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In basic terms, my research in algebraic combinatorics concerns nonnegative integers which
occur in algebraic settings. Scientific considerations of symmetry, linear systems of equations,
and simple counting guarantee that nonnegative integers and algebra have applications in
many disciplines. More specifically, one can view character evaluations from four points of
view. We consider explicit character evaluations in Section 1, symmetric generating functions
in Section 2, coordinate ring generating functions in Section 3, and applications to total
nonnegativity in Section 4.

1. Representations of the symmetric group algebra and Hecke algebra

The symmetric group algebra Z[Sn] and the (Iwahori-) Hecke algebra Hn(q) have simi-

lar presentations as algebras over Z and Z[q
1
2 , q¯

1
2 ] respectively, with multiplicative identity

elements e and Te, generators s1, . . . , sn−1 and Ts1 , . . . , Tsn−1 , and relations

s2
i = e T 2

si
= (q

1
2 − q¯

1
2 )Tsi + Te for i = 1, . . . , n− 1,

sisjsi = sjsisj TsiTsjTsi = TsjTsiTsj for |i− j| = 1,

sisj = sjsi TsiTsj = TsjTsi for |i− j| ≥ 2.

Analogous to the natural basis {w |w ∈ Sn} of Z[Sn] is the natural basis {Tw |w ∈ Sn} of
Hn(q), where we define Tw = Tsi1 · · ·Tsi` whenever si1 · · · si` is a reduced expression for w in

Sn. We call ` = `(w) the length of w. It is known that `(w) is equal to inv(w), the number
of inversions in the one-line notation w1 · · ·wn of w. For v1 · · · vk ∈ Sk, we say that w avoids
the pattern v if no subsequence wi1 · · ·wik of w1 · · ·wn consists of letters which appear in the

same relative order as v1 · · · vk. The specialization of Hn(q) at q
1
2 = 1 is isomorphic to Z[Sn].

Representations of Z[Sn] and Hn(q) are often studied in terms of characters, the traces of
matrix representations. Define the trace spaces Tn and Tn,q to be the Z-span of Sn-characters,

and Z[q
1
2 , q¯

1
2 ]-span of Hn(q)-characters, respectively. Each module has rank equal to the

number of integer partitions of n. We write λ ` n or |λ| = n to denote that λ is a partition
of n. Five well-studied bases of Tn are the irreducible characters {χλ |λ ` n}, induced sign
characters {ελ |λ ` n}, induced trivial characters {ηλ |λ ` n}, power sum traces {ψλ |λ ` n},
and monomial traces {φλ |λ ` n}. Analogous bases of Tn,q are {χλq |λ ` n}, {ελq |λ ` n},
{ηλq |λ ` n}, {ψλq |λ ` n}, {φλq |λ ` n}, specializing at q

1
2 = 1 to the Tn-bases.

Irreducible Sn-characters are the most important and least understood basis of Tn: given
w ∈ Sn and λ ` n, there are cancellation-free formulas for ελ(w), ηλ(w), φλ(w), ψλ(w), but
none for χλ(w). On the other hand, all five bases of Hn(q)-traces are poorly understood,
with no known simple formulas for evaluating the traces on the natural basis of Hn(q).
Since Sn- and Hn(q)-traces are linear, it would be interesting to evaluate these on any
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bases, for instance the (signless) Kazhdan-Lusztig bases [9] {C ′w(1) |w ∈ Sn} of Z[Sn] and

{q
`(w)
2 C ′w(q) |w ∈ Sn} of Hn(q). These bases expand in the natural bases as

(1.1) q
`(w)
2 C ′w(q) =

∑
v∈Sn

Pv,w(q)Tv

where coefficients are certain polynomials called Kazhdan-Lusztig polynomials.
Borrowing a technique called reversal factorization from computational biology, the candi-

date obtained a significant result [15, Thm. 4.3] concerning factorization of Kazhdan-Lusztig
basis elements. A reversal, denoted s[j,k], is a permutation whose one-line notation contains
the letters k, k−1, . . . , j in positions j, . . . , k, respectively, and every other letter i in position
i. Thus each reversal of the form s[j,j+1] is just the standard generator sj.

