TOTALLY NONNEGATIVE *f*-IMMANANTS RELATED TO THE TEMPERLEY-LIEB ALGEBRA

Brendon Rhoades and Mark Skandera

U. Michigan, Dartmouth

Outline

(1) Totally nonnegative matrices and polynomials

(2) The Temperley-Lieb algebra

(3) Products of minors

(4) Intersecting path families

Submatrices and minors

Given an $n \times n$ matrix $A = (a_{i,j})$ and two subsets I, I' of $\{1, \ldots, n\}$, define the (I, I') submatrix and (I, I') minor of A by

$$A_{I,I'} = (a_{i,j})_{i \in I, j \in I'},$$

 $\Delta_{I,I'}(A) = \det(A_{I,I'}).$

For example,

$$A = \begin{bmatrix} 5 & 6 & 3 & 0 \\ 4 & 7 & 4 & 0 \\ 1 & 4 & 4 & 2 \\ 0 & 1 & 2 & 3 \end{bmatrix}, \qquad A_{13,23} = \begin{bmatrix} 6 & 3 \\ 4 & 4 \end{bmatrix}, \\ \Delta_{13,23}(A) = \det(A_{13,23}) = 12.$$

Total nonnegativity

Definition: A matrix is called *totally nonnegative* (TNN) if each of its minors is nonnegative.

Definition: A polynomial $p \in \mathbb{Z}[x_{1,1}, \ldots, x_{n,n}]$ is called a *totally nonnegative (TNN) polynomial* if

$$p(A) = p(a_{1,1}, \dots, a_{n,n}) \ge 0$$

for each TNN matrix A of size at least $n \times n$.

Examples:

(1) det(x),
$$\Delta_{I,I'}(x)$$
, (obvious)
(2) $\operatorname{Imm}_{\lambda}(X) = \sum_{\sigma \in S_n} \chi^{\lambda}(\sigma) x_{1,\sigma(1)} \cdots x_{n,\sigma(n)}$. (JS 91)

Lindström's Lemma

Let G be a planar network with n sources and n sinks. Define $A = [a_{ij}]$ by

 $a_{ij} = \#$ paths from source *i* to sink *j*.

Then A is TNN, every TNN matrix arises this way, and det(A) = # nonintersecting path families $\pi = (\pi_1, \ldots, \pi_n)$ in G from all sources to all sinks.

Question: When is $\Delta_{J,J'}(x)\Delta_{\overline{J},\overline{J'}}(x) - \Delta_{I,I'}(x)\Delta_{\overline{I},\overline{I'}}(x)$ TNN? Answer: (FGJ 01, S 02) + two new answers.

Question: When is $\sum_{j} c_{j} \Delta_{I_{j}, I_{j}'}(x) \Delta_{\overline{I_{j}}, \overline{I_{j}'}}(x)$ TNN? **Answer:** When it belongs to the cone generated by $\{\operatorname{Imm}_{\tau}(x) \mid \tau \in T_{n}(2)\}.$

The lattice path criterion

Idea: To the products of minors

$$\Delta_{I,I'}(x)\Delta_{\overline{I},\overline{I'}}(x) \qquad \Delta_{J,J'}(x)\Delta_{\overline{J},\overline{J'}}(x),$$

associate lattice paths

$$P(I, I') \qquad P(J, J'),$$

and set partitions

$$\Pi(I,I') \qquad \Pi(J,J').$$

If $\Pi(I, I')$ refines $\Pi(J, J')$, then $\Delta_{J,J'}(x)\Delta_{\overline{J},\overline{J'}}(x) - \Delta_{I,I'}(x)\Delta_{\overline{I},\overline{I'}}(x)$ is TNN.

The Temperley-Lieb algebra

Define $T_n(2)$ to be the \mathbb{C} -algebra generated by elements t_1, \ldots, t_{n-1} subject to the relations

$$t_i^2 = 2t_i,$$
 for $i = 1, ..., n - 1,$
 $t_i t_j t_i = t_i,$ if $|i - j| = 1,$
 $t_i t_j = t_j t_i,$ if $|i - j| \ge 2.$

$$\mathbb{C}[S_n]/(1+s_1+s_2+s_1s_2+s_2s_1+s_1s_2s_1) \cong T_n(2)$$

$$\theta: s_i \mapsto t_i - 1$$

$$\dim_{\mathbb{C}} T_n(2) = C_n = \frac{1}{n+1} \binom{2n}{n}.$$

Kauffman's version of $T_4(2)$

generators t_1, t_2, t_3 :	$\sum_{i=1}^{n}, \sum_{j=1}^{n}, \sum_{i=1}^{n}, \sum_{j=1}^{n}, \sum_{i=1}^{n}, \sum_{j=1}^{n}, \sum_{i=1}^{n}, \sum_{$
identity 1 :	Ξ.
$t_1^2 = 2t_1$:	$\frac{\mathbf{D} \mathbf{C} \mathbf{C}}{\mathbf{m}} = \frac{\mathbf{D} \mathbf{C}}{\mathbf{m}} = 2\mathbf{m}.$
$t_1 t_2 t_1 = t_1$:	$\underline{\mathbf{y}} = \underline{\mathbf{y}}$
$t_1 t_3 = t_3 t_1$:	$ \begin{array}{c} \mathbf{c} \\ \mathbf$

basis elements:

 $\equiv \underbrace{\underline{2}}, \underbrace{\underline{2}}, \underbrace{\underline{3}}, \underline{3}, \underbrace{\underline{3}}, \underline{3}, \underline{3},$

The Temperley-Lieb criterion

Idea: To the products of minors $\Delta_{I,I'}(x)\Delta_{\overline{I},\overline{I'}}(x) \qquad \Delta_{J,J'}(x)\Delta_{\overline{J},\overline{J'}}(x),$ associate sets of Temperley-Lieb diagrams $\Phi(I,I') \qquad \Phi(J,J').$

If $\Phi(J, J')$ contains $\Phi(I, I')$, then $\Delta_{J,J'}(x)\Delta_{\overline{J},\overline{J'}}(x) - \Delta_{I,I'}(x)\Delta_{\overline{I},\overline{I'}}(x)$ is TNN.

