
TEMPERLEY-LIEB IMMANANTS

BRENDON RHOADES AND MARK SKANDERA

Abstract. We use the Temperley-Lieb algebra to define a family of totally non-
negative polynomials of the form

∑

σ∈Sn

f(σ)x1,σ(1) · · ·xn,σ(n). The cone gener-
ated by these polynomials contains all totally nonnegative polynomials of the form
∆J,J ′(x)∆L,L′(x)−∆I,I′(x)∆K,K′(x), where ∆I,I′(x), . . . ,∆K,K′(x) are matrix mi-
nors. We also give new conditions on the eight sets I, . . . ,K ′ which characterize
differences of products of minors which are totally nonnegative.

1. Introduction

A real matrix is called totally nonnegative (TNN) if the determinant of each of its
square submatrices is nonnegative. Such matrices appear in many areas of mathe-
matics and the concept of total nonnegativity has been generalized to apply not only
to matrices, but also to other mathematical objects. (See e.g. [15] and references
there.) In particular, a polynomial p(x) in n2 variables x = (x1,1, . . . , xn,n) is called
totally nonnegative if it satisfies

(1.1) p(A) =
def
p(a1,1, . . . , an,n) ≥ 0

for every n×n TNN matrix A = (ai,j). Obvious examples are the n×n determinant
and the k × k minors, i.e. the determinants of k × k submatrices.

In light of (1.1) it will be convenient to consider x = (xi,j) to be a matrix of n2

variables. For each pair (I, I ′) of subsets of [n] = {1, . . . , n} we will define the (I, I ′)
submatrix of x and (I, I ′) minor of x to be

(1.2)
xI,I′ =

def
(xi,j)i∈I,j∈I′ ,

∆I,I′(x) =
def

det(xI,I′).

Thus ∆I,I′(x) is the determinant of the submatrix of x corresponding to rows I and
columns I ′. In writing ∆I,I′(x) we will tacitly assume that we have |I| = |I ′|.

Some recent interest in TNN polynomials concerns a collection of polynomials aris-
ing in the study of canonical bases of quantum groups [2]. While this collection,
known as the dual canonical basis of type An−1, currently has no simple description,
Lusztig [29] has proved that it consists entirely of TNN polynomials. Berenstein,
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Gelfand, and Zelevinsky [3, 16] have developed machinery to enumerate the dual
canonical basis elements for small n, and further investigation suggests that these
polynomials are expressable as subtraction-free Laurent expressions in matrix mi-
nors [12]. Progress on the problem of describing the dual canonical basis is obstructed
somewhat by the scarcity of nontrivial families of polynomials which are known to be
TNN.

Providing examples of such families of TNN polynomials, several authors have
studied polynomials constructed from functions f : Sn → R by

(1.3) Immf (x) =
∑

σ∈Sn

f(σ)x1,σ(1) · · · xn,σ(n).

For a fixed function f , this polynomial is called the the f -immanant in [34, Sec. 3].
We will refer to all elements of span

R
{x1,σ(1) · · · xn,σ(n) | σ ∈ Sn} as immanants.

Stembridge proved the total nonnegativity of the immanants Immχλ(x) constructed
from the irreducible characters χλ : Sn → R of Sn [36, Cor. 3.3]. (See also [26].) These
immanants are usually abbreviated Immλ(x),

(1.4) Immλ(x) =
∑

σ∈Sn

χλ(σ)x1,σ(1) · · · xn,σ(n).

Stembridge also proved the stronger result [36, Cor. 3.4] that the immanants

(1.5) Immλ(x)− deg(χλ) det(x)

are TNN, and posed several related questions which remain open [37]. (See also
[19, 20, 21, 35].)

Discovering a very different family of TNN immanants, Fallat et. al. [10, Thm. 4.6]
characterized all TNN immanants of the form

∆J,J(x)∆J,J(x)−∆I,I(x)∆I,I(x),

where I = [n] r I, J = [n] r J . This result was later strengthened [31, Thm. 3.2] to
include products of nonprincipal minors

(1.6) ∆J,J ′(x)∆J,J ′(x)−∆I,I′(x)∆I,I′(x).

The results in both papers [10], [31] generalize to polynomials which are not im-
manants.

While the coefficients in (1.6) do not correspond to class functions on Sn as do those
in (1.4), certain quotients of the symmetric group algebra provide a link between the
two families of immanants. Indeed the methods in [36] imply that such quotients
provide important information about TNN polynomials in general. In this paper, we
use such a quotient which is isomorphic to the Temperley-Lieb algebra Tn(2) to define
a family of functions

{fτ : Sn → R | τ a basis element of Tn(2)}
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and a family of corresponding TNN immanants

Immτ (x) =
def

∑

σ∈Sn

fτ (σ)x1,σ(1) · · · xn,σ(n)

whose cone contains all immanants in the family (1.6). We begin in Section 2 with
some of the well-known combinatorics of total nonnegativity. In Section 3 we define
Temperley-Lieb immanants, which generalize the determinant, and give a combina-
torial proof that these immanants are TNN. We also present some of their basic
properties, including generalizations of determinantal properties. In Sections 4 and
5 we give improved criteria for deciding the total nonnegativity of immanants of the
form (1.6) and of related polynomials. Finally in Section 6 we discuss connections
between the Temperley-Lieb immanants and symmetric functions.

2. Total nonnegativity and planar networks

It is possible to prove that some polynomials p(x) are TNN by providing a com-
binatorial interpretation for p(A) whenever A is a TNN matrix. Typically such a
combinatorial interpretation involves a class of directed graphs which we call planar
networks. After reviewing the basis facts results concerning planar networks, we will
state and prove some results concerning special planar networks which we will call
wiring diagrams and generalized wiring diagrams.

We define a planar network of order n to be an acyclic planar directed multigraph
G = (V,E) in which 2n boundary vertices are labeled counterclockwise as v1, . . . , vn,
v′n, . . . , v

′
1. We call the vertices v1, . . . , vn sources and the vertices v′1, . . . , v

′
n sinks.

Each edge e ∈ E is weighted by a complex number ω(e), and we define the weight of
a set F of edges to be the product of weights of edges in F ,

(2.1) ω(F ) =
∏

e∈F

ω(e).

More generally, we define the weight of a multiset of edges to be the analogous product
in which weights of edges may appear with multiplicities greater than one. If m =
(me)e∈F is a vector of multiplicities which defines a multiset of edges in F , we denote
the weight of this multiset by ω(F,m).

Given a planar network G of order n, we define a subgraph H of G to be a planar
subnetwork of G if it is a planar network whose sources and sinks are precisely those
of G. We will economize notation by writing H ⊂ G to denote that H is a planar
subnetwork of G.

We define the path matrix A = (ai,j) of a planar network G by letting ai,j be the
sum of path weights

ai,j =
∑

F

ω(F ),
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Figure 2.1. A planar network

over all paths F from source vi to sink v′j. The reader may verify that the path matrix
of the planar network in Figure 2.1 is

(2.2)









9 8 4 0
1 4 5 .4
0 0 3 .2
0 0 0 2.4









,

and that this matrix is TNN. In figures we will assume that all edges are directed
from left to right.

If π = (π1, . . . , πk) is a family of k paths in a planar network, we define the weight
of π to be the weight of the multiset of edges contained in the paths,

ω(π) = ω(π1) · · ·ω(πk).

Thus in Figure 2.1, the unique pair π = (π1, π2) of paths from source v2 to sinks
(v′1, v

′
2) has weight (2 · .5)(2 · 2) = 4.

The following famous theorem of Lindström and others [1] [6] [7] [23] [27] [28]
explains the connection between planar networks and TNN matrices. (See also [15].)

Theorem 2.1. An n× n matrix A is totally nonnegative if and only if it is the path
matrix of a planar network G of order n in which all edge weights are nonnegative
real numbers. Furthermore, for any k-element subsets I, I ′ of [n],

I = {i1, . . . , ik}, i1 < · · · < ik,

I ′ = {i′1, . . . , i
′
k}, i′1 < · · · < i′k,

the (I, I ′) minor of A has the combinatorial interpretation

∆I,I′(A) =
∑

π

ω(π),

where the sum is over all families π = (π1, . . . , πk) of k nonintersecting paths in G
which satisfy
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(1) πj is a path from vij to v′i′j .

(2) πj and πℓ do not intersect for j 6= ℓ.

The reader may verify that the graph in Figure 2.1 has three nonintersecting path
families from {v1, v2} to {v′1, v

′
3}, and that these families have weights 14, 21, and 6.

Correspondingly, the (12, 13) minor of the path matrix (2.2) is 41 = 14 + 21 + 6.

Given two planar networks G,G′ of order n, we define their concatenation GG′ to
be the planar network created by superimposing the sinks of G upon the sources of
G′. It is easy to see that if A and A′ are the path matrices of G and G′, then AA′

is the path matrix of GG′. Using this fact, one may generalize the combinatorial
interpretation in Theorem 2.1 to arbitrary complex n× n matrices.

Observation 2.2. Every complex n × n matrix A is the path matrix of a planar
network G. Furthermore, the minor ∆I,I′(A)∆I,I′(A) has the same interpretation as
in Theorem 2.1.

Proof. Let A be an n× n matrix. We may factor A as

A =MJM−1

where J is a block-diagonal matrix composed of Jordan blocks. Since M and M−1

belong to GLn(R), each factors as a product of matrices of the forms I + cEi,i+1,
I + cEi+1,i, I + (c − 1)Ei,i, where Ei,j is the n × n matrix whose unique nonzero
entry is a 1 in position i, j, and c is a complex number. It is easy to see that J
factors similarly. These elementary factors are the weighted path matrices of certain
planar networks G1, . . . , Gr and their product is therefore the path matrix of the
concatenation of planar networks G1 · · ·Gr. (See e.g. [14, Sec. 4.2].) �

Immediate consequences of Theorem 2.1 (or Observation 2.2) are combinatorial in-
terpretations for certain TNN immanants. Fix a planar networkG and its path matrix
A. The application of the monomial x1,σ(1) · · · xn,σ(n) to A has the interpretation

a1,σ(1) · · · an,σ(n) =
∑

π

ω(π),

where the sum is over path families π = (π1, . . . , πn) in G in which πi is a path from vi
to v′σ(i). We will say that such a path family has type σ. Also, by choosing I = I ′ = [n]
in Theorem 2.1, we have that

det(A) =
∑

H⊂G

ω(H),

where the sum is over all planar subnetworks H of G which are unions of n non-
intersecting paths. With a bit more work, one can derive a similar combinatorial
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interpretation for the TNN immanants (1.6),

∆J,J ′(A)∆J,J ′(A)−∆I,I′(A)∆I,I′(A) =
∑

H∈H

cHω(H),

for appropriate collections H of planar subnetworks which depend on the index sets
I, J , etc., and for appropriate constants cH . (See [31, Cor. 3.3].) No analogous
combinatorial interpretation for the TNN immanants (1.4) and (1.5) is known.

To construct more TNN polynomials, we shall examine the planar networks of
order n which are unions of n paths. We will say that a path family π covers a planar
network H = (V,E) if every edge in E belongs to a path in π. Since two different
path families may cover the edges of a planar network with different multiplicities,
we introduce the following notation. Given a sequence m = (me)e∈E of positive
multiplicities, we define the group algebra element

(2.3) β(H,m) =
∑

π

type(π),

where the sum is over all path families π which cover the edges ofH with multiplicities
m. This will serve as an unweighted path generating function for the pair (H,m).
Similarly, we define

(2.4) β(H) =
∑

m∈[n]|E|

β(H,m).

Certain planar networks which appear often in conjunction with the symmetric
group are called wiring diagrams. To the adjacent transpositions s1, . . . , sn−1 we
associate the planar networks H1, . . . , Hn−1 in Figure 2.2.

.

. .
.
.

.

.

.

s s s1 2 n−1

.

Figure 2.2

We then define the wiring diagram of an expression

(2.5) si1 · · · sik
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(a) (b) (c)

Figure 2.3. A wiring diagram, a generalized wiring diagram, and an-
other planar network.

(not necessarily reduced) to be the concatenation Hi1 · · ·Hik . In figures we will omit
sources, sinks, and intermediate vertices of wiring diagrams and related planar net-
works when there is no danger of confusion. Figure 2.3(a) shows the wiring diagram
associated to the expression s1s2s1s1s3 (in S4). The reader can verify that the path
generating function of this wiring diagram is

2(2 + 2s1 + s2 + s1s2 + s2s1 + s1s2s1)(1 + s3).

