi(nt) = [p(0,m,t)+.75p(1,n,t) +p*(1,n,t) +.5p*(L,n,t)].

Updating the state variables: The probability of any

state variable at time ¢+ can be expressed as the sum of
two factors (maybe zero), corresponding to the two cases
of a packet being offered or not at time t. We derive the
following:

p(Om,t+1) = (1-q(m,t))[p(0,m,t) + p(1,m,t)f(m,t)
+ p(Lmt)f*(m,t) + p*(1,m,t)f'(m,t)].

p'(Lm,t+1) = (1-f(mt))p*(l,mt) + .5(1-f(m,t))p(1,m,t)
(1-f(m,t))p*(1,m,t) + .S(1-f(m,t))p(1,m,t)

I

pY(L,m,t+1)

p(Lmt+1) = q(m,t)[p(O,m,t) + p(1,m,t)f(m,t)
+ p'(1,m,t)f(m,t) + p°(1,m,t)f(m,t)].

We can verify that the updated state variables add
up to unity. At steady state all quantities will converge to
time-independent ones and so we can drop the time
subscripts while calculating the network performance
indices like the normalized throughput and the normalized
delay. The normalized throughput, TP, is defined as the
number of packets per output link per unit time. Note
that at steady state this should be the same at all stages.

TP =p(1,m)f(m) + p*(L,m)f*(m) +p*(1,m)f*(m) for a valid m.

The delay per stage can be related to the
probability that a packet moves forward. We know that
the probability that a request is serviced in x cycles is
g(m)(1 - g(m))** where g(m) is the probability that the
packet moves forward at stage m. Thus the delay per
stage, or the expected number of cycles required per
stage, is

; g(m)(1-g(m))™ which equals 1/g(m).
i=1
In our case,
p(Lm)f(m) + p*(Lm)f(m) + p*(Lm)f'(m)
g(m) = :

p(Lm) + p'(Lm) + pi(lm)

So the normalized delay, D, for the whole network is

n
D = (i/n) '21 (1/8(®) -
1=

The above equations are solved iteratively. Fig. 4
shows TP plotted against the average input load for
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Fig. 4. Throughput of an 1-buffer Banyan network.

various network sizes. The results are similar to those
reported by Jenq[9]. We find that for low loads, typically
less than 0.4, the throughput increases linearly and is
almost equal to the load. But as the load increases the
rate of increase in the throughput is reduced. This
reduction, as expected, is more for larger networks. At
full load, the throughput drops from 0.633 to 0.453 as we
increase the number of stages from 2 to 10. The
throughput seems to converge to a value of 0.45
approximately. So we can conclude that with a single
buffer the maximum throughput for a large sized network
(10 or more stages) is about 0.45, Fig. 5 shows the
normalized delay plotted versus the load for different
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Fig. 5. Delay of an I1-buffer Banyan network.



network sizes. The lowest delay is obviously 1.0, which
translates to an average delay of nt, where ¢, is the clock
period. Like the throughput, the delay also converges to
a constant, about 1.55, as the network becomes very large.
Hence we conclude that large banyan networks (10 or
more stages) with single buffers will have at full load,
about 0.45 packets per output link per unit time, and each
packet will be delayed by 1.55n¢, time units.

V. A SIMPLER MODEL

We now simplify our analytic model by getting rid
of the two state variables corresponding to the blocked
cases. This is substantiated by the fact the results
obtained by this simpler model are almost identical to
those reported in the previous section (less than 0.05%
differences). The variables of this model are similar to
those used by Jenq[9]. We present an alternative
derivation for all the variables. The model is described
below:

p(0,m,t) = probability of a buffer of a stage m node being
empty at time .
p(1,m,t) = probability of a buffer of a stage m node being
full at time .
= probability of a packet being offered to a

buffer of a stage m node at time ¢.

= probability of a packet in a buffer of a stage
m node moving forward at time ¢, given that the
buffer has a packet.

q(m,t)
f(m,t)

Using the concepts outlined in the previous section,
we derive the following: :

q(L,t) = L and
q(m,t) = p(1,m-1L,t)[1-25p(1,m-1,t)] for m = 2,3,..,n.
f(m,) = [p(0,m+ 1,0 +p(Lm+1f(m+ L,Y][1-25p(Lm,t)],

form = 12,...n-1.
f(n,) = 1 - 25p(1,nt).

p(1,mt+1) = (1 - q(m,))p(L,m)(1 - f(mt)) + q(m,t).
p(Omt+1) = (1 - q(m,t)[p(0,mt) + p(Lm,f(m,t)].
TP = p(1,m)f(m) for any valid m.

D

n
(1/m) = (1/KD).

i=1

VI. MODEL WITH MULTIPLE BUFFERS

The model in the previous section was restricted to
a buffer of size one only. We now generalize it for
multistage banyan networks built with 2 X 2 nodes, with
each input link of a node having multiple buffers. Let
b and n denote the size of each buffer and the number of
stages respectively, and the statistics be defined as
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p(i,m,t) = probability of a buffer of a stage m node
having i packets at time ¢ (0 < i < b).

q(m,t) = probability of a packet being offered to a buffer
of a stage m node at time ¢.

f(m,t) = probability of a packet in a buffer of a stage m
node moving forward at time ¢, given that the
buffer has at least one packet.