Theorem 1. If w avoids the patterns 3412 and 4231, then there exists a reversal factorization
w = s[i1,j1] · · · s[im,jm] and a rational function f such that the Kazhdan-Lusztig basis element

C ′w(q) factors as C ′w(q) = f(q
1
2 )C ′s[i1,j1]

(q) · · ·C ′s[im,jm]
(q).

Since each Kazhdan-Lusztig basis element C ′s[i,j](q) indexed by a reversal has a very simple

form, Theorem 1 has led the candidate to advance our ability to combinatorially interpret
Kazhdan-Lusztig basis elements. For example, when n = 4 the twenty-two Kazhdan-Lusztig

basis elements {q
`(w)
2 C ′w(q) |w avoids 3412, 4231} can be represented [15] by zig-zag networks

including the fourteen descending star networks

(1.2) ,

and eight similar networks

(1.3) .

(In a descending star network, the stars descend from left to right; in a more general zig-zag
network, stars can also ascend from left to right, or form a zig-zag pattern as in the last two
networks above.) Let ◦ denote the concatenation operation on star networks, and let G[a,b]

denote the network consisting of a single star formed from wires located in positions a, . . . , b
from the bottom of the network. Thus networks 8, 9, 10, 11 in (1.2) are G[3,4], G[2,3], G[1,2],
and G[3,4] ◦G[1,2].

Theorem 1 extends to Kazhdan-Lusztig basis elements for some permutations which do

not avoid the patterns 3412 and 4231. Specifically, q
`(3412)

2 C ′3412(q) and q
`(4231)

2 C ′4231(q) can be
represented by the star networks

,

respectively. Thus the pattern avoidance hypotheses of Theorem 1 appear not to be neces-
sary. On the other hand, some experimentation suggests that it is necessary for w to avoid
the pattern 45312. This suggests the following research problem.

Problem 2. Show that for w avoiding the pattern 45312, the Kazhdan-Lusztig basis element

q
`(w)
2 C ′w(q) factors, and state an algorithm to find this factorization.
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The candidate has begun to work on this problem with undergraduate A. Datko, verifying
that the desired factorization exists for w ∈ S5 ∪ S6 [6].

The combinatorial interpretations (1.2) – (1.3) of Kazhdan-Lusztig basis elements played a
crucial role in the candidate’s work with thesis students Shelton, Clearman and postdoctoral
assistant Hyatt on Hn(q)-trace evaluations [4]. Theorems 3 – 7 depend upon combinatorial
objects called path tableaux, which are left- and bottom- justified arrays of paths in the
networks (1.2). We assume that each path begins at some boundary vertex (source) on the
left of the network and terminates at some boundary vertex (sink) on the right side of the
network, and that sources and sinks are labeled 1, . . . , n from bottom to top. If a family
π = (π1, . . . , πn) of such paths has the property that path πi begins at source i and ends at
sink wi for some w ∈ Sn, we say that π has type w.

Let U1, . . . , Ur be the rows of a path tableau U , say that U has shape (λ1, . . . , λr) if
|Ui| = λi, and let U1 ◦ · · · ◦ Ur be the one-rowed tableau which is the concatenation of
all rows. Let Fw denote the network corresponding to the Kazhdan-Lusztig basis element
q
`(w)
2 C ′w(q). Each of the following formulas for a trace evaluation is a sum, over tableaux

having certain properties, of powers of q given by functions inv, rinv from tableaux to N.
For brevity we omit definitions of these properites and functions. (See [4].)

Theorem 3. Let w ∈ Sn avoid the patterns 3412 and 4231, and let λ be a partition of n.
We have

(1.4) ηλq (q
`(w)
2 C ′w(q)) =

∑
U

qrinv(U1◦···◦Ur),

where the sum is over all row-closed, left row-strict Fw-tableaux of shape λ,

(1.5) ελq (q
`(w)
2 C ′w(q)) =

∑
U

qinv(U),

where the sum is over all column-strict Fw-tableaux of type e and shape λ>, where λ> is the
partition obtained by transposing λ (λ>j = #{i |λi ≥ j}),

(1.6) χλq (q
`(w)
2 C ′w(q)) =

∑
U

qinv(U),

where the sum is over all standard Fw-tableaux of type e and shape λ.