We state without proof the following simple properties of wiring diagrams.

Observation 2.3. Let (2.5) be an expression for σ ∈ Sn, and let H be the corre-
sponding wiring diagram. Then H has the following properties.

(1) There is a unique path family which covers H, in which no two paths cross,
and in which no three paths share a vertex.

(2) Any path family which covers H covers each edge exactly once.
(3) The path generating function for H is (1 + si1) · · · (1 + sik).

Closely related to wiring diagrams are planar networks which are unions of n paths,
no three of which share a vertex. We will call such planar networks generalized wiring
diagrams (of order n). Figure 2.3 (b) shows a generalized wiring diagram of order 4.

The properties of wiring diagrams listed in Observation 2.3 generalize in a straight-
forward way to generalized wiring diagrams. It is easy to see that statement 1 of the
observation remains true for generalized wiring diagrams. Statement 2 generalizes as
follows.

Lemma 2.4. Let H be a generalized wiring diagram. If a path family π and a path
family π′ cover the edges of H with multiplicity sequences m and m′, respectively, then
m = m′.

Proof. Let H = (V,E). Since H is a generalized wiring diagram, there exists a path
family π′′ = (π′′

1 , . . . , π
′′
n) which covers H with multiplicity sequence m′′ and each
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component of this sequence is 1 or 2. Since the definition of planar networks requires
that H have n distinct sources, we have

me = m′
e = m′′

e

for each edge e incident upon a source.

Partially order the vertices of H by the edges E (i.e. by defining u < v if it is
possible to follow directed edges in E from u to v). Assume that m 6= m′′, and choose
a vertex u1 such that m and m′′ agree on all edges terminating at u1 but disagree on
at least one edge originating at u1, and such that no other vertex u0 < u1 has this
property. Since we have

∑

m′′
e =

∑

me,

where the sums are over all edges originating at u1, there must exist vertices u2, u3
which satisfy

m′′
(u1,u2)

> m(u1,u2) > 1,

m(u1,u3) > m′′
(u1,u3)

> 1,

contradicting the fact that at most two paths in π′′ pass through u1. Thus we must
have m = m′′ and m′ = m′′. �

Since we will always consider the weight of a generalized diagram H in conjunction
with the fixed multiplicity vector m described in Lemma 2.4, we will omit this vector
from our notation,

ω(H) =
def
ω(H,m).

To generalize statement 3 from Observation 2.3 we will show that the path gener-
ating functions of generalized wiring diagrams factor just as those of wiring diagrams.
On the other hand, the path generating functions of arbitrary unions of n paths never
factor this way. For instance, Figure 2.3 (c) shows a planar network whose path gen-
erating function is 1 + s2 + s3 + s2s3 + s3s2 + s2s3s2. We will denote by z[i,j] the
element of Z[Sn] which is a sum of permutations in the subgroup of Sn generated by
si, . . . , sj−1. Thus the path generating function of the planar network in Figure 2.3 (c)
is z[2,4].

Lemma 2.5. Let H = (V,E) be a planar network which is a union of n paths. Then
H is a generalized wiring diagram if and only if β(H) factors as

β(H) = (1 + si1) · · · (1 + sir),

for some generators si1 , . . . , sir of Sn. In particular, if H is not a generalized wiring
diagram then β(H) is equal to a nonnegative linear combination of terms of the form

(2.6) z[i1,j1] · · · z[ir ,jr],

and in each such term, at least one pair of indices satisfies ik ≤ jk − 2.
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Proof. (⇒) Suppose that H = (V,E) is a generalized wiring diagram, and let m be
the unique vector of multiplicities defined as in Lemma 2.4. If me = 2 for any edge e,
then we can contract that edge to obtain a new generalized wiring diagram H ′ which
satisfies

β(H ′) = β(H).

It will suffice therefore to consider the case that me = 1 for all edges e. Now let
π = (π1, . . . , πn) be the unique noncrossing path family which covers H, and consider
the vertices which belong to two paths of π. Partially order these vertices as in
the proof of Lemma 2.4, let u1, . . . , ur be a linear extension of this partial order,
and define the sequence (i1, . . . , ir) by ik = c if paths πc, πc+1 pass through vertex
uk. Now observe that the wiring diagram G = Hi1 · · ·Hir , (where Hi1 , . . . , Hir are
defined as in Figure 2.2) satisfies β(G) = β(H). By Observation 2.3 we have the
desired factorization of β(H).

(⇐) Suppose that H = (V,E) is not a generalized wiring diagram. Fix one vector
m which appears in the sum

β(H) =
∑

m

β(H,m)

and suppose that for some edge e we have me ≥ 2. Replacing the corresponding
component of m with me new components equal to one, and replacing e with me new
edges, we obtain a mulitplicity vector m′ and a graph H ′ which satisfsy

β(H ′,m′) = me!β(H,m).

It is easy to see that H ′ is not a generalized wiring diagram.

Repeating this process, we eventually obtain a planar networkH ′′ such that β(H,m)
is equal to a nonnegative multiple of β(H ′′,m′′), and H ′′ is a union of n paths, no
two of which share an edge. Let π = (π1, . . . , πn) be the unique noncrossing path
family which covers H ′′, and consider the vertices which belong to at least two paths
of π. Partially order these vertices as before, let u1, . . . , ur be a linear extension of
this partial order, and define the pairs (i1, j1), . . . , (ir, jr) by

(ik, jk) = (c, d),

where the paths which pass through vertex uk are πc, . . . , πd. Then we have

β(H ′′,m′′) = z[i1,j1] · · · z[ir,jr],

β(H,m) is equal to a nonnegative multiple of this, and β(H) is equal to a sum of such
terms. Since H ′′ is not a generalized wiring diagram, one of the vertices uk belongs
to at least three paths in π, and we have jk − ik ≥ 3. �

In studying generalized wiring diagrams, we will make use of the wiring diagrams
corresponding to certain reduced expressions for 321-avoiding permutations. (A per-
mutation σ = σ1 · · · σn is said to be 321-avoiding if there are no indices i < j < k
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for which we have σi > σj > σk.) In particular, a well-known property of these
permutations is that each has a unique reduced expression of the form

(2.7) σ = (sa1sa1+1 · · · sb1)(sa2sa2+1 · · · sb2) · · · (sarsar+1 · · · sbr),

where [a1, b1], . . . , [ar, br] are intervals which satisfy

a1 > a2 > · · · > ar,

b1 > b2 > · · · > br.

(See e.g. [5], [18, Sec. 2.1].)

Lemma 2.6. Let G be the wiring diagram corresponding to a reduced expression of
the form (2.7) for a 321-avoiding permutation σ. The only planar subnetwork of G
which is a generalized wiring diagram of order n is G itself.

Proof. Each of the transpositions in (2.7) corresponds to a vertex of G having indegree
and outdegree two. Label these vertices from left to right as u1, . . . , uℓ and let π =
(π1, . . . , πn) be the unique noncrossing path family which covers G. Thus the vertices
shared by a pair of paths (πi, πi+1) correspond to occurrences of the transposition si in
(2.7). Let H be a planar subnetwork of G which is a generalized wiring diagram and
let π′ = (π′

1, . . . , π
′
n) be the unique noncrossing path family which covers H. Since H

is a generalized wiring diagram, no three paths in π′ share a vertex.

Suppose that we have H 6= G. Then we must have π′ 6= π and there exist some
indices j for which pi′j 6= πj. Since π is a noncrossing path family which covers G,
each such path π′

j shares an edge with πj−1 or with πj+1. Let j be the least index for
which π′

j shares an edge with πj−1. Let uk, uq be vertices with k < q such that paths
πj and π

′
j diverge at uk and reconverge at uq. Then the vertices uk and uq correspond

to occurrences of sj−1 in the expression (2.7). Immediately before passing through
uq, path π′

j necessarily passes through the vertex um−1 which by (2.7) corresponds
to the transposition sj−2. Since π′ is a noncrossing path family, and since we have
chosen j so that paths π′

j−1 and π
′
j−2 do not share edges with lesser indexed paths in

π, these two paths must also pass through um−1. This contradicts the fact that H
is a generalized wiring diagram, and we conclude that no path in π′ shares an edge
with a lesser indexed path in π. By symmetry, no path in π′ shares an edge with a
greater indexed path in π. It follows that H = G. �

3. Main results

Our main results concern the total nonnegativity of immanants related to the
Temperley-Lieb algebra. After defining these immanants, which generalize the de-
terminant, we will interpret them combinatorially and state their basic properties.
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Given a complex number ξ, we define the Temperley-Lieb algebra Tn(ξ) to be the
C-algebra generated by elements t1, . . . , tn−1 subject to the relations

t2i = ξti, for i = 1, . . . , n− 1,

titjti = ti, if |i− j| = 1,

titj = tjti, if |i− j| ≥ 2.

This algebra is often defined as a quotient of the Hecke algebra Hn(q), the C-algebra
with complex parameter q generated by s1, . . . , sn−1 subject to the relations

s2i = (q − 1)si + q, for i = 1, . . . , n− 1,

sisjsi = sjsisj, if |i− j| = 1,

sisj = sjsi, if |i− j| ≥ 2.

Specifically, we have

Hn(q)/(z[1,3]) ∼= Tn(q
1/2 + q−1/2)

q−1/2(si + 1) 7→ ti.

(See e.g. [11], [18, Sec. 2.1, Sec. 2.11], [39, Sec. 7].) Specializing at q = 1, we have the
isomorphism of C[Sn]/(z[1,3]) with Tn(2). Equivalently, the ideal (z[1,3]) is the kernel
of the homomorphism

θ : C[Sn] → Tn(2),

si 7→ ti − 1.

We will call the elements of the multiplicative monoid generated by t1, . . . , tn−1 the
standard basis of Tn(2), or simply the basis elements of Tn(2). The dimension of Tn(2)
(and of Tn(ξ)) as a complex vector space is well known to be the nth Catalan number
Cn = 1

n+1

(

2n
n

)

. A natural bijection between basis elements of Tn(2) and 321-avoiding
permutations in Sn is given by the correspondence of generators si ↔ ti.

We will use Tn(2) to classify planar networks as follows. Given a planar network
H which is a union of n paths, define the element φ(H) of Tn(2) by

φ(H) = θ(β(H)).

If H is a generalized wiring diagram, then by Lemma 2.5 we have that

φ(H) = θ(1 + si1) · · · θ(1 + sik) = ti1 · · · tik ,

for some indices i1, . . . , ik ∈ [n] and therefore that

φ(H) = 2jτ,

for some nonnegative integer j and some basis element τ of Tn(2). We will denote
the exponent and basis element by ǫ(H) and ψ(H) respectively,

φ(H) = 2ǫ(H)ψ(H).



12 BRENDON RHOADES AND MARK SKANDERA

If on the other hand H is not a generalized wiring diagram, then by Lemma 2.5 we
have that β(H) is equal to a sum of C[Sn] elements which belong to the kernel of θ.
It follows in this case that φ(H) = 0.

Diagrams of the basis elements of Tn(ξ), made popular by Kauffman [25, Sec. 4],
can aid in the calculation of φ(H). The identity and generators 1, t1, . . . , tn−1 are
represented by

, , , . . . , ,

and multiplication of these elements corresponds to concatenation of diagrams, with
cycles contributing a factor of ξ. For instance, the fourteen basis elements of T4(ξ)
are

, , , , , , , , , , , , , ,

and the equality t1t2t1t1t3 = ξt1t3 in T4(ξ) is represented by

(3.1) = ξ
.

If H is a generalized wiring diagram, then φ(H) can be computed graphically as
follows.

(1) Contract any doubly covered subpath to a single vertex.
(2) For each vertex v of indegree two and outdegree two, create vertex v′ with

indegree two and vertex v′′ with outdegree two.
(3) Interpret the resulting graph as an element of Tn(2). (Compare Figure 2.3(a)

and Equation 3.1.)

Analogous to the determinant, which counts families of nonintersecting paths in a
planar network G, we will define for each basis element τ of Tn(2) a Temperley-Lieb
immanant which essentially counts subnetworks H of G which satisfy ψ(H) = τ . The
coefficients of this immanant are given by the function fτ : Sn → R, which maps σ
to the coefficient of τ in θ(σ). To economize notation, we will write Immτ instead of
Immfτ ,

Immτ (x) =
∑

σ∈Sn

fτ (σ)x1,σ(1) · · · xn,σ(n).

