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Abstract. We use Kazhdan-Lusztig polynomials and subspaces of the polynomial ring
C[x1,1, . . . , xn,n] to construct irreducible Sn-modules. This construction produces exactly
the same matrices as the Kazhdan-Lusztig construction [Invent.Math 53 (1979)], but does
not employ the Kazhdan-Lusztig preorders. It also produces exactly the same modules
as those which Clausen constructed using a different basis in [J. Symbolic Comput. 11

(1991)]. We show that the two resulting matrix representations are related by a unitriangular
transition matrix. This provides a C[x1,1, . . . , xn,n]-analog of results due to Garsia and
McLarnan [Adv.Math. 69 (1988)], and McDonough and Pallikaros [J.Pure Appl. Alg. 203

(2005)].

1. Introduction

In 1979, Kazhdan and Lusztig [15] introduced a family of irreducible modules for Coxeter
groups and related Hecke algebras. These modules, which have many fascinating properties,
also aid in the understanding of modules for quantum groups and other algebras. Important
steps in the construction of the Kazhdan-Lusztig modules are the computation of certain
polynomials in Z[q] known as Kazhdan-Lusztig polynomials, and the description of preorders
on Coxeter group elements known as the Kazhdan-Lusztig preorders. These two tasks have
become fascinating research topics in their own right. For even the simplest case of a Coxeter
group and corresponding Hecke algebra, the symmetric group Sn and type-A Hecke algebra
Hn(q), the Kazhdan-Lusztig polynomials and preorders are somewhat poorly understood.
(See, e.g., [1], [28] and references listed there.) These difficulties have led authors to study
irreducible Sn-representations indexed by partitions λ of n and to search for a connection
between the matrices {Xλ

1 (w) |w ∈ Sn} arising from the Kazhdan-Lusztig representation
and those arising from other more elementary representions.

One elementary Sn-representation, Young’s Natural representation (see [25]), may be de-
fined in terms of combinatorial objects called polytabloids. Garsia and McLarnan [12] and
McDonough and Pallikaros [21] described the connection between Young’s Natural matri-
ces {Xλ

2 (w) |w ∈ Sn} and the Kazhdan-Lusztig matrices as conjugation by a unitriangular
matrix B = B(λ),

(1.1) Xλ
1 (w) = B−1Xλ

2 (w)B, for all w ∈ Sn.

The former authors used properties of the Kazhdan-Lusztig and Natural modules to solve
the equations (1.1) for B. The latter authors proved (1.1) by realizing the two modules as
a single subspace of C[Sn] having two distinguished bases. (More precisely, they proved a
q-analog by realizing the two modules as a single subspace of Hn(q).) Thus B is a transition
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matrix which allows one to express Kazhdan-Lusztig basis elements as linear combinations of
Young’s basis elements. Moreover, this realization of the Kazhdan-Lusztig module eliminates
the need for preorders. (See also [10, Rmk. 2.3(i)], [20, Sec. 5] for earlier constructions of
preorder-avoiding modules.)

Another elementary Sn-representation, Clausen’s Bideterminant representation [5], may
be defined in terms of subspaces of the polynomial ring C[x] = C[x1,1, . . . , xn,n] and polyno-
mials called bideterminants which appeared earlier in the work of Mead [22], Désarménien-
Kung-Rota [6], and others. Proving results analogous to those above, we will describe the
connection between the Clausen matrices {Xλ

3 (w) |w ∈ Sn} and the Kazhdan-Lusztig ma-
trices as conjugation by a unitriangular matrix. We will accomplish this by realizing the two
modules as a single subspace of C[x] having two distinguished bases: the bideterminant basis,
which produces the Clausen representations and the dual canonical basis, which produces
the Kazhdan-Lusztig representations. Our unitriangular transition matrix is a submatrix of
that studied in [24] to express dual-canonical basis elements as linear combinations of bide-
terminants. Like the McDonough-Pallikaros construction of the Kazhdan-Lusztig module,
our module also eliminates the need for preorders.

In Sections 2-3, we review basic definitions related to the symmetric group, Hecke algebra,
and Kazhdan-Lusztig modules. In Section 4 we review definitions related to the polyno-
mial ring C