The transition probabilities, the updated state
variables, and the performance indices are derived
byusing similar principles as described in Section IV.
They are as follows:

q(1,t) = L, and
q(m,t) = (1-p(0,m-1,1))[.75 +.25p(0,m-1,t)] for m = 2,3,..,n.

f(m,t) = [1-p(b,m+ Lt)+p(b,m+ L,t)f(m+ 1,t)]
[.5+.5p(0,m,t)+ 25(1-p(0,m,t))] for m = 12,..n-1

f(nt) = .5 + .5p(Ont) + 25(1 - p(0,n,t)).
p(0,mt+1) = (1-q(m,t))[p(0,m,t) + p(1,m,t)f(m,1)].

p(l,mt+1) = (1-q(m,t))[p(1,m,t)(1-f(m,t)) + p(2,m,t)f(m,t)]
+ q(m,t)[p(Lm,t)f(m,t) + p(0,m,t)].

p(mt+1) = (1-q(m,t)p(,mt)(1-f(m,t)) +
b+ 1,mOf(m,0)]
+ q(m7t)[p(i'1»mst)(l'f(mvt)) + p(ivmit)f(mat)]’
for 2 < i < b-L

p(bmt+1) = (1-g(m,t))p(b,m,1)(1-{(m,t))
+ q(m,t)[p(bm,t) + p(b-1,m,t)(1-f(m,t))].

TP = (1 - p(0,m))f(m) for any valid m.

n
D = (1/m = (/e
iz

b
where g(i) = (f(0)/(1 - P(O,i))?l(l/j)P(j,i)'
j=

The above equations have been solved iteratively.
Normalized throughput and normalized delay are
computed with respect to three parameters -- size of the
buffer, size of the network, and the average input load.
Figs. 6 and 7 show the throughput and the delay versus
the number of stages for various sizes of the buffer, with
the average load fixed at 1.0. We find that for lower
sized buffers, the throughput decreases considerably as the
number of stages is increased. For example, for networks
with buffers of size 2, the throughput reduces from 0.75
to 0.6 as the size of the network increases from 1 to 10
stages. But with larger sized buffers the rate of decrease
of throughput is much less. For networks with buffers of
size 7, the throughputs are 0.75 and 0.71 when the
number of stages are 1 and 10 respectively. Fig. 7 shows
that the normalized delay decreases with the increase in
the number of stages when the buffer size is more than
one. We must note that the total average delay is the
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product of the normalized delay and the number of stages;
obviously this quantity increases steadily as the network
becomes larger.

In Fig. 8 we plot the normalized throughput against
the size of the buffer for different network sizes, at full
load. Similar results, obtained by simulation only, have
been reported elsewhere [10]. In our case, the t_hroughput
is remarkably improved as we increase the size of the
buffer, especially when the network size is large. An 8-
stage network shows an improvement in throughput of
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about 0.2463 as the buffer size is increased from 1 to 8.
But interestingly, throughput of large networks (8 or more
stages) seems to converge to a value of about 0.71 when
the size of the buffer is 5 or more. So we find that for
large networks, buffers of size greater than 5 do not result
in any substantial gain in the throughput. Whereas the
throughput converges to a constant value, Fig. 9 shows
that the normalized delay steadily increases as the size of
the buffer is increased. Unlike the throughput, this delay
does mnot converge to any maximum constant value.
Hence at full load buffers of size greater than 5 will
introduce considerable delay without really increasing the
throughput much.
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The optimal size of the buffer is also dictated by
the input traffic density or the average input load. In
Figs. 10 and 11 we have plotted the throughput and the
delay respectively versus the size of the buffer for an 4-
stage network at different values of the input load. _We
find that at lower loads, the throughput saturates quickly
at buffer sizes lower than those at full load. But the
delay increases steadily at lower loads also. Hence if the
input load is low (0.6 or less) then it is advisable to
restrict the buffer to sizes 2 or 3 for optimal performance.
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VII. SIMULATION RESULTS

In order to substantiate our analytic estimates we
have developed a simulator for a buffered banyan network
in a packet communication environment. The two
performance indices used are the normalized throughput
and the normalized delay. After allowing some settling
time, point estimates are obtained over a huge number of
packets passing through the network. Most of our analytic
estimates were closely matched by the simulation results.
Some results are shown in Figs. 12 and 13. Fig. 12 shows
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the variation of the normalized throughput with the
average load for a 4-stage banyan network based on 5
buffers at each input link. At low loads the simulation
exactly matches the analysis. There is a small discrepancy
at very high loads. Fig. 13 shows the variation of
normalized delay with the change in buffer size for an 8-
stage network at full load. Here we find that our analysis
is consistently smaller than the simulation results, with an
average discrepancy of about 6 percent. Besides statistical
errors, we think that the discrepancies are due to the
assumption of statistical independence of the events
occurring at the input links in each stage.

VIII. CONCLUSIONS

We have analytically estimated the performance of
a type of multistage interconnection network, namely the
banyan network based on FIFO register queues or buffers
of various sizes at the input links of each node.
Wederived an analytic model for computing the
normalized throughput and the normalized delay of such
networks. Buffered networks outperform unbuffered ones.
With buffers of size one only, both the throughput and
the delay converge to some maximum values as the
networks become larger and larger. As the size of the
buffers is increased the throughput converges to a constant
value but the delay increases steadily. At higher input
loads, the rate of increase if throughput is very small
when the size of the buffers is 5 or more. At lower
loads, we find that the size of the buffers should be
restricted to 2 or 3. We hope that the findings of this
research will help the system architects and network
designers.  Further work in this area could possibly
include non-uniform input traffic analysis and reliability of
these networks.
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