When convenient we will tacitly extend fτ linearly to C[Sn]. Note that in the special
case τ = 1, the function fτ maps a permutation σ to (−1)ℓ(σ). Thus the determinant
is a Temperley-Lieb immanant,

det(x) = Imm1(x).
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Theorem 3.1. For any basis element τ of Tn(2), Immτ (x) is totally nonnegative. In
particular, let G be a planar network of order n and let A be its path matrix. Then
we have

(3.2) Immτ (A) =
∑

H⊂G

2ǫ(H)ω(H),

where the sum is over all planar subnetworks H of G which are generalized wiring
diagrams and which satisfy ψ(H) = τ .

Proof. We have

Immτ (A) =
∑

σ∈Sn

fτ (σ)a1,σ(1) · · · an,σ(n)

=
∑

(H,m)

ω(H,m)fτ (β(H,m)).

where the inner sum is over all planar subnetworks H of G which are unions of n
paths. If H is not a generalized wiring diagram, then β(H,m) belongs to the kernel
of θ, and we have fτ (β(H,m)) = 0. If on the other hand H is a generalized wiring
diagram, then β(H,m) = β(H) and fτ (β(H)) is equal to the coefficient of τ in

θ(β(H)) = θ((1 + si1) · · · (1 + sik))

= 2ǫ(H)ψ(H).

This coefficient is 2ǫ(H) if ψ(H) = τ and is zero otherwise. �

Note that the combinatorial interpretation of Immτ (A) given by Theorem 3.1 gen-
eralizes that of det(A) given by Lindström’s Lemma (Theorem 2.1): Imm1(A) is equal
to the sum of weights of nonintersecting path families in G. To generalize Lindström’s
interpretation of matrix minors, we will consider generalized submatrices of a matrix.
Let M , M ′ be multisets of [n], [n′], given by the sequences

(3.3)
µ(1) ≤ · · · ≤ µ(k),

µ′(1) ≤ · · · ≤ µ′(k),

respectively. In analogy to (1.2), we define the (M,M ′) generalized submatrix of the
n× n′ matrix x = (xi,j) to be

xM,M ′ =





xµ(1),µ′(1) · · · xµ(1),µ′(k)
...

...
xµ(k),µ′(1) · · · xµ(k),µ′(k)



 .

It is easy to see that for any TNN matrix A, each generalized submatrix AM,M ′ is
again TNN. We also have the following.
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Observation 3.2. Let p(y) = p(y1,1, . . . , yn,n) be a TNN polynomial, let M , M ′ be
multisets of [n], and define the polynomial q(x) by q(x) = p(xM,M ′). Then q(x) is
totally nonnegative.

Proof. For each TNN matrix A, AM,M ′ is also TNN and we have

q(A) = p(AM,M ′) ≥ 0.

�

Given a planar network G for A, we may construct a planar network Ĝ for AM,M ′

as follows. For each source vi of G, if i appears with multiplicity mi in M , introduce
mi new sources and mi directed edges from these to vi. Introduce new sinks similarly.
This construction gives a bijection between unions of k paths in G, no three of which
share a vertex, and generalized wiring diagrams which are planar subnetworks of Ĝ.
We will denote the correspondence by H ↔ Ĥ. By this correspondence, it is clear
that Immτ (xM,M ′) is zero whenever M or M ′ contains an element with multiplicity
greater than 2.

Theorem 3.3. Let G be a planar network of order n with path matrix A, let τ be a
basis element of Tk(2), and let M , M ′ be cardinality-k multisets of [n] given by (3.3).
Then we have

(3.4) Immτ (AM,M ′) =
∑

H

2ǫ(Ĥ)ω(H),

where the sum is over planar networks H which are unions of k paths π = (π1, . . . , πk)
in G and which satisfy

(1) πj is a path from vµ(j) to v
′
µ′(j).

(2) ψ(Ĥ) = τ .

Proof. Let Ĝ be the planar network of order k constructed from G as above so that
AM,M ′ is the path matrix of Ĝ. By Theorem 3.1 we have

Immτ (AM,M ′) =
∑

F

2ǫ(F )ω(F ),

where the sum is over planar subnetworks F of Ĝ which are generalized wiring di-
agrams and which satisfy ψ(F ) = τ . Since the correspondence H ↔ Ĥ satisfies

ω(H) = ω(Ĥ), we have the desired result. �

We may simplify Theorem 3.1 somewhat by replacing planar subnetworks with
path families of type 1. (Each path πi begins at source i and ends at sink i.) We will
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extend the definitions of φ, ǫ, and ψ to path such families in the natural way,

φ(π) = φ(H),

ǫ(π) = ǫ(H),

ψ(π) = ψ(H),

where H is the set of edges covered by π. Furthermore, we define a path family
π = (π1, . . . , πn) to be nonintersecting (mod 2) if the paths πi and πj do not intersect
whenever i ≡ j (mod 2).

Theorem 3.4. For any basis element τ of Tn(2), Immτ (x) is totally nonnegative. In
particular, let G be a planar network of order n and let A be its path matrix. Then
we have

(3.5) Immτ (A) =
∑

π

ω(π),

where the sum is over all path families π = (π1, . . . , πn) of type 1 in G which are
nonintersecting (mod 2) and which satisfy ψ(π) = τ .

Proof. By [31, Prop. 2.1] we may interpret the coefficient 2ǫ(H) in Equation (3.2) as
the number of path families of type 1 which are nonintersecting (mod 2) and which
cover H. �

The following consequences of Theorem 3.1 show that Temperley-Lieb immanants
are not only TNN, but that they also play an important role in characterizing im-
manants which are TNN.

Corollary 3.5. Let σ be a 321-avoiding permutation in Sn, let G be the wiring dia-
gram corresponding to any reduced expression

(3.6) σ = si1 · · · siℓ ,

define the basis element ν of Tn(2) by using the same indices as in (3.6),

(3.7) ν = ti1 · · · tiℓ .

and let A(ν) be the path matrix of G. Then we have

Immτ (A(ν)) =

{

1 if ν = τ ,

0 otherwise.

Proof. Since σ is 321-avoiding, any reduced expression for σ can be obtained from
any other by a sequence of swaps of the form

W1sisjW2 7→ W1sjsiW2,

where W1 and W2 are words in s1, . . . , sn−1 and |i − j| ≥ 2. (See [38].) While
such a swap maps a wiring diagram to a distinct wiring diagram, it is easy to see
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that the corresponding path matrices are equal. Thus A(ν) is the path matrix of an
unweighted wiring diagram H of the form given by Equation (2.7).

By Lemma 2.6, the only planar subnetwork of H which is a generalized wiring
diagram is H itself. Thus Equation (3.2) gives

Immτ (A(ν)) =

{

2ǫ(H) if ν = τ ,

0 otherwise.

Since (3.6) is a reduced expression, (3.7) is as well and we have ǫ(H) = 0, as desired.
�

Corollary 3.6. A linear combination of immanants

p(x) =
∑

τ

dτ Immτ (x),

is totally nonnegative if and only if each coefficient dτ is nonnegative.

Proof. If the coefficients in this expression are all nonnegative, then obviously p(x)
is TNN. Suppose therefore that we have dν < 0 for some basis element ν of Tn(2).
Defining the TNN matrix A(ν) as in Corollary 3.5, we have

p(A(ν)) = dν < 0,

and p(x) is not TNN. �

The authors do not know an explicit formula for the coefficients {fτ (ρ) | ρ ∈ Sn}
occurring in Immτ (x). However, it is easy to describe in terms of the Bruhat order
which of these coefficients are zero. (See [9] for another connection between TNN
immanants and the Bruhat order.)

Proposition 3.7. Let τ be a basis element of Tn(2), let ti1 · · · tiℓ be a reduced expres-
sion for τ and let σ = si1 · · · siℓ be the corresponding 321-avoiding permutation in Sn.
Then we have fτ (σ) = 1 and

Immτ (x) =
∑

ρ≥σ

fτ (ρ)x1,ρ(1) · · · xn,ρ(n),

where the comparison of permutations is in the Bruhat order.

Proof. Let ρ be a permutation which is less than or equal to σ in the Bruhat order.
Then each reduced expression sj1 · · · sjk for ρ satisfies k ≤ ℓ. Since fτ (ρ) is equal to
the coefficient of τ in

θ(ρ) = (tj1 − 1) · · · (tjk − 1),
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and no expression for τ has length less than ℓ, we must have

fτ (ρ) =

{

1 if ρ = σ,

0 otherwise.

�

Corollary 3.8. The set { Immτ (x) | τ a basis element of Tn(2)} is linearly indepen-
dent.

Straightforward but somewhat tedious computations give the following formulas
for Temperley-Lieb immanants when n ≤ 4. In each formula, the permutation σ
should be understood to be the 321-avoiding permutation which corresponds to τ as
in Proposition 3.7. For τ ∈ Tn(2) and n < 4 we have

Immτ (x) =
∑

ρ≥σ

(−1)ℓ(ρ)−ℓ(σ)x1,ρ(1) · · · xn,ρ(n).

For τ ∈ T4(2) we have

Immτ (x) =
∑

ρ≥σ

(−1)ℓ(ρ)−ℓ(σ)x1,ρ(1) · · · xn,ρ(n) if τ 6∈ {t2, t1t3},

Immt2(x) =
∑

ρ≥σ

(−1)ℓ(ρ)−ℓ(σ)x1,ρ(1) · · · xn,ρ(n) −
∑

ρ≥3412

(−1)ℓ(ρ)−ℓ(σ)x1,ρ(1) · · · xn,ρ(n),

Immt1t3(x) =
∑

ρ≥σ

(−1)ℓ(ρ)−ℓ(σ)x1,ρ(1) · · · xn,ρ(n) −
∑

ρ≥4231

(−1)ℓ(ρ)−ℓ(σ)x1,ρ(1) · · · xn,ρ(n).

These formulas suggest the following problem.

Problem 3.1. Given a basis element τ of Tn(2), define σ as in Proposition 3.7 and
find a family of sets {U(ρ, σ) | ρ ≥ σ} which satisfy

fτ (ρ) = |U(ρ, σ)|(−1)ℓ(ρ)−ℓ(σ).

Since Temperley-Lieb immanants include the determinant as a special case, it is not
surprising that several properties of the determinant generalize nicely to Temperley-
Lieb immanants.

Similar to the identity det(xT ) = det(x) is the following property concerning trans-
posed matrices.

Proposition 3.9. Let τ , τ ′ be basis elements of Tn(2) which satisfy

τ = ti1 · · · tiℓ ,

τ ′ = tiℓ · · · ti1 .

Then we have Immτ (x
T ) = Immτ ′(x).
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Proof. Let sj1 · · · sjk be a reduced expression for a permutation σ in Sn. Then fτ (σ
−1)

is the coefficient of ti1 · · · tiℓ in

θ(σ−1) = (tjk − 1) · · · (tj1 − 1),

which is equal to the coefficient of tiℓ · · · ti1 in

θ(σ) = (tj1 − 1) · · · (tjk − 1),

which is fτ ′(σ). Thus we have

Immτ (x
T ) =

∑

σ∈Sn

fτ (σ
−1)x1,σ(1) · · · xn,σ(n)

=
∑

σ∈Sn

fτ ′(σ)x1,σ(1) · · · xn,σ(n)

= Immτ ′(x).

�

A property of determinants known as the Cauchy-Binet identity relates the k × k
minors of a product of two matrices to the k × k minors of the individual matrices.
Letting A, B, C be n×nmatrices which satisfy A = BC and letting I, I ′ be k-element
subsets of [n], we have

(3.8) det(AI,I′) =
∑

K

det(BI,K) det(CK,I′),

where the sum is over all k-element subsets K of [n]. Many generalizations of the
Cauchy-Binet identity exist in the literature. (See e.g. [14, p. 379], [24], [30, Lem. 2.3],
[36, Thm. 1.1].) Our generalization is as follows.

Proposition 3.10. Let τ be a basis element of Tk(2), let A, B, C be n× n matrices
which satisfy A = BC, and let M , M ′ be cardinality-k multisets of [n]. Then we have

Immτ (AM,M ′) =
∑

N

∑

(τ1,τ2)

2d(τ1,τ2)−e(N) Immτ1(BM,N) Immτ2(CN,M ′),

where the outer sum is over cardinality-k multisets N of [n], the inner sum is over
pairs (τ1, τ2) of basis elements of Tk(2) which satisfy τ1τ2 = 2d(τ1,τ2)τ , and e(N) is the
number of elements appearing twice in N .