Haiman [8] conjectured that the monomial traces satisfy φλq (q
`(w)
2 C ′w(q)) ∈ N[q] for all w.

No formula analogous to (1.4) – (1.6) has been conjectured for general λ ` n, even for w
avoiding the patterns 3412 and 4231. On the other hand, the candidate has proved a special
case [4].

Theorem 4. Let w ∈ Sn avoid the patterns 3412 and 4231. For λ ` n satisfying λ1 ≤ 2 we
have

(1.7) φλq (q
`(w)
2 C ′w(q)) =

∑
U

qinv(U),

where the sum is over all column-strict Fw-tableaux of type e and shape λ>, assuming no
analogous tableaux of shape µ � λ> exist.

Posets related to the Kazhdan-Lusztig basis elements for w avoiding the patterns 3412
and 4231 suggest that an alternative formulation of (1.4) may help to find a formula for

φλq (q
`(w)
2 C ′w(q)) for general λ ` n. (See [4].)
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Problem 5. Find a function stat such that for all w ∈ Sn avoiding the patterns 3412 and
4231 and all λ ` n, we have

ηλq (q
`(w)
2 C ′w(q)) =

∑
U

qstat(U),

where the sum is over all row-semistrict Fw-tableaux of type e and shape λ.

To formulate the desired function, the candidate plans to use the induction ring on Hn(q)
characters and a q-extension of results in [16], including the following.

Theorem 6. For all w ∈ Sn avoiding the patterns 3412 and 4231 and all λ ` n we have

ηλq (C ′w(1)) = #row-semistrict Fw-tableaux of type e and shape λ.

Another strategy for understanding the monomial traces {φλq |λ ` n} is to consider their

relationship to the power sum traces {ψλq |λ ` n}. We can evaluate ψλq in four ways: two em-
ploying properties of F -tableaux proposed by Shareshian and Wachs [14], and two employing
properties of F -tableaux proposed by the candidate. Building upon results of Shareshian
and Wachs and Athanasiadis [1], the candidate and assistants have proved the following [4].
Let UR

i be the ith row of tableau U , written in reverse, and let [m]q = 1 + q + · · · + qm−1.
Again for brevity we omit definitions of several tableau properites. (See [4].)

Theorem 7. Let w ∈ Sn avoid the patterns 3412 and 4231, and let λ be a partition of n.
We have

ψλq (q
`(w)
2 C ′w(q)) =

∑
U

qinv(U1◦···◦Ur),

where the sum is over all record-free, row-semistrict tableaux of type e and shape λ,

ψλq (q
`(w)
2 C ′w(q))[λ1]q · · · [λr]q

∑
U

qinv(UR1 ◦···◦URr ),

where the sum is over all right-anchored, row-semistrict tableaux of type e and shape λ,

ψλq (q
`(w)
2 C ′w(q)) =

∑
U

qinv(U1◦···◦Ur),

where the sum is over all cylindrical tableaux of shape λ, and

ψλq (q
`(w)
2 C ′w(q)) = [λ1]q · · · [λr]q

∑
U

qinv(U1◦···◦Ur),

where the sum is over all left-anchored, cylindrical tableaux of shape λ.

As in the motivation for Problem 5, consideration of relevant posets suggests that an alter-

native formulation of results in Theorem 7 may help to find a formula for φλq (q
`(w)
2 C ′w(q)) [4].

Problem 8. Find a function stat for which we have

ψλq (q
`(w)
2 C ′w(q)) =

∑
U

qstat(U),

where the sum is over all cyclically row-semistrict Fw-tableaux of type e and shape λ.
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Again, the candidate plans to use the induction ring on Hn(q) characters and a q-extension
of results in [16] to state the desired function.

Generalizing the formula (1.5), the candidate and A. Clearwater [5, Thm. 6.5] have found
a formula for evaluating induced sign characters ελq at products of Kazhdan-Lusztig basis
elements such as those appearing in Theorem 1, whether or not the products themselves
are Kazhdan-Lusztig basis elements. In the following, cr and invnc are statistics on path
families and tableaux, respectively.

