
RESEARCH PLAN

MARK SKANDERA

Many current problems in algebra and combinatorics concern the Hecke algebras of Coxeter
groups. My work for the past ten years has been to provide formulas for the evaluations of
Hecke algebra characters and to explain the connections between these, symmetric functions,
and the theory of total nonnegativity. To continue this work I hope to collaborate with faculty
in algebra and discrete mathematics and to supervise student research.

1. Generating functions for characters

Let {s1, . . . , sn−1} and {Ts1 , . . . , Tsn−1} be the standard generators for the symmetric group

algebra Z[Sn] and the related Hecke algebra Hn(q). As a Z[q
1
2 , q¯

1
2 ]-module, Hn(q) is spanned

by elements of the form Tw = Tsi1 · · ·Tsi` , where si1 · · · si` is a reduced expression for w ∈ Sn,
and ` = `(w) is called the length of w. Characters of Hn(q) form a Z[q

1
2 , q¯

1
2 ]-module of rank

equal to the number of integer partitions of n and specialize at q = 1 to Z[Sn]-characters,
since Hn(1) ∼= Z[Sn]. Let λ ` n denote that λ is a partition of n. Three important bases of
this module are the irreducible characters {χλq |λ ` n}, induced sign characters {ελq |λ ` n},
and induced trivial characters {ηλq |λ ` n}. (See, e.g., [3].)

The simplicity of known evaluation formulas varies for the bases above and their q = 1
specializations. We have cancellation-free formulas for ελ(w), ηλ(w), but no such known
formulas for ελq (Tw), ηλq (Tw). Algorithms for χλ(w), χλq (Tw) involve cancellation. Alterna-

tively, generating functions give evaluations for χλ(w) [7] and ελ(w), ηλ(w) [13], [15]. In
joint work with Konvalinka, I provided q-analogs of these generating functions [12]. Let

A[n],[n] be the Z[q
1
2 , q¯

1
2 ]-module of degree-n monomials {xv1,w1 · · ·xvn,wn | v, w ∈ Sn} in non-

commuting variables, modulo the subspace generated by the relations xi,`xj,k = xj,kxi,` and

xj,kxi,k = xi,kxj,` + (q
1
2 − q¯12 )xi,`xj,k when i < j and k < `. Define the q-determinant of the

n× n matrix x = (xi,j) by

detq(x) =
∑
w∈Sn

q¯
`(w)
2 x1,w1 · · ·xn,wn ,

and for subsets A,B of [n] = {1, . . . , n}, define the submatrix xA,B = (xi,j)i∈A,j∈B of x.

Theorem 1. For λ = (λ1, . . . , λr) ` n we have∑
w∈Sn

ελq (Tw)q¯
`(w)
2 x1,w1 · · ·xn,wn =

∑
(I1,...,Ir)

detq(xI1,I1) · · · detq(xIr,Ir),

where the last sum is over all ordered set partitions (I1, . . . , Ir) of [n] satisfying |Ij| = λj.

The generating function for ηλq (Tw) is similar, while that for χλq (Tw) is more intricate.
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2. Evaluations of characters at Kazhdan-Lusztig basis elements

Considerations in quantum groups led Kazhdan and Lusztig [11] to define another basis

{C̃w |w ∈ Sn} of Hn(q) by

C̃w =
∑
v≤w

Pv,w(q)Tv,

where ≤ denotes the Bruhat order and {Pv,w(q) | v, w ∈ Sn} are certain recursively defined

polynomials in N[q]. Haiman [9] proved that χλq (C̃w) (and thus ελq (C̃w), ηλq (C̃w)) belong to
N[q], but provided no formula. Indeed, since our understanding of irreducible characters and
Kazhdan-Lusztig basis elements is algorithmic, one would not expect to have a nice formula

for χλq (C̃w).

Nevertheless, my factorization result [17, Thm 4.3] for C̃w when the one-line notation of
w avoids the patterns 3412 and 4231 leads to a combinatorial formula in the case of this
pattern avoidance. (See, e.g., [2].) For w ∈ Sn avoiding the patterns 3412 and 4231, we can

represent C̃w by a graph I call a descending star network. For example, when n = 4, these
are the fourteen graphs

(2.1) ,

One can uniquely cover such a graph by a family π = (π1, . . . , πn) of n noncrossing paths,
and can place these paths into a Young tableau which satisfies one or both of the conditions

πj

πi

⇒
πi lies entirely

below πj,
πi πj ⇒

πi intersects or
lies entirely below πj.