Proof. Let G1, G2 be planar networks with path matrices BM,[n], C[n],M ′ , and define
G = G1G2, so that the path matrix of G is AM,M ′ . Then we have

Immτ (AM,M ′) =
∑

H

2ǫ(H)ω(H),

where the sum is over all planar subnetworks H of G which are generalized wiring
diagrams and which satisfy ψ(H) = τ . Each planar subnetwork H appearing in this
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sum determines a multiset N(H) as follows. Let π(H) = (π1, . . . , πk) be the unique
noncrossing path family which covers H, let U = {u1, . . . , un} be the vertices created
by identifying the sinks of G1 with the sources of G2, and define N(H) = 1m1 · · ·nmn

by

mi = #{j | πj contains ui}.

We therefore have

Immτ (AM,M ′) =
∑

N

∑

H

2ǫ(H)ω(H),

where the planar networks H in the inner sum satisfy N(H) = N . It is clear that
such planar networks correspond bijectively with pairs (H1, H2) of planar networks
satisfying the following conditions.

(1) The sources of H1 are those of G.
(2) The sinks of H2 are those of G.
(3) The sinks of H1 and the sources of H2 are {ui | i ∈ N}.
(4) ψ(H1H2) = τ .
(5) There exist a unique noncrossing path family covering H1, and a unique non-

crossing path family covering H2. For i = 1, . . . , n, the vertex ui belongs to
exactly mi paths in each of these families.

Thus we have

(3.9) Immτ (AM,M ′) =
∑

N

∑

(H1,H2)

2ǫ(H1H2)ω(H1)ω(H2),

where the inner sum is over all pairs (H1, H2) which satisfy the above conditions.

Now fix a multiset N . For each pair (H1, H2) appearing in the inner sum of (3.9),
there exists a pair (τ1, τ2) of basis elements of Tk(2) and a nonnegative integer d(τ1, τ2)
satisfying

τ1 = ψ(Ĥ1), τ2 = ψ(Ĥ2),

τ1τ2 = 2d(τ1,τ2),

where Ĥ1, Ĥ2 are constructed from N , H1, H2 as preceeding Theorem 3.3. As a
consequence, we have

ǫ(Ĥ1Ĥ2) = ǫ(Ĥ1) + ǫ(Ĥ2) + d(τ1, τ2).

Because of the additional vertices and edges introduced by the construction Hj 7→ Ĥj,
we also have

ǫ(Ĥ1Ĥ2) = ǫ(H1H2) + e(N),
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where e(H) is the number of indices which appear twice in N . Applying this infor-
mation and Theorem 3.3 to Equation (3.9), we obtain

Immτ (AM,M ′) =
∑

N

∑

(τ1,τ2)

2d(τ1,τ2)−e(N)
∑

(H1,H2)

2ǫ(Ĥ1Ĥ2)ω(H1)ω(H2)

=
∑

N

∑

(τ1,τ2)

2d(τ1,τ2)−e(N)
∑

H1

2ǫ(Ĥ1)ω(H1)
∑

H2

2ǫ(Ĥ2)ω(H2)

=
∑

N

∑

(τ1,τ2)

2d(τ1,τ2)−e(N) Immτ1(BM,N) Immτ2(CN,M ′).

�

Using this generalized Cauchy-Binet identity and the following observation, we can
generalize other well-known facts concerning the determinant.

Observation 3.11. Let P be the permutation matrix corresponding to the adjacent
transposition si of Sn. Then we have

Immτ (P[n],M) =











1 if τ = ti and M = [n],

−1 if τ = 1 and M = [n],

0 otherwise.

Proof. The permutation matrices corresponding to s1, . . . , sn−1 are the path matrices
of the planar networks shown in Figure 3.1. Unlabeled edges have weight 1. �

.

. .
.
.

.

.

.

s s s1 2 n−1

.

−1

−1

−1

−1

−1

−1

Figure 3.1

Recall that swapping two rows of a matrix changes the sign of its determinant.
Such a swap changes the sign of some, but not all, of the Temperley-Lieb immanants.
Similarly, the equality of two rows, which causes the determinant of a matrix to
vanish, causes only some of the Temperley-Lieb immanants of a matrix to vanish. In
the following two results, let the left vetices of a generic basis element of Tn(2) be
labeled v1, . . . , vn, and the right vertices be labeled v′1, . . . , v

′
n, from top to bottom in

both cases.
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Proposition 3.12. Let τ be a basis element of Tn(2), let A be an n× n matrix, and
let P be the permutation matrix corresponding to the adjacent transposition si. Then
we have

Immτ (PA) =

{

− Immτ (A) if τ does not contain the edge (vi, vi+1),

Immτ (A) +
∑

ν Immν(A) otherwise,

where the sum is over basis elements ν of Tn(2) which satisfy tiν = τ , and

Immτ (AP ) =

{

− Immτ (A) if τ does not contain the edge (v′i, v
′
i+1),

Immτ (A) +
∑

ν Immν(A) otherwise,

where the sum is over basis elements ν of Tn(2) which satisfy νti = τ .

Proof. By Proposition 3.10 and Observation 3.11, we have

Immτ (PA) = Imm1(P ) Immτ (A) +
∑

ν

2d(ti,ν) Immti(P ) Immν(A),

= − Immτ (A) +
∑

ν

2d(ti,ν) Immν(A),

where the sum is over all basis elements ν of Tn(2) for which tiν is a multiple of τ . If
τ does not contain the edge (vi, vi+1) then there is no such element ν and we have

Immτ (PA) = − Immτ (A).

Suppose therefore that τ does contain the edge (vi, vi+1). Then we have

Immτ (PA) = − Immτ (A) + 2 Immτ (A) +
∑

ν

Immν(A),

= Immτ (A) +
∑

ν

Immν(A),

where the sum is over basis elements ν 6= τ of Tn(2) which satisfy tiν = τ .

A similar argument applies to Immτ (AP ). �

Corollary 3.13. Let τ be a basis element of Tn(2), let A be an n×n matrix, and let
i < j be indices in [n]. Then we have Immτ (A) = 0 if rows i and j of A are equal
and τ contains none of the edges (vi, vi+1), . . . , (vj−1, vj), or if columns i and j of A
are equal and τ contains none of the edges (v′i, v

′
i+1), . . . , (v

′
j−1, v

′
j).

While the equality of two rows or two columns of a matrix doesn’t cause all
Temperley-Lieb immanants of that matrix to vanish, the equality of three rows or
three columns does.

Proposition 3.14. Let A be an n× n matrix and let τ be a basis element of Tn(2).
If any three rows or any three columns of A are equal, then we have Immτ (A) = 0.
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Proof. Let i1 < i2 < i3 be the indices of three rows of A that are equal, and use
induction on i3 − i1.

By Corollary 3.13, the statement is true when i3 − i1 = 2. Now suppose that
we have i3 − i1 = k and assume that the statement is true when this difference is
less than k. Define P to be the permutation matrix corresponding to the adjacent
transposition si1 if i2 = i3−1, or corresponding to si3−1 otherwise, so that PA satisfies
the induction hypothesis. Applying Proposition 3.12, we see that Immτ (A) is equal
to a sum of immanants of PA, and therefore is equal to zero.

A similar argument applies to columns that are equal. �

To generalize the identity

det

[

B C
0 D

]

= det(B) det(D)

concerning block-upper-triangular matrices, we introduce the following operation on
basis elements of Temperley-Lieb algebras. Given basis elements

τ1 = ti1 · · · tik ∈ Tn(2),

τ2 = tj1 · · · tjℓ ∈ Tr(2),

we define the basis element τ1 ⊕ τ2 of Tn+r(2) by

τ1 ⊕ τ2 = ti1 · · · tiktn+j1 · · · tn+jℓ .

Using diagrams we construct τ1 ⊕ τ2 by drawing τ1 above τ2. For instance, we have

⊕ = .

Thus a basis element of Tn+r(2) decomposes as τ = τ1⊕τ2 with τ1 ∈ Tn(2), τ2 ∈ Tr(2)
if and only if no edge of its diagram connects any of the top 2n vertices to any of
the bottom 2r vertices. Equivalently, we have such a decomposition if and only if the
generator tn does not appear in a reduced expression for τ .

Proposition 3.15. Let τ be a basis element of Tn+r(2), and let A be an (n+r)×(n+r)
block-upper-triangular matrix of the form

(3.10) A =

[

B C
0 D

]

,

with B an n× n matrix and D an r × r matrix. Then we have

Immτ (A) =

{

Immτ1(B) Immτ2(D) if τ = τ1 ⊕ τ2 for some τ1 ∈ Tn(2), τ2 ∈ Tr(2),

0 otherwise.
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Proof. Let G be a planar network of order n + r whose path matrix is A. By Theo-
rem 3.4 we have

(3.11) Immτ (A) =
∑

π

ω(π),

where the sum is over path families of type 1 in G which are nonintersecting (mod
2) and which satisfy ψ(π) = τ . Let π = (π1, . . . , πn+r) be such a path family. Since
there is no path in G from source n + 1 to sink n, each path π1, . . . , πn intersects
none of the paths πn+1, . . . , πn+r. It follows that ψ(π) = τ if only if there exist basis
elements τ1 ∈ Tn(2), τ2 ∈ Tr(2) satisfying

(3.12)
ψ(π1, . . . , πn) = τ1,

ψ(πn+1, . . . , πn+r) = τ2.

Thus the sum in (3.11) is over all path families which satisfy (3.12), and is equal to
zero if there is no such family.

Assume therefore that τ decomposes as τ1 ⊕ τ2 for τ1 ∈ Tn(2), τ2 ∈ Tr(2). Now
observe that for each path family π′ = (π′

1, . . . , π
′
n) from sources 1, . . . , n to sinks

1, . . . , n in G and each path family π′′ = (π′′
n+1, . . . , π

′′
n+r) from sources n+1, . . . , n+r

to sinks n+ 1, . . . , n+ r in G, the combined family satisfies

ψ(π′
1, . . . , π

′
n, π

′′
n+1, . . . , π

′′
n+r) = τ

if and only if we have ψ(π′) = τ1, ψ(π
′′) = τ2. Thus we have

Immτ (A) =
∑

(π′,π′′)

ω(π′)ω(π′′) =
∑

π′

ω(π′)
∑

π′′

ω(π′′),

where the sums are over path families as immediately above. This expression is clearly
equal to Immτ1(B) Immτ2(D). �

4. Products of two complementary minors

Deciding if an immanant of the form

(4.1) ∆J,J ′(x)∆J,J ′(x)−∆I,I′(x)∆I,I′(x)

is TNN reduces to deciding if the index sets satisfy a certain system of inequalities.
After reviewing this result (Proposition 4.1), we will state and prove the equivalence
of two new combinatorial tests to decide the total nonnegativity of immanants of the
form (4.1). Consequently we will see that the space of all immanants of the form

∑

(I,I′)

cI,I′∆I,I′(x)∆I,I′(x)
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has dimension equal to a Catalan number, and that an element of this space is
TNN if and only if it is equal to a nonnegative linear combination of Temperley-
Lieb immanants.

In stating these results it will be convenient to associate sets I ′′, I ′′, J ′′, J ′′ to the
products ∆I,I′(x)∆I,I′(x),∆J,J ′(x)∆J,J ′(x) as follows. Given subsets I, I ′, J , J ′ of

[n], we define the subsets I ′′, I ′′, J ′′, J ′′ of [2n] by

(4.2)
I ′′ = I ∪ {2n+ 1− i | i ∈ I ′}, I ′′ = [2n]r I ′′,

J ′′ = J ∪ {2n+ 1− i | i ∈ J ′}, J ′′ = [2n]r J ′′.

The following result was proved in [31, Thm. 3.2]. (See also [10, Thm. 4.6].)

Proposition 4.1. Let I, I ′, J, J ′ be subsets of [n] and define the subsets I ′′, I ′′, J ′′, J ′′

of [2n] as in (4.2). The immanant ∆J,J ′(x)∆J,J ′(x)−∆I,I′(x)∆I,I′(x) is totally non-

negative if and only if for each subinterval B of [2n] the sets I ′′, I ′′, J ′′, J ′′ satisfy

(4.3) max{|B ∩ J ′′|, |B ∩ J ′′|} ≤ max{|B ∩ I ′′|, |B ∩ I ′′|}.