Theorem 9. Fix intervals J1, . . . , Jm ⊂ [1, n] and let G = GJ1 ◦ · · · ◦ GJm. Then for λ ` n
we have

(1.8) ελq (q
|J1|
2 C ′sJ1

(q) · · · q
|Jm|

2 C ′sJm(q)) =
∑
π

q
cr(π)

2

∑
W

qinvnc(W ),

where the sums are over path families π of type e which cover G, and column-strict π-tableaux
W of shape λ>.

This result is a weakening of the problem of finding a combinatorial interpretation of the
Stembridge-Haiman result that we have

(1.9) χλq (q
|J1|
2 C ′sJ1

(q) · · · q
|Jm|

2 C ′sJm(q)) ∈ N[q]

for all interval sequences J1, . . . , Jm ⊂ [1, n]. The next natural step in finding this combina-
torial interpretation is the following.

Problem 10. Fix intervals J1, . . . , Jm ⊂ [1, n], let G = GJ1 ◦ · · · ◦GJm, and fix λ ` n. Find
a formula for

ηλq (q
|J1|
2 C ′sJ1

(q) · · · q
|Jm|

2 C ′sJm(q)).

When q = 1, two nice formulas describe the evaluations in terms of paths families in planar
networks and extensions of the permutation statistics exc and des to these. It is likely
that for general q, much of the required proof will use path families, bijective methods, and
permutations.

2. Symmetric generating functions for character evaluations

Elements of the module Λn of homogeneous degree-n symmetric functions in y1, y2, . . .
are usually expressed in terms of bases indexed by partitions of all nonnegative integers.
(See, e.g., [21, Ch. 7].) Common bases are the Schur basis {sλ |λ ` n}, monomial basis
{mλ |λ ` n}, elementary basis {eλ |λ ` n}, homogeneous basis {hλ |λ ` n}, power sum
basis {pλ |λ ` n}, and forgotten basis {fλ |λ ` n}. The candidate has defined a symmetric
generating function for the character evaluations of each element g ∈ Hn(q),

Yq(g) :=
∑
λ`n

ελq (g)mλ =
∑
λ`n

φλq (g)eλ =
∑
λ`n

χλ
>

q (g)sλ =
∑
λ`n

dλψ
λ
q (g)pλ =

∑
λ`n

ηλq (g)fλ,

where equalities follow from transition matrices for the bases, and where {dλ |λ ` n} are
certain rational numbers. This function has the following universal property [16, Prop. 2.3].

Proposition 11. Every element of Z[q]⊗Λn has the form Yq(g) for some g ∈ Q(q)⊗Hn(q).
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A well-known problem concerns symmetric functions XP,q ∈ Z[q] ⊗ Λn defined in terms
of certain posets P called natural unit interval orders in [14]. (See also [20], [22].) The
expansion of XP,q as a polynomial in q with symmetric function coefficients describes an
action of Sn on an algebraic variety called the (type -A) Hessenberg variety associated to P .
(See [24]–[23].) These functions are conjectured [14], [20], [22] to be N[q]-linear combinations
of elementary symmetric functions. The candidate and graduate student B. Shelton proved
that the expansion of XP,q in each standard symmetric function basis yields coefficients which
are equal to Hn(q)-trace evaluations at Kazhdan-Lusztig basis elements [4, Sec. 7].

Theorem 12. For each n-element unit interval order P , there exists a 312-avoiding permu-

tation w ∈ Sn such that XP,q = Yq(q
`(w)
2 C ′w(q)).

It is natural to ask how Theorem 12 or its q = 1 specialization can be extended to
combinatorially describe type -B character evaluations. In particular, it is possible to define
type -B symmetric functions which are generating functions

(2.1) Y B
q (g) =

∑
(λ,µ)

ελ,µq (g)mλ(x)mµ(y)

for characters of the Hecke algebra HB
n (q) of the hyperoctahedral group SBn . We write

Y B for the specialization Y B
1 . It is also possible to define type -B chromatic symmetric

functionsXB
P for structures which are a type -B analog of posets. The candidate has extended

Proposition 11 and Theorem 12 to the following type -B analogs [18].