Call the resulting structure a π-tableau which is column-strict if it satisfies the first condition,
row-semistrict if it satisfies the second, and standard if it satisfies both. Certain statistics
inv, inv′ on these π-tableaux then allow for the following formulas, which I proved with two
graduate students [5].

Theorem 2. Let w ∈ Sn avoid the patterns 3412 and 4231, and let π be the unique non-
crossing path family covering the descending star network corresponding to w. For λ ` n
and its transpose partition λ>we have

ελq (C̃w) =
∑
U

qinv(U), ηλq (C̃w) =
∑
U

qinv′(U), χλq (C̃w) =
∑
U

qinv(U),

where the sums are over column-strict π-tableaux of shape λ>, row-semistrict π-tableaux of
shape λ, and standard π-tableaux of shape λ, respectively.

Haiman [9] has conjectured that for each w ∈ Sn there exists a set {v(1), . . . , v(k)} of 3412-

avoiding, 4231-avoiding permutations which satisfy θq(C̃w) = θq(C̃v(1)) + · · · + θq(C̃v(k)) for
each Hn(q)-character θq. Thus it is conceivable that Theorem 2 could be extended to the
entire Kazhdan-Lusztig basis, although it is not currently known how to determine the set
{v(1), . . . , v(k)} from w.

The evaluations in Theorem 2 have applications to the study of regular semisimple Hes-
senberg varieties of type A. Such a variety H corresponds to a unit interval order P = P (H),



RESEARCH PLAN 3

and by [16], [4], [8] the cohomology of H has a character which corresponds via the char-
acteristic map to a symmetric function XP,q describing colorings of P . I proved [5] that
the coefficients appearing in various symmetric function expansions of XP,q are precisely the
character evaluations in Theorem 2.

Theorem 3. For each unit interval order P , there is a 312-avoiding permutation w such
that the monomial, Schur, and forgotten expansions of XP,q are

XP,q =
∑
λ`n

ελq (C̃w)mλ =
∑
λ`n

χλ
>

q (C̃w)sλ =
∑
λ`n

ηλq (C̃w)fλ.

It follows that coefficients in the power sum and elementary expansions of XP,q are given
by similar (but non-character) trace evaluations.

3. Total nonnegativity

Work of Lusztig [14] implies that in Z[x1,1, x1,2, . . . , xn,n], certain polynomials which are
related to the dual canonical basis of the quantum group Oq(SL(n,C)) have a property called
total nonnegativity. A matrix is called totally nonnegative (TNN) if each minor (determinant
of a square submatrix) is nonnegative. A polynomial p(x1,1, x1,2, . . . , xn,n) is called totally
nonnegative if we have p(A) := p(a1,1, a1,2, . . . , an,n) ≥ 0 for each TNN matrix A. While
deciding if a matrix is TNN is straightforward, no known algorithm decides if a polynomial is
TNN, even in the special case that the polynomial belongs to spanZ{x1,w1 · · · xn,wn |w ∈ Sn}.
Work of Stembridge [19], [20], Haiman [9], and others [1], [18] implies that TNN polynomials
are connected to Hn(q)-characters via permutations {s[a,b] | 1 ≤ a < b ≤ n} called reversals,
whose one-line notations have the form

s[a,b] = 1 · · · (a− 1)b(b− 1) · · · a(b+ 1) · · ·n.
In particular, we have the following implications.

Proposition 4. Given a linear function θq : Hn(q) → Z[q] and its q = 1 specialization θ,
each of the following statements implies the next.

(1) For all w ∈ Sn, we have θq(C̃w) ∈ N[q].
(2) For all m > 0 and all sequences (s[i1,j1], . . . , s[im,jm]) of reversals in Sn, we have

θq(C̃s[i1,j1] · · · C̃s[im,jm]
) ∈ N[q].