Of course Proposition 4.1 applies more generally to polynomials of the form (4.1)
in which I, I, etc. are complements within some row set and some column set, each
of cardinality n. By deleting appropriate rows and columns and renumbering those
which remain, we obtain an immanant.

To state a combinatorial alternative to the system of inequalities (4.3), we will
associate lattice paths and set partitions to the sets I ′′, J ′′, and will show that the
the total nonnegativity of the immanant (4.1) is equivalent to a refinement relation
between the two set partitions.

Let m be an integer. Given a subset S of [m], define the sequence P (S, S) =
(p1, . . . , pm) by

pi =

{−−−→
(1, 1) if i ∈ S,
−−−−→
(1,−1) if i ∈ S.

Thus P (S, S) may be interpreted as a lattice path in the plane, beginning at the
origin and terminating at the point (m, 2|S| −m). Now given such a lattice path we
define an equivalence relation on [m] by i ∼ j if steps pi and pj of the path are equally
high above the x-axis. (That is, if their projections onto the y-axis are equal.) Let
Π(S, S) be the set partition of [m] whose blocks are the equivalence classes of this
relation.

To the products of minors ∆I,I′(x)∆I,I′(x) and ∆J,J ′(x)∆J,J ′(x) we will associate

the lattice paths P (I ′′, I ′′), P (J ′′, J ′′) and the set partitions Π(I ′′, I ′′), Π(J ′′, J ′′).
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Figure 4.1. Lattice paths corresponding to ∆123,234(x)∆4,1(x) and
∆14,23(x)∆23,14(x)

Consider for example the products of minors

∆I,I′(x)∆I,I′(x) = ∆123,234(x)∆4,1(x),

∆J,J ′(x)∆J,J ′(x) = ∆14,23(x)∆23,14(x),

shown in Figure 4.1. Defining the sets

I ′′ = 1238, I ′′ = 4567,

J ′′ = 1458, J ′′ = 2367,

as in (4.2), we obtain the lattice paths P (I ′′, I ′′), P (J ′′, J ′′) shown in the figure. To
aid in drawing the path we have labeled matrix rows and columns by 1, . . . , 8 and
we have marked matrix entries participating in the minors by arrows so that labels
pointed to by arrows correspond to steps up in the lattice paths. Inspection of the
lattice paths gives the set partitions

Π(I ′′, I ′′) = 16|25|34|78,

Π(J ′′, J ′′) = 1256|3478.

Notice that each block of Π(I ′′, I ′′) is contained in a block of Π(J ′′, J ′′). We therefore
say that Π(I ′′, I ′′) refines Π(J ′′, J ′′).

Deciding the total nonnegativity of (4.1) is equivalent to deciding if there is a
refinement relation between Π(I ′′, I ′′) and Π(J ′′, J ′′).
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Theorem 4.2. Let I ,I ′, J , J ′ be subsets of [n] and define I ′′, I ′′, J ′′, J ′′ by (4.2).
The immanant ∆J,J ′(x)∆J,J ′(x) −∆I,I′(x)∆I,I′(x) is totally nonnegative if and only

if Π(I ′′, I ′′) refines Π(J ′′, J ′′).

Proof. We will prove by induction on m that for any subsets S, T of [m], the relation
Π(S, S) refines the relation Π(T, T ) if and only if for each subinterval B of [m] the
sets S, S, T , T satsify

(4.4) max{|B ∩ T |, |B ∩ T |} ≤ max{|B ∩ S|, |B ∩ S|}.

Note that the statement is trivially true for m = 1 and assume that it is true when
S, T are subsets of [2], . . . , [m− 1]. We may assume that 1 ∈ S, 1 ∈ T by swapping
S with S (T with T ) if necessary.

(⇒) Suppose that we have (4.4) for each subinterval B of [m] and that Π(S, S)
does not refine Π(T, T ). Then there exists a pair of numbers belonging to a single
block of Π(S, S) and to distinct blocks of Π(T, T ). Applying the induction hypothesis
to the subintervals [m− 1] and [2,m] of [m] we see that this pair of numbers must be
(1,m).

Note that if any element c in [2,m − 1] satisfies 1 ∼ c ∼ m in Π(S, S), then the
induction hypothesis applied to the intervals [m − 1] and [2,m] gives 1 ∼ c ∼ m in
Π(T, T ), a contradiction. Thus {1,m} is a block of Π(S, S), and steps 2, . . . ,m− 1 of
P (S, S) define a lattice path from the point (1, 1) to the point (m− 1, 1). It follows

that steps 1, 2 of P (S, S) are equal to
−−−→
(1, 1), and that steps m− 1, m of P (S, S) are

equal to
−−−−→
(1,−1). Clearly, P (S, S) ends on the x-axis, and we have

max{|[m] ∩ S|, |[m] ∩ S|} = m
2
.

Now suppose that P (T, T ) also ends on the x-axis. Since 1 ≁ m in Π(T, T ), step

m of P (T, T ) must be equal to
−−−→
(1, 1) and steps 2, . . . ,m− 1. of P (T, T ) must define

a lattice path from the point (1, 1) to the point (m,−1). It follows that we have
2 ≁ m− 1 in Π(T, T ), contradicting the fact that the restriction of Π(S, S) to [m− 1]
refines the restriction of Π(T, T ) to this interval. Thus P (T, T ) does not end on the
x-axis, and we have

max{|[m] ∩ T |, |[m] ∩ T |} > m
2
,

contradicting (4.4).

(⇐) Suppose that Π(S, S) refines Π(T, T ) and that for some subinterval B of [m]
we have

max{|B ∩ T |, |B ∩ T |} > max{|B ∩ S|, |B ∩ S|}.

The induction hypothesis implies that B is equal to [m] and therefore that

max{|T |, |T |} > max{|S|, |S|}.
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Figure 4.2. A one-element subset of T4(2) corresponding to
∆123,234(x)∆4,1(x) and a three-element subset of T4(2) corresponding
to ∆14,23(x)∆23,14(x).

The result [31, Lem. 3.1] then implies that m is even, that m belongs to T r S, and
that we have

|[2,m− 1] ∩ T | = |[2,m− 1] ∩ S| = m−2
2
.

Thus P (T, T ) ends at the point (m, 2) while P (S, S) ends on the x-axis, and we have
1 ≁ m in Π(T, T ) while 1 ∼ m in P (S, S), a contradiction. �

To state a second combinatorial alternative to the system of inequalities (4.3), and
to reveal several interesting properties of the Temperley-Lieb immanants, we will
associate a subset of the basis elements of Tn(2) to each product ∆I,I′(x)∆I,I′(x). For
the remainder of this section, we will label the vertices of a generic basis element of
Tn(2) by v1, . . . , v2n, beginning in the upper left and continuing counterclockwise to
the upper right.

Definition 4.1. Let S be an n-element subset of [2n] and let τ be a basis element of
Tn(2). Call τ compatible with the pair (S, S) if each edge of τ is incident upon exactly
one of the vertices {vi | i ∈ S}. Define Φ(S, S) to be the set of basis elements of Tn(2)
which are compatible with (S, S).

To enumerate the elements of Φ(S, S), draw the vertices of a generic basis element
of Tn(2), assign a color to each of the sets {vi | i ∈ S}, {vi | i ∈ S}, and draw edges so
that no edge is monochromatic.

To the products of minors ∆I,I′(x)∆I,I′(x) and ∆J,J ′(x)∆J,J ′(x) we will associate

the sets Φ(I ′′, I ′′),Φ(J ′′, J ′′) of basis elements of Tm(2). For example consider again
the products of minors

∆I,I′(x)∆I,I′(x) = ∆123,234(x)∆4,1(x),

∆J,J ′(x)∆J,J ′(x) = ∆14,23(x)∆23,14(x)

and the corresponding sets I ′′ = 1238, J ′′ = 1458. Figure 4.2 shows the subsets

Φ(I ′′, I ′′) = {t3t2t1},

Φ(J ′′, J ′′) = {t3t2t1, t1t2t3, t1t3}.
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The vertices {vi | i ∈ I ′′} ({vi | i ∈ J ′′}) of each basis element are colored black so
that compatibility is equivalent to the requirement that each edge be incident upon
exactly one black vertex. Notice that the black vertices correspond to the steps equal

to
−−−→
(1, 1) of the lattice paths in Figure 4.1.

The following result shows that the relationship between products of complemen-
tary minors and immanants of the form Immτ (x) is characterized by our above defi-
nition of compatibility.

Proposition 4.3. Let I, I ′ be subsets of [n] and define I ′′, I ′′ as in (4.2). Then we
have

(4.5) ∆I,I′(x)∆I,I′(x) =
∑

τ∈Φ(I′′,I′′)

Immτ (x).

Proof. Let σ be a permutation in Sn, let A be the permutation matrix corresponding
to σ, and let G be a planar network whose path matrix is A. Then the coefficient
of x1,σ(1) · · · xn,σ(n) on the left hand side of (4.5) is ∆I,I′(A)∆I,I′(A). We can deduce
from [31, Prop. 2.1, Thm. 3.2] that this coefficient is equal to

∑

H

∑

π

ω(π),

where the outer sum is over all planar subnetworks H of G for which ψ(H) belongs
to Φ(I ′′, I ′′), and the inner sum is over path families π = (π1, . . . , πn) of type 1 in
G which are nonintersecting (mod 2) and which cover H. By Theorem 3.4, this is
precisely

∑

τ∈Φ(I′′,I′′)

Immτ (A),

which is equal to the coefficient of x1,σ(1) · · · xn,σ(n) on the right hand side of (4.5). �

We will now use Proposition 4.3 to justify several total nonnegativity tests for im-
manants which are equal to arbitrary linear combinations of products of complemen-
tary minors. By statement 3 of the following theorem, we may test such an immanant
Immf (x) for total nonnegativity by applying it to a set of 1

n+1

(

2n
n

)

matrices, and by
checking the inequality

Immf (A) ≥ 0

for each matrix A on this list. (See [22, Thm. 1] for an analogous result concerning
immanants which are nonnegative on positive semidefinite Hermitian matrices.) By
statement 4 of the theorem, we may test such an immanant for total nonnegativity
by applying f to a set of 1

n+1

(

2n
n

)

elements of Z[Sn], and by checking the inequality

f(z) ≥ 0
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for each element z on this list. (See [19, Sec. 6], [20, Sec. 2], [21, Thm. 1.5], [36,
Cor. 3.3] for analogous methods of proving nonnegativity properties of irreducible
character immanants.)

Theorem 4.4. Let f : Sn → R be a function which satisfies

(4.6) Immf (x) =
∑

(I,I′)

cI,I′∆I,I′(x)∆I,I′(x).

The following conditions on f are equivalent:

(1) Immf (x) is totally nonnegative.
(2) There exist nonnegative constants {dτ | τ ∈ Tn(2)} such that we have

Immf (x) =
∑

τ

dτ Immτ (x).

(3) For each basis element τ ∈ Tn(2) and the corresponding matrix A(τ) defined
in Corollary 3.5, we have we have

Immf (A(τ)) ≥ 0.

(4) For each 321-avoiding permutation σ and each (equivalently, any) reduced
expression σ = si1 · · · siℓ, we have

f((si1 + 1) · · · (siℓ + 1)) ≥ 0.

(5) For each basis element τ of Tn(2) we have

(4.7)
∑

cI,I′ ≥ 0,

where the sum is over all pairs {(I, I ′) | τ ∈ Φ(I ′′, I ′′)}.

Proof. (2 ⇒ 1 ⇒ 3) Obvious.

(2 ⇔ 3 ⇔ 5) Corollary 3.5 gives

Immf (A(τ)) = dτ ,

and we also have
∑

(I,I′)

cI,I′ = dτ .

(4 ⇔ 2) Proposition 4.3 implies that there exist real numbers {dτ | τ ∈ Tn(2)} which
satisfy

f =
∑

τ

dτfτ .

Let τ be any basis element of Tn(2) and let ti1 · · · tiℓ be a reduced expression for τ .
Then we have

f((si1 + 1) · · · (siℓ + 1)) =
∑

τ

dτfτ ((si1 + 1) · · · (siℓ + 1)) = dτ .
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�

A special case of statement (5) of Theorem 4.4 is the following.

Corollary 4.5. Let I, I ′, J, J ′ be subsets of [n] and define I ′′, I ′′, J ′′, J ′′ by (4.2). The
immanant ∆J,J ′(x)∆J,J ′(x) − ∆I,I′(x)∆I,I′(x) is totally nonnegative if and only if

Φ(I ′′, I ′′) is contained in Φ(J ′′, J ′′). In this case we have

∆J,J ′(x)∆J,J ′(x)−∆I,I′(x)∆I,I′(x) =
∑

τ

Immτ (x),

where the sum is over all elements τ of Φ(J ′′, J ′′)r Φ(I ′′, I ′′).

For example, Figure 4.2 shows that we have

∆14,23(x)∆23,14(x)−∆123,234(x)∆4,1(x) = Immt1t2t3(x) + Immt1t3(x).

Corollary 4.5 suggests defining a poset Pn on products ∆I,I′(x)∆I,I′(x) of comple-
mentary minors of n× n matrices by

∆I,I′(x)∆I,I′(x) ≤ ∆J,J ′(x)∆J,J ′(x)

if ∆J,J ′(x)∆J,J ′(x) − ∆I,I′(x)∆I,I′(x) is TNN. Figure 4.3 shows the poset P3. Each

product of minors ∆I,I′(x)∆I,I′(x) is accompanied by the lattice path P (I ′′, I ′′) and

the set Φ(I ′′, I ′′). Since the elements of Pn are ordered by refinement of related set
partitions, Pn is a subposet of the poset of all set partitions of [2n]. (See [32, p. 97].)
The maximal element of Pn, which corresponds to the single-block partition of [2n],
has the following simple description. (See also [10, Cor. 4.14].)

Proposition 4.6. For any n, the unique maximal element ∆I,I′(x)∆I,I′(x) of the
poset Pn is given by

I = I ′ = {i ∈ [n] | i odd },

I = I ′′ = {i ∈ [n] | i even }.

and this product of minors is equal to

(4.8)
∑

τ

Immτ (x),

where the sum is over all basis elements τ of Tn(2).

Proof. By Proposition 4.3, we have

∆I,I′(x)∆I,I′(x) =
∑

τ∈Φ(I′′,I′′)

Immτ (x),
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Figure 4.3. The poset of products of complementary minors of 3× 3 matrices.

where

I ′′ = {1, 3, . . . , 2n− 1},

I ′′ = {2, 4, . . . , 2n}.
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A basis element τ of Tn(2) belongs to Φ(I ′′, I ′′) if for each edge (vi, vj) of τ , the
number i− j is odd. Equivalently, we have

Φ(I ′′, I ′′) = Tn(2),

as desired. �

Returning to Proposition 4.3, we see that the linear span of products of comple-
mentary minors of n×n matrices has dimension no greater than the Catalan number
Cn = 1

n+1

(

2n
n

)

. We will show using Dyck paths that this dimension is in fact equal to
Cn. A lattice path beginning at (0, 0) in the plane and consisting of equal numbers

of steps of type
−−−→
(1, 1) and

−−−−→
(1,−1) is called a Dyck path if it never passes below the

x-axis. The number of Dyck paths having 2n steps is well known to be Cn.

Proposition 4.7. The collection of immanants

(4.9) {∆I,I′(x)∆I,I′(x) |P (I, I
′) is a Dyck path }

is linearly independent. In particular, we have

dim span
R
{∆I,I′(x)∆I,I′(x) | I, I

′ ⊂ [n]} = Cn.

Proof. Assume that 1 ∈ I. The well-known bijection between Dyck paths having 2n
steps and basis elements of Tn(2) may be described by

P = P (I ′′, I ′′) 7→ τ(P ),

where τ(P ) is the unique element of Tn(2) in which each edge (vk, vℓ) with k < ℓ
satisfies k ∈ I ′′, ℓ ∈ I ′′. Thus τ(P ) belongs to Φ(I ′′, I ′′), and for each edge (vk, vℓ) of

τ(P ), steps k and ℓ of P are equal to
−−−→
(1, 1) and

−−−−→
(1,−1), respectively.

Now define a partial order on the set of Dyck paths having 2n steps by Pi < Pj if Pj

fits under Pi. (This is a subposet of Young’s lattice. See [33, p. 263].) Let P1, . . . , PCn

be a linear extension of this partial order, and let (Ii, I
′
i) be the pair of subsets of [n]

which satisfies
Pi = P (I ′′i, I ′′i).

We claim that the Cn × Cn matrix A = (ai,j) defined by the equations

∆Ii,I′i
(x)∆Ii,I′i

(x) =
Cn
∑

j=1

ai,j Immτ(Pj)(x), i = 1, . . . , Cn

is lower triangular with ones on the diagonal. From Proposition 4.3 we have

ai,j =

{

1 if τ(Pj) ∈ Φ(I ′′i, I ′′i),

0 otherwise,

and from the definition of τ(Pi) it is clear that ai,i = 1 for all i.
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Now fix indices i < j. From the definition of our partial order, Pi does not fit
under Pj . Let ℓ be the smallest index such that step ℓ of Pi lies above step ℓ of Pj .

These steps must be equal to
−−−→
(1, 1) and

−−−−→
(1,−1) respectively. Let k be the index such

that (vk, vℓ) is an edge of τ(Pj). Then half of the steps k, . . . , ℓ of Pj are equal to
−−−→
(1, 1). By the minimality of ℓ, step k of Pi lies at or below step k of Pj , and more

than half of the steps k, . . . , ℓ of Pi are equal to
−−−→
(1, 1). There must therefore exist an

edge (va, vb) of τ(Pj) with k ≤ a, b ≤ ℓ and a, b ∈ I ′′i. It follows that τ(Pj) does not
belong to Φ(I ′′i, I ′′i).

Since A is invertible, the collection (4.9) of immanants is linearly independent. �

5. General products of two minors

To generalize the results of Section 4 we will let x be an n× n′ matrix of variables
and we will consider polynomials of the form

(5.1) ∆J,J ′(x)∆L,L′(x)−∆I,I′(x)∆K,K′(x),

in which row and column sets are not necessarily complementary. In this more general
setting we will compare multisets and will write S ⋒ T for the multiset union of
(multi)sets S and T . For example,

123 ⋒ 234 = 122334.

In addition to stating results concerning the total nonnegativity of polynomials of
the form (5.1), we will consider the space of all polynomials of the form

(5.2)
∑

(I,I′,K,K′)

cI,I′,K,K′∆I,I′(x)∆K,K′(x)

where the sum is over all quadruples (I, I ′, K,K ′) which satisfy

I ⋒K =M, I ′ ⋒K ′ =M ′

for a fixed pair of multisets M,M ′. As in the previous section, we will show that the
dimension of this space is equal to a Catalan number and that an element of this space
is TNN if and only if it is equal to a nonnegative linear combination of Temperley-Lieb
immanants of the matrix xM,M ′ . (See definitions following Theorem 3.1.)

The sets I ′′, I ′′, J ′′, J ′′ which we associated to products of complementary minors
have the following analogs with respect to the more general products ∆I,I′(x)∆K,K′(x),
∆J,J ′(x)∆L,L′(x). Letting I, J,K, L be subsets of [n] and I ′, J ′, K ′, L′ be subsets of
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[n′], we define the subsets I ′′, J ′′, K ′′, L′′ of [n+ n′] by

(5.3)

I ′′ = I ∪ {n+ n′ + 1− i | i ∈ K ′},

K ′′ = K ∪ {n+ n′ + 1− i | i ∈ I ′},

J ′′ = J ∪ {n+ n′ + 1− i | i ∈ L′},

L′′ = L ∪ {n+ n′ + 1− i | i ∈ J ′}.

Note that this does not conflict with our earlier notation (4.2) in the event that n,
K, L are equal to n′, I, J , respectively.

The following result [31, Thm. 4.2] generalizes Proposition 4.1.

Proposition 5.1. Given subsets I, J,K, L of [n] and subsets I ′, J ′, K ′, L′ of [n′],
define the subsets I ′′, J ′′, K ′′, L′′ of [n+ n′] by (5.3). Then the polynomial

∆J,J ′(x)∆L,L′(x)−∆I,I′(x)∆K,K′(x)

is totally nonnegative if and only if we have

(5.4) I ⋒K = J ⋒ L, I ′ ⋒K ′ = J ′
⋒ L′,

and for each subinterval B of [n+ n′] the sets I ′′, J ′′, K ′′, L′′ satisfy

(5.5) max{|B ∩ J ′′|, |B ∩ L′′|} ≤ max{|B ∩ I ′′|, |B ∩K ′′|}.

Note that the multiset equalities (5.4) allow us to restrict our attention to differ-
ences (5.1) in which the index sets I, I ′, . . . , L, L′ satisfy

(5.6)
I ∪K = J ∪ L = [n],

I ∩K = J ∩ L,

I ′ ∪K ′ = J ′ ∪ L′ = [n′],

I ′ ∩K ′ = J ′ ∩ L′.

In particular, if the unions of rows and columns in (5.1) are not [n] and [n′] as above,
we may delete certain rows and columns and renumber those remaining to obtain
(5.6).

Note also that we may modify the system (5.5) of inequalities by replacing the sets
I ′′, J ′′, K ′′, L′′ with the differences

(5.7)
I ′′′ = I ′′ rK ′′, K ′′′ = K ′′

r I ′′,

J ′′′ = J ′′
r L′′, L′′′ = L′′

r J ′′,

since this replacement has the effect of reducing both maxima by the same constant.
We will state an analog of Theorem 4.2 in terms of these differences. In particular,
we will modify the lattice paths and set partitions we defined in Section 4 as follows.

Given disjoint sets S, T with |S|+ |T | = m, define the sequence P (S, T ) = (pi)i∈S∪T
by

pi =

{−−−→
(1, 1) if i ∈ S,
−−−−→
(1,−1) if i ∈ T,
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Figure 5.1. Lattice paths corresponding to ∆1234,1235(x)∆4567,1234(x)
and ∆1456,1235(x)∆2347,1234(x).

where the indices are in increasing order, but not necessarily consecutive. Thus
P (S, T ) may be interpreted as a lattice path in the plane, beginning at the origin and
terminating at the point (m, |S| − |T |). Now given such a lattice path we define an
equivalence relation on S ∪ T as in Section 4 and we let Π(S, T ) be the set partition
of S ∪ T whose blocks are the equivalence classes of this relation.

To the products of minors ∆I,I′(x)∆K,K′(x) and ∆J,J ′(x)∆L,L′(x) we will associate
the lattice paths P (I ′′′, K ′′′), P (J ′′′, L′′′) and the set partitions Π(I ′′′, K ′′′), Π(J ′′′, L′′′).
Consider for example the products of minors

∆I,I′(x)∆K,K′(x) = ∆1234,1235(x)∆4567,1234(x),

∆J,J ′(x)∆L,L′(x) = ∆1456,1235(x)∆2347,1234(x)

shown in Figure 5.1. The unions of row indices and column indices are [7] and [5]
respectively, so we define the subsets I ′′′, J ′′′, K ′′′, L′′′ of [12] as in (5.7) by

I ′′′ = 1239, K ′′′ = 5678,

J ′′′ = 1569, J ′′′ = 2378,
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and we obtain the lattice paths P (I ′′′, K ′′′), P (J ′′′, L′′′) shown in the figure. To aid in
computing the sets I ′′′, J ′′′, K ′′′, L′′′ and in drawing the paths we have marked matrix
entries participating in the minors by arrows and have labeled only those matrix rows
and columns containing one type of arrow. Thus I ′′′, J ′′′ consist of labels pointed to
by arrows and correspond to steps up in the lattice paths. Similarly, K ′′′, L′′′ consist
of the remaining labels and correspond to steps down. Inspection of the lattice paths
gives the set partitions

Π(I ′′′, K ′′′) = 17|26|35|89,

Π(J ′′′, L′′′) = 1267|3589.

Notice that Π(I ′′′, K ′′′) refines Π(J ′′′, L′′′). In analogy to Theorem 4.2, we have the
following combinatorial alternative to the system of inequalities (5.5).

Theorem 5.2. Let subsets I, J,K, L of [n] and subsets I ′, J ′, K ′, L′ of [n′] satisfy
(5.6), and define I ′′′, J ′′′, K ′′′, L′′′ as in (5.7). The polynomial

∆J,J ′(x)∆L,L′(x)−∆I,I′(x)∆K,K′(x)

is totally nonnegative if and only if Π(I ′′′, K ′′′) refines Π(J ′′′, L′′′).

Proof. By Proposition 5.1 and the comment preceding (5.7), the polynomial

∆J,J ′(x)∆L,L′(x)−∆I,I′(x)∆K,K′(x)

is TNN if and only if for each subinterval B of [n+n′], the sets I ′′′, J ′′′, K ′′′, L′′′ satisfy

max{|B ∩ J ′′′|, |B ∩ L′′′|} ≤ max{|B ∩ I ′′′|, |B ∩K ′′′|}.

Letting η be the unique order preserving map

η : I ′′′ ∪K ′′′ → [|I ′′′|+ |K ′′′|],

we see that this condition is satisfied if and only if for each subintervalB of [|I ′′|+|K ′′|],
the sets η(I ′′′), η(J ′′′) satisfy

max{|B ∩ η(J ′′′)|, |B ∩ η(J ′′′)|} ≤ max{|B ∩ η(I ′′′)|, |B ∩ η(I ′′′)|},

where the set complements are within [|I ′′|+ |K ′′|]. By Proposition 4.1, this is equiv-

alent to the condition that Π(η(I ′′′), η(I ′′′)) refines Π(η(J ′′′), η(J ′′′)), which is clearly
equivalent to the condition that Π(I ′′′, K ′′′) refines Π(J ′′′, L′′′). �

Although the polynomials (5.1) are not in general immanants, a result analgous
to Proposition 4.3 reveals a connection between these polynomials and Temperley-
Lieb immanants. To state these and other results, we will associate to each product
∆I,I′(x)∆K,K′(x) a subset of the basis elements of an appropriate Temperley-Lieb
algebra as follows. As in the previous section, we will label the vertices of a generic
basis element of Tr(2) by v1, . . . , v2r, beginning in the upper left and continuing coun-
terclockwise to the upper right.
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Figure 5.2. A one-element subset of T8(2) corresponding to
∆1234,1235(x)∆4567,1234(x) and a three-element subset of T8(2) corre-
sponding to ∆1456,1235(x)∆2347,1234(x).

Definition 5.1. Let integers n, n′, r and sets S, T satisfy S ∪ T = [n + n′] and
|S|+ |T | = 2r, and let w1 · · ·w2r be the nondecreasing rearrangement of S ⋒ T . Call
a basis element τ of Tr(2) compatible with the pair (S, T ) if for each edge (vi, vj) of τ
the numbers wi, wj satisfy one of the following conditions.

(1) wi and wj are equal, and belong to S ∩ T .
(2) One of the numbers wi, wj belongs to S r T and the other belongs to T r S.

Define Φ(S, T ) to be the set of all basis elements of Tr(2) which are compatible with
(S, T ).

To enumerate the elements of Φ(S, T ), draw the vertices of a generic basis element
of Tr(2) and the mandatory edges (vi, vi+1) for each equality wi = wi+1. Assign a
color to each of sets {vi |wi ∈ SrT}, {vi |wi ∈ T rS} and draw the remaining edges
so that no edge is monochromatic.

To the products of minors ∆I,I′(x)∆K,K′(x) and ∆J,J ′(x)∆L,L′(x) we will associate
the sets Φ(I ′′, K ′′),Φ(J ′′, L′′) of basis elements of Tr(2). For example consider again
the product of minors

∆I,I′(x)∆K,K′(x) = ∆1234,1235(x)∆4567,1234(x)

shown in Figure 5.1. Defining the subsets I ′′, K ′′ of [12] as in (5.3), we have

I ′′ = {1, 2, 3, 4, 9, 10, 11, 12},

K ′′ = {4, 5, 6, 7, 8, 10, 11, 12},

and |I ′′| + |K ′′| = 16. The nondecreasing rearrangement (w1, . . . , w16) of I
′′
⋒K ′′ is

then given by the table
[

w1 w2 w3 w4 w5 w6 w7 w8 w9 w10 w11 w12 w13 w14 w15 w16

1 2 3 4 4 5 6 7 8 9 10 10 11 11 12 12

]

.
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Labeling the vertices of a generic basis element of T8(2) by v1, . . . , v16 as in Figure 5.2,
we note the equalities

w4 = w5 = 4,

w11 = w12 = 10,

w13 = w14 = 11,

w15 = w16 = 12,

and we draw the mandatory edges (v4, v5), (v11, v12), (v13, v14), (v15, v16). Then color-
ing the vertices

{vi |wi ∈ I ′′ rK ′′} = {v1, v2, v3, v9}

black, and the vertices

{vi |wi ∈ K ′′
r I ′′} = {v5, v6, v7, v8}

white, we find that the basis element t4t5t6t7t3t4t5t2t3t1 shown on the left in the
figure is the only basis element which is compatible with the pair (I ′′, K ′′). Notice
that for each black vertex vi of this basis element, there is a step up in the lattice
path P (I ′′′, K ′′′) shown in Figure 5.1, and that this step is labeled by wi. The reader
may repeat the above process for the product of minors

∆J,J ′(x)∆L,L′(x) = ∆1456,1235(x)∆2347,1234(x)

to verify that the subset Φ(J ′′, L′′) of T8(2) consists of the three basis elements shown
on the right of Figure 5.2, and to see that black vertices in these basis elements
correspond to steps up in the lattice path P (J ′′′, L′′′) shown in Figure 5.1.

While the polynomials ∆I,I′(x)∆K,K′(x) are not immanants of the matrix x, they
are related to Temperley-Lieb immanants of generalized submatrices of x. (See Sec-
tion 3.)

Proposition 5.3. Let I, I ′, K,K ′ be sets which satisfy I ∪ K = [n], I ′ ∪ K ′ = [n′],
and define I ′′, K ′′ as in (5.3). Then we have

(5.8) ∆I,I′(x)∆K,K′(x) =
∑

τ

Immτ (xI⋒K,I′⋒K′),

where the sum is over elements τ of Φ(I ′′, K ′′).

Proof. Let w1, · · ·w2r be the nondecreasing rearrangement of I ′′ ⋒K ′′, Defining

J = {i |wi ∈ I, wi−1 6= wi}, J ′ = {2r + 1− i |n+ n′ + 1− wi ∈ I ′, wi−1 6= wi},

J = {i |wi ∈ K,wi 6= wi+1}, J ′ = {2r + 1− i |n+ n′ + 1− wi ∈ K ′, wi 6= wi+1},

we may express the polynomial ∆I,I′(x)∆K,K′(x) as the product of complementary
minors of the r × r matrix xI⋒K,I′⋒K′ ,

∆I,I′(x)∆K,K′(x) = ∆J,J ′(xI⋒K,I′⋒K′)∆J,J ′(xI⋒K,I′⋒K′).
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By Proposition 4.3, this product is therefore equal to the polynomial
∑

τ∈Φ(J ′′,J ′′)

Immτ (xI⋒K,I′⋒K′),

where J ′′, J ′′ are defined by

(5.9)
J ′′ = J ∪ {2r + 1− i | i ∈ J ′},

= {i |wi ∈ I, wi−1 6= wi} ∪ {i |n+ n′ + 1− wi ∈ K ′, wi 6= wi+1},

and J ′′ = [2r]r J ′′.

To see that Φ(I ′′, K ′′) is contained in Φ(J ′′, J ′′), let τ be an element of Φ(I ′′, K ′′),
and consider an edge (vi, vj) of τ . Suppose that wi = wj for some i < j. Then
j = i + 1 and i 6= r. By (5.9), exactly one of these indices belongs to J ′′. On the
other hand, suppose that wi 6= wj. Then we do not have wi−1 = wi or wi = wi+1.
Since τ belongs to Φ(I ′′, K ′′), then one of the numbers wi, wj belongs to I

′′ rK ′′ and
the other belongs to K ′′ r I ′′. Since I ′′, K ′′ are defined by

I ′′ = I ∪ {n+ n′ + 1− i | i ∈ K ′},

K ′′ = K ∪ {n+ n′ + 1− i | i ∈ I ′},

we again have that exactly one of the indices i, j belongs to J ′′. Since these are the
only possibilities for an edge (vi, vj) of an element in Φ(I ′′, K ′′), we conclude that τ
belongs to Φ(J ′′, J ′′).

To see that the sum (5.8) need not include the elements of Φ(J ′′, J ′′)r Φ(I ′′, K ′′),
let τ be such an element. In order not to be compatible with (I ′′, K ′′), τ must have
an edge (vi, vj) which satisfies one of the following conditions.

(1) Both wi, wj belong to I ′′ ∩K ′′, but wi 6= wj.
(2) Exactly one of the numbers wi, wj belongs I

′′ ∩K ′′.

In either case, there must be a pair ℓ, ℓ+1 of indices such that wℓ = wℓ+1 and τ does
not contain the edge (vℓ, vℓ+1). Corollary 3.13 then implies that Immτ (xI⋒K,I′⋒K′) =
0. �

We now turn to the problem of characterizing TNN polynomials of the form
∑

cI,I′,K,K′∆I,I′(x)∆K,K′(x).

It is not in general true that such a polynomial is TNN if and only if it is a nonnegative
linear combination of TNN immanants. For instance the polynomial

p(x) = ∆1,1(x)∆1,1(x)− 2∆1,1(x)∆2,2(x) + ∆2,2(x)∆2,2(x)
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is TNN because it is equal to (∆1,1(x)−∆2,2(x))
2. Nevertheless, when it is expanded

in terms of immanants of generalized submatrices of x it has negative coefficients,

p(x) = Immt1(x11,11) + Immt1(x22,22)− 2 Imm1(x12,12)− 2 Immt1(x12,12).

In order to generalize Theorem 4.4, we will need to restrict our attention to poly-
nomials which are homogeneous in the sense of (5.2). (This homogeneity property is
implicit in the statements of Proposition 5.1, Theorem 5.2, and Proposition 5.3.) Let
us fix integers n, n′, r, subsets S ⊂ [n], S ′ ⊂ [n′] satisfying

(5.10) |S|+ n = |S ′|+ n′ = r,

and consider a polynomial

(5.11) p(x) =
∑

cI,I′,K,K′∆I,I′(x)∆K,K′(x)

where the sum is over quadruples (I, I ′, K,K ′) which satisfy

(5.12)
I ∪K = [n], I ′ ∪K ′ = [n′],

I ∩K = S, I ′ ∩K ′ = S ′.

By Proposition 5.3 we have

(5.13) p(x) = Immf (x[n]⋒S,[n′]⋒S′) =
∑

dτ Immτ (x[n]⋒S,[n′]⋒S′),

for some function f : Sr → R and some real numbers {dτ | τ ∈ Tr(2)}. We will show
in Theorem 5.4 that p(x) is TNN if and only if the coefficients dτ are nonnegative.

Note that each coefficient dτ appearing in (5.13) is zero unless τ belongs to Φ(I ′′, K ′′)
for some quadruple (I, I ′, K,K ′) satisfying (5.12). Let R(I ′′, K ′′) be this subset of
basis elements of Tr(2). We may characterize R(S, S ′) by letting w = w1 · · ·w2r be
the nondecreasing rearrangement of

(5.14) [n+ n′] ⋒ S ⋒ {n+ n′ + 1− i | i ∈ S ′},

and by usin Definition 5.1. Specifically, the elements of R(S, S ′) are those which
contain all edges (vi, vi+1) for which wi = wi+1,

(5.15) R(S, S ′) = {τ ∈ Tm(2) |wi = wi+1 ⇒ τ contains (vi, vi+1)}.

The set R(S, S ′) provides an analog of the matrices A(τ) defined in Corollary 3.5
which are used to test the total nonnegativity of the immanants in Theorem 4.4.
Since the mandatory edges (vi, vi+1) force rows i and i+1 of A(τ) to be equal if i < r,
and columns 2r − i and 2r − i+ 1 to be equal if i > r, there exists an n× n′ matrix
B(τ) which satisfies

(5.16) A(τ) = B(τ)[n]⋒S,[n′]⋒S′ .

Since B(τ) is a submatrix of the TNN matrix A(τ), it too is TNN. We will show in
Theorem 5.4 that p(x) is TNN if and only if p(B(τ)) is nonnegative for each τ in
R(S, S ′).
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Theorem 5.4. Fix subsets S ⊂ [n], S ′ ⊂ [n′] satisfying |S|+n = |S ′|+n′ = r, define
the subset R(S, S ′) as in (5.15), and let p(x) be a polynomial of the form

(5.17) p(x) =
∑

cI,I′,K,K′∆I,I′(x)∆K,K′(x),

where the sum is over quadruples (I, I ′, K,K ′) which satisfy (5.12). The following
conditions on p(x) are equivalent.

(1) p(x) is totally nonnegative.
(2) There exist nonnegative constants {dτ | τ ∈ R(S, S ′)} such that we have

p(x) =
∑

τ

dτ Immτ (x[n]⋒S,[n′]⋒S′).

(3) For each element τ of R(S, S ′), the matrix B(τ) defined in (5.16) satisfies

(5.18) p(B(τ)) ≥ 0.

(4) For each 321-avoiding permutation σ in Sr and each (equivalently, any) re-
duced expression σ = sj1 · · · sjℓ, the function f : R[Sn] → R defined by (5.13)
satisfies

(5.19) f((sj1 + 1) · · · (sjℓ + 1)) ≥ 0.

(5) For each element τ of R(S, S ′) we have

(5.20)
∑

cI,I′,K,K′ ≥ 0,

where the sum is over all quadruples {(I, I ′, K,K ′) | τ ∈ Φ(I ′′, K ′′)}.

Proof. (2 ⇒ 1) By Theorem 3.1, Immτ (y) is a TNN polynomial in the m2 variables
y = (yi,j). Therefore by Observation 3.2, Immτ (x[n]⋒S,[n′]⋒S′) is a TNN polynomial in
the n× n′ variables x = (xi,j), as is p(x).

(1 ⇒ 3) Since B(τ) is TNN, we have p(B(τ)) ≥ 0.

(2 ⇔ 3 ⇔ 5) If τ belongs to R(S, S ′), we have
∑

cI,I′,K,K′ = dτ ,

and

p(B) =
∑

τ

Immτ (B[n]⋒S,[n′]⋒S′) =
∑

τ

Immτ (A(τ)) = dτ .

(2 ⇔ 4) By Proposition 5.3, we have

f(z) =
∑

τ∈R(S,S′)

dτfτ (z)
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for all z in R[Sr]. Thus we have

f((si1 + 1) · · · (siℓ + 1)) =
∑

τ∈R(S,S′)

dτfτ ((si1 + 1) · · · (siℓ + 1))

=

{

dτ if τ = ti1 · · · tiℓ belongs to R(S, S
′),

0 otherwise.

Thus the condition that f((si1 + 1) · · · (siℓ + 1)) be nonnegative is equivalent to the
condition that dτ be nonnegative if τ = ti1 · · · tiℓ belongs to R(S, S

′). �

One sees from the proof of Theorem 5.4 that to test the total nonnegativity of
a polynomial of the form (5.17) using statements (2), (3), (5) of the theorem, it is
sufficient to consider only those basis elements τ of Tr(2) which satisfy

wi = wi+1 ⇒ τ contains the edge (vi, vi+1).

A similar shortcut applies to statement (4) of the theorem. Defining the left descent
set and right descent set of a permutation σ to be the set of adjacent transpositions
s which satisfy ℓ(sσ) = ℓ(σ)− 1 and ℓ(σs) = ℓ(σ)− 1, respectively, we may consider
only those permutations σ having left and right descent sets equal to

{si |wi = wi+1, i < r}, {s2r−i |wi = wi+1, i > r},

respectively.

The following special case of statement (5) is analogous to Corollary 4.5.

Corollary 5.5. The polynomial ∆J,J ′(x)∆L,L′(x) − ∆I,I′(x)∆K,K′(x) is totally non-
negative if and only if I ⋒K = J ⋒ L, I ′ ⋒K ′ = J ′

⋒ L′, and Φ(I ′′, K ′′) is contained
in Φ(J ′′, L′′). In this case we have

∆J,J ′(x)∆L,L′(x)−∆I,I′(x)∆K,K′(x) =
∑

τ

Immτ (xI⋒K,I′⋒K′),

where the sum is over all elements τ of Φ(J ′′, L′′)r Φ(I ′′, K ′′).

For example, Figure 5.2 shows that we have

∆1456,1235(x)∆2347,1234(x)−∆1234,1235(x)∆4567,1234(x) = Immτ1(x) + Immτ2(x),

where

τ1 = t1t4t7t3t6t5,

τ2 = t1t4t7t3t5.

Generalizing the poset Pn of products of complementary minors of n× n matrices,
we have posets of products of overlapping minors. Since two such products are com-
parable only if they involve the same multisets of matrix rows and columns, we will
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fix subsets S ⊂ [n] and S ′ ⊂ [n′] and define P([n] ⋒ S, [n′] ⋒ S ′) to be the poset of all
products of the form ∆I,I′(x)∆K,K′(x), where I ∩K = S, I ′ ∩K ′ = S ′.

Proposition 5.6. Fix subsets S ⊂ [n], S ′ ⊂ [n′] satisfying n + |S| = n′ + |S ′| = r,
and let w1 · · ·wr, w

′
1 · · ·w

′
r be the nondecreasing rearrangements of S ⋒ [n], S ′

⋒ [n′],
respectively. Then the poset P([n]⋒S, [n′]⋒S ′) is isomorphic to P2r−|S|−|S′|. Its unique
maximal element ∆I,I′(x)∆K,K′(x) is given by

(5.21)
I = {wi | i odd }, I ′ = {w′

i | i odd },

K = {wi | i even }, K ′ = {w′
i | i even },

and satisfies

∆I,I′(x)∆K,K′(x) =
∑

τ

Immτ (x[n]⋒S,[n′]⋒S′),

where the sum is over all basis elements τ of Tr(2) containing the edges

(5.22) {(vi, vi+1) |wi = wi+1 ∈ S} ∪ {(v2r+1−i, v2r−i) |wi = wi+1 ∈ S ′}.

Proof. The isomorphism of posets follows immediately from Theorems 4.2 and 5.2.
Corresponding elements in the two posets are those which share a given lattice path.

By Proposition 5.3 and Equation 5.3, we have

∆I,I′(x)∆K,K′(x) =
∑

τ∈Φ(I′′,K′′)

Immτ (x[n]⋒S,[n′]⋒S′),

where

I ′′ = {wi | i odd } ∪ {n+ n′ + 1− w′
i | i even },

K ′′ = {wi | i even } ∪ {n+ n′ + 1− w′
i | i odd }.

By Definition 5.1, Φ(I ′′, K ′′) is a subset of the basis elements of Tr(2). Precisely, it
consists of those basis elements which contain the |S| + |S ′| edges in the set (5.22)
and r − |S| − |S ′| edges from the set

{(vi, vj) |wi ∈ I rK,wj ∈ K r I} ∪ {(vi, vj) |w
′
2r+1−i ∈ I ′ rK ′, w′

2r+1−j ∈ K ′
r I ′}

∪{(vi, v
′
j) |wi ∈ I rK,w′

2r+1−j ∈ I ′ rK ′} ∪ {(vi, v
′
j) |wi ∈ K r I, w′

2r+1−j ∈ K ′
r I ′}.

This union is equal to the set of edges (vi, vj) which satisfy

(1) i− j is odd.
(2) wi 6∈ S if i ≤ r; wj 6∈ S if j ≤ r.
(3) w2r+1−i 6∈ S ′ if i > r; w2r+1−j 6∈ S ′ if j > r.

Now let τ be a basis element of Tr(2) which contains the edges (5.22) and suppose
that some edge (vi, vj) fails to satisfy one of the above conditions. A failure to satisfy
the first condition contradicts the fact that τ is a basis element of Tr(2). A failure
to satisfy the second or third condition contradicts the fact that τ contains the edges
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(5.22). We conclude that every basis element of Tr(2) which contains the edges (5.22)
belongs to Φ(I ′′, K ′′). By Corollary 5.5, the element ∆I,I′(x)∆K,K′(x) is maximal in
P([n] ⋒ S, [n′] ⋒ S ′). �

Proposition 5.7. Fix subsets S ⊂ [n], S ′ ⊂ [n′] which satisfy |S|+n = |S ′|+n′ = r,
and define the vector space

V (S, S ′) = {∆I,I′(x)∆K,K′(x) | I ⋒K = [n] ⋒ S, I ′ ⋒K ′ = [n′] ⋒ S ′}.

Then a basis of V (S, S ′) is given by

(5.23) {∆I,I′(x)∆K,K′(x) ∈ V (S, S ′) |P (I ′′′, I ′′′) is a Dyck path }.

In particular, the dimension of V (S, S ′) is Cr.

Proof. Let w = w1 · · ·w2r be the nondecreasing rearrangement of

[n+ n′] ⋒ S ⋒ {n+ n′ + 1− i | i ∈ S ′}.

Given a Dyck path P = (pi)i∈I′′′∪K′′′ , we may define a map

P = P (I ′′′, K ′′′) 7→ τ(P )

by letting τ(P ) be the unique element in Tr(2) in which each edge (vi, vj) with i < j
satisfies one of the conditions

(1) wi = wj.
(2) wi ∈ I ′′′, wj ∈ K ′′′.

We may then proceed as in the proof of Proposition 4.7. �

6. More nonnegativity properties

The nonnegativity properties of Temperley-Lieb immanants seem to extend beyond
that of total nonnegativity.

For example, it is possible to show that for each basis element τ of Tn(2), n ≤ 5 that
Immτ (x) may be expressed as a subtraction-free Laurent polynomial in matrix minors.
Stronger than total nonnegativity, this property seems to be shared by elements of
the dual canonical basis of type An−1 and by other polynomials which arise in the
study of cluster algebras. (See [14], [15].) Since this subtraction-free Laurent property
is not well understood, it would be interesting to exhibit classes of TNN polynomials
that have this property, or even classes of polynomials which may be expressed as
subtraction-free rational expressions in matrix minors [12].

Question 6.1. Are Temperley-Lieb immanants equal to subtraction-free Laurent
polynomials (or subtraction-free rational expressions) in matrix minors?
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Another nonnegativity property of the Temperley-Lieb immanants may be defined
in terms of symmetric functions. (See [33, Ch. 7] for definitions.) We define a polyno-
mial p(x) to be monomial nonnegative (MNN) if for every Jacobi-Trudi matrix A, the
symmetric function p(A) is equal to a nonnegative linear combination of monomial
symmetric functions. An example of a family of MNN polynomials is provided by
the (TNN) irreducible character immanants mentioned in Section 1. (See [19], [20].)
Related polynomials conjectured to be MNN and TNN are the monomial immanants.
(See [35], [37]).

While neither the MNN or the TNN property is known to imply the other, a link
between the two properties was established by the Gessel-Viennot interpretation of
Jacobi-Trudi matrices [17]. In particular, a polynomial which is proved to be TNN
by a path family argument, such as that of Theorem 3.1, must also be MNN. We
therefore have the following corollary of Theorem 3.1.

Corollary 6.1. Temperley-Lieb immanants are monomial nonnegative.

Contained in the class of MNN polynomials is the class of Schur nonnegative (SNN)
polynomials. These are polynomials p(x) with the property that for each Jacobi-Trudi
matrix A, the symmetric function p(A) is equal to a nonnegative linear combination
of Schur functions. Somewhat less well understood than MNN and TNN polynomials,
SNN polynomials seem nevertheless to arise where MNN and TNN polynomials do.
The irreducible character immanants are SNN [21], and the monomial immanants are
conjectured to be SNN as well [37]. Furthermore, the Bruhat order has three very
similar characterizations in terms of TNN, MNN, and SNN immanants. (See [8], [9].)

Since questions of Schur nonnegativity have applications in algebraic geometry, it
would be desirable to have a better understanding of SNN polynomals. In particular,
several recent conjectures [4, 13] concern polynomials of the form

∆J,J ′(x)∆L,L′(x)−∆I,I′(x)∆K,K′(x),

and it is interesting that Temperley-Lieb immanants seem to be SNN for small n.

Question 6.2. Are Temperley-Lieb immanants Schur nonnegative?

It is peculiar that examples of polynomials which have the above five nonnega-
tivity properties are provided by essentially the same immanants. Even the above
mentioned characterizations of the Bruhat order may be trivially restated in terms of
the subtraction-free Laurent property and subtraction-free rational function property.
Apparently there is some connection between these properties which remains to be
discovered.

Problem 6.3. State the implications which exist among the above nonnegativity
properties of polynomials. Are these implications different if we restrict our attention
to immanants?
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