Proposition 13. Every degree-n homogeneous type -B symmetric function with integer co-
efficients is Y B

q (g) for some element g ∈ Q(q)⊗HB
n (q).

Theorem 14. For each type -B unit interval order there exists a 3412-avoiding, 4231-
avoiding element w ∈ SBn such that we have XB

P = Y B(C ′w(1)).

It would be interesting to provide a q-extension of XB
P which is a generating function for

trace evaluations at type-B Kazhdan-Lusztig basis elements. The candidate proposes to do
the following.

Problem 15. Define a q-extension XB
P,q of the type -B chromatic symmetric function XB

P

which combinatorially interprets type-B trace evaluations such as (εε)λ,µq (q
`(w)
2 C ′w(q)).

It would be even more interesting if this result were related to the type-B Hessenberg variety
as XP,q is related to the type-A Hessenberg variety.

3. Generating functions in coordinate rings

Often it is useful to have a generating function which records values {θ(w) |w ∈ Sn} for
some Sn-character θ, i.e.,

(3.1) Immθ(x) :=
∑
w∈Sn

θ(w)x1,w1 · · ·xn,wn .

In particular, a simple expression for such a generating function can serve as a satisfactory
formula for θ(w).

The candidate and Konvalinka stated generating functions for the Hn(q)-characters ελq ,

ηλq [10, Thm. 5.4] in a quotient of the noncommutative ring Z〈x〉, where x = (xi,j)i,j∈[1,n]

may be thought as a matrix of variables. Each generating function is expressed in terms of
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submatrices of x, polynomials called the q-determinant and q-permanent, and ordered set
partitions of type λ = (λ1, . . . , λr) ` n, sequences (I1, . . . , Ir) of disjoint subsets of [1, n]
satisfying |Ij| = λj. The specializations of these formulas at q = 1 belong to Z[x] and are
precisely the Littlewood–Merris–Watkins generating functions for Sn-characters [12], [13].

Theorem 16. For λ = (λ1, . . . , λr) ` n we have

Immελq
(x) =

∑
(I1,...,Ir)

detq(xI1,I1) · · · detq(xIr,Ir),(3.2)

Immηλq
(x) =

∑
(I1,...,Ir)

perq(xI1,I1) · · · perq(xIr,Ir),(3.3)

where xK,K = (xi,j)i,j∈K, and sums are over ordered set partitions of type λ.

The candidate also generalized the Littlewood–Merris–Watkins identities for induced one-
dimensional characters of wreath products Gn,d := Z/dZ oSn [17, Thm. 3.1]. Such characters

correspond to d-tuples βλ = (βλ
0

0 , . . . , βλ
d−1

d−1 ) of symmetric group characters with βi ∈ {η, ε}
and λ = (λ0, . . . , λd−1) a d-tuple of partitions with |λ0|+ · · ·+ |λd−1| = n. Elements of Gn,d
have the form g = (g1, . . . , gn) = (ζγ1w1, . . . , ζ

γnwn) for ζ a dth root of unity, w1 · · ·wn ∈ Sn,
and (γ1, . . . , γn) ∈ Z/dZn. The new generating functions belong to the ring C[x] in the dn2

indeterminates x = {xi,ζkp | i, p ∈ [1, n], k ∈ Z/dZ} and are defined by

Imm
Gn,d
βλ (x) :=

∑
g∈Gn,d

βλ(g)x1,g1 · · ·xn,gn .

Each is a sum of products of S|λ0|, . . . , S|λd−1| character immanants (specializations of (3.2)
– (3.3) at q = 1) of matrices Q0(x), . . . , Qd−1(x) defined by Qk(x) = (qi,j,k(x))i,j∈[1,n], where

qi,j,k(x) = xi,j + ζ−kxi,ζj + ζ−2kxi,ζ2j + · · ·+ ζ−(d−1)kxi,ζ(d−1)j.

Theorem 17. Fix Gn,d-character βλ = (βλ
0

0 , . . . , βλ
d−1

d−1 ) as above. Then we have

(3.4) Imm
Gn,d
βλ (x) =

∑
(I0,...,Id−1)

Imm
βλ

0
0

(Q0(x)I0,I0) · · · Imm
βλ
d−1
d−1

(Qd−1(x)Id−1,Id−1
),

where the sum is over all ordered set partitions of type (|λ0|, . . . , |λd−1|).

Theorem 16 is an essential ingredient in the proofs of Theorems 3 – 12. Similarly, since the
hyperoctahedral group SBn is isomorphic to the wreath product Gn,2, Theorem 17 is essential
in the proof of Theorem 14.

To help solve Problem 15, it would be helpful to state a q-extension of Theorem 17, at
least in the case that d = 2.

Problem 18. State formulas in an appropriate ring for Imm
Gn,2
(εε)λ,µq

(x), Imm
Gn,2
(εη)λ,µq

(x),

Imm
Gn,2
(ηε)λ,µq

(x), Imm
Gn,2
(ηη)λ,µq

(x) to provide type-B analogs of Theorem 16.

It is likely that such a result will also lead to a B-analog of Theorem 9, stating a combina-
torial interpretation for evaluations of (εε)λ,µq at products of type-B Kahzdan-Lusztig basis
elements.
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4. Applications to total nonnegativity

Results in Sections 1 – 3 have applications to the class of totally nonnegative (TNN)
matrices, those matrices A = (ai,j) satisfying det(AI,J) ≥ 0 for all square submatrices
AI,J := (ai,j)i∈I,j∈J . For instance Theorem 4 allowed the candidate to prove inequalities for
the average values of products det(AI1,I1) · · · det(AIr,Ir), taken over all ordered set partitions
(I1, . . . , Ir) of a fixed type, when A is TNN. This result [19] extends earlier work of Barrett
and Johnson [2] for positive semidefinite matrices.

Theorem 19. Fix λ = (λ1, . . . , λr) ` n, µ = (µ1, . . . , µs) ` n. The inequality∑
(I1,...,Ir)
of type λ

det(AI1,I1) · · · det(AIr,Ir)(
n

λ1,...,λr

) ≤
∑

(J1,...,Js)
of type µ

det(AJ1,J1) · · · det(AJs,Js)(
n

µ1,...,µr

)
holds for all totally nonnegative matrices A if and only if µ � λ in the majorization order,
i.e., µ1 + · · ·+ µi ≤ λ1 + · · ·+ λi for all i.

Theorem 6 allowed the candidate to state two new combinatorial interpretations of the
permanent of a TNN matrix. It is known that a matrix A = (ai,j) is TNN if and only if
it may be interpreted as the path matrix of a weighted planar network G, with ai,j being
the sum of weights of all paths in G between vertices called source i and sink j [3]. The
following [16] is a permanental analog of Lindström’s Lemma [11]. (See [16] for definitions.)

Theorem 20. Let A be the path matrix of planar network G. Then per(A) equals the number
of path tableaux U of shape n containing a path family π in G of type e, and having one of
the properties

(1) U is descent-free,
(2) U is excedance-free.

Theorem 20 may be useful in proving a permanental analog of Theorem 19.

Problem 21. Decide if for fixed λ = (λ1, . . . , λr) ` n, µ = (µ1, . . . , µs) ` n, the inequality∑
(I1,...,Ir)
of type λ

per(AI1,I1) · · · per(AIr,Ir)(
n

λ1,...,λr

) ≥
∑

(J1,...,Js)
of type µ

per(AJ1,J1) · · · per(AJs,Js)(
n

µ1,...,µr

)
holds for all totally nonnegative matrices A if and only if µ � λ in the majorization order.

Theorem 20 may also be useful in proving permanental analogs of the Fallat–Gekhtman–
Johnson inequalities [7] for products det(AI,I) det(AI,I), where I := [1, n] r I.

Problem 22. Decide if sets I, J ⊆ [1, n] satisfy

per(AI,I)per(AI,I) ≤ per(AJ,J)per(AJ,J)

for all TNN matrices if and only if they satisfy

det(AI,I) det(AI,I) ≥ det(AJ,J) det(AJ,J)

for all TNN matrices.
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