 $\Phi(123, 234) = \{ \aleph \} \qquad \Phi(14, 23) = \{ \aleph, \varkappa, \Im \}$ $\Delta_{14,23}(x) \Delta_{23,14}(x) - \Delta_{123,234}(x) \Delta_{4,1}(x) \quad \text{is TNN.}$

The Temperley-Lieb immanants

Using the isomorphism

$$\theta : \mathbb{C}[S_n]/I \to T_n(2),$$
$$s_i \mapsto t_i - 1,$$

define the function

$$f_{\tau}: S_n \to \mathbb{Z}$$

$$\sigma \mapsto \text{coefficient of } \tau \text{ in } \theta(\sigma).$$

For each basis element τ of $T_n(2)$, define $\operatorname{Imm}_{\tau}(x) = \sum_{\sigma \in S_n} f_{\tau}(\sigma) x_{1,\sigma(1)} \cdots x_{n,\sigma(n)}.$

Note: $\operatorname{Imm}_1(x) = \det(x)$.

Combinatorial interpretation of TL immanants Define the map $\phi : \{(\pi_1, \ldots, \pi_n)\} \to T_n(2)$ by $\mathbf{x} \mapsto \mathbf{y}$,

Theorem: Let A be the path matrix of G. Then $\operatorname{Imm}_{\tau}(A) = \#$ path families $\pi = (\pi_1, \ldots, \pi_n)$ in G from all sources to all sinks, which satisfy $\phi(\pi) = \tau$.

Imm $\underline{}_{\mathbf{L}}(A)$ counts path families like the one above.

Corollary: For all $\tau \in T_n(2)$, $\operatorname{Imm}_{\tau}(x)$ is TNN.

Theorem:

$$\Delta_{I,I'}(x)\Delta_{\overline{I},\overline{I'}}(x) = \sum_{\tau \in \Phi(I,I')} \operatorname{Imm}_{\tau}(x).$$

So,

$$\Delta_{14,23}(x)\Delta_{23,14}(x) = \operatorname{Imm}_{\mathcal{X}}(x) + \operatorname{Imm}_{\mathcal{X}}(x) + \operatorname{Imm}_{\mathcal{X}}(x),$$

 $\Delta_{123,234}(x)\Delta_{4,1}(x) = \operatorname{Imm}_{\mathcal{X}}(x),$

and the difference of these two products is $\operatorname{Imm}_{\mathbf{X}}(x) + \operatorname{Imm}_{\mathbf{X}}(x).$

Proof idea: For each basis element τ of $T_n(2)$, there exists a matrix $A = A(\tau)$ which satisfies

$$\operatorname{Imm}_{\xi}(A(\tau)) = \begin{cases} 1 & \text{if } \xi = \tau, \\ 0 & \text{otherwise.} \end{cases}$$

Fun fact:
Define
$$A = \begin{bmatrix} B & C \\ 0 & D \end{bmatrix}$$
; recall that $\det(A) = \det(B) \det(D)$.

If
$$\tau = \frac{\tau_1}{\tau_2}$$
, then we have $\operatorname{Imm}_{\tau}(A) = \operatorname{Imm}_{\tau_1}(B)\operatorname{Imm}_{\tau_2}(D)$.

Example: If B is 3×3 , D is 2×2 , then

$$\operatorname{Imm}_{\mathbf{\chi}}(A) = \operatorname{Imm}_{\mathbf{\chi}}(B)\operatorname{Imm}_{\mathbf{\chi}}(D),$$
$$\operatorname{Imm}_{\underline{\Xi}}(A) = \operatorname{Imm}_{\underline{\Xi}}(B)\operatorname{Imm}_{\underline{\Xi}}(D).$$

Open questions

Definition: Call a polynomial $p \in \mathbb{Z}[x_{1,1}, \ldots, x_{n,n}]$ MNN (SNN) if for every $n \times n$ Jacobi-Trudi matrix A, the symmetric function p(A) is monomial nonnegative (Schur nonnegative).

Question: Temperley-Lieb immanants are MNN. Are they SNN?

Question: Can we generalize these results to products of k minors?

Theorem:

 $\dim_{\mathbb{C}} \operatorname{span}\{\Delta_{I,I'}(x)\Delta_{\overline{I},\overline{I'}}(x) \mid I, I' \subset [n]\} = C_n = \frac{1}{n}$

Proof idea:

$$\Delta_{I,I'}(x)\Delta_{\overline{I},\overline{I'}}(x) = \sum_{\tau \in \Phi(I,I')} \operatorname{Imm}_{\tau}(x). \quad (\Rightarrow \dim \underline{\leq}$$

The set $\{\Delta_{I,I'}(x)\Delta_{\overline{I},\overline{I'}}(x) \mid P(I,I') \text{ is a Dyck}$ path $\}$ is linearly independent. $(\Rightarrow \dim 2)$

The poset of products of complementary minors of 3×3 matrices.