(3) The polynomial Immθ(x) :=
∑

w∈Sn θ(w)x1,w1 · · ·xn,wn is TNN.

Haiman proved [9, Lem. 1.1] that for each irreducible character χλ and each w ∈ Sn,

we have χλq (C̃w) ∈ N[q], which implies that the polynomial Immχλ(x) is TNN. However,
his proof does not give a combinatorial interpretation for the coefficients of the resulting

polynomials χλq (C̃w) ∈ N[q], the coefficients of the polynomials χλq (C̃s[i1,j1] · · · C̃s[im,jm]
) ∈ N[q],

or the nonnegative number Immχλ(A), when A is a TNN matrix. To provide the first such
combinatorial interpretation of statments (2) and (3) of the proposition when θq is an Hn(q)-

character, I represented products of Kazhdan-Lusztig basis elements of the forms C̃s[i,j] by

concatenations of the simplest graphs appearing in (2.1). For example, when n = 4, these

are six simple stars corresponding to elements C̃s[1,4] , C̃s[2,4] , C̃s[1,3] , C̃s[3,4] , C̃s[2,3] , C̃s[1,2] , and
all finite concatenations of these,

(3.1) , . . .
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With graduate students and a postdoc I introduced statistics cr on path families and invnc
on path tableaux to interpret induced sign character evaluations as follows [10], [6].

Theorem 5. Let star network G represent the product C̃s[i1,j1] · · · C̃s[im,jm]
∈ Hn(q). For all

λ ` n we have
ελq (C̃s[i1,j1] · · · C̃s[im,jm]

) =
∑
π

q
cr(π)

2

∑
U

qinvnc(U),

where the first sum is over path families π covering G, and the second sum is over column-
strict π-tableaux of shape λ>.

This is the first combinatorial formula applying to all evaluations of the form θq(g) where
θq varies over a basis of the Hn(q)-character space and g varies over a spanning set of Hn(q).
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Birkhäuser Boston Inc., Boston, MA (2000).

[3] A. Björner and F. Brenti. An improved tableau criterion for Bruhat order. Electron. J. Combin.,
3, 1 (1996). Research paper 22, 5 pp. (electronic).

[4] P. Brosnan and T. Y. Chow. Unit interval orders and the dot action on the cohomology of regular
semisimple Hessenberg varieties. Adv. Math., 329 (2018) pp. 955–1001.

[5] S. Clearman, M. Hyatt, B. Shelton, and M. Skandera. Evaluations of Hecke algebra traces at
Kazhdan-Lusztig basis elements. Electron. J. Combin., 23, 2 (2016) pp. Paper 2.7, 56.

[6] A. Clearwater and M. Skandera. Total nonnegativity and Hecke algebra trace evaluations (2019).
Submitted.

[7] I. P. Goulden and D. M. Jackson. Immanants, Schur functions, and the MacMahon master theorem.
Proc. Amer. Math. Soc., 115, 3 (1992) pp. 605–612.

[8] M. Guay-Paquet. A second proof of the shareshian–wachs conjecture, by way of a new hopf algebra
(2016). Preprint math.CO/1601.05498 on ArXiv.

[9] M. Haiman. Hecke algebra characters and immanant conjectures. J. Amer. Math. Soc., 6, 3 (1993) pp.
569–595.

[10] R. Kaliszewski, J. Lambright, and M. Skandera. Bases of the quantum matrix bialgebra and
induced sign characters of the Hecke algebra. J. Algebraic Combin., 49, 4 (2019) pp. 475–505.

[11] D. Kazhdan and G. Lusztig. Representations of Coxeter groups and Hecke algebras. Invent. Math.,
53 (1979) pp. 165–184.

[12] M. Konvalinka and M. Skandera. Generating functions for Hecke algebra characters. Canad. J.
Math., 63, 2 (2011) pp. 413–435.

[13] D. E. Littlewood. The Theory of Group Characters and Matrix Representations of Groups. Oxford
University Press, New York (1940).

[14] G. Lusztig. Total positivity in reductive groups. In Lie Theory and Geometry: in Honor of Bertram
Kostant , vol. 123 of Progress in Mathematics. Birkhäuser, Boston (1994), pp. 531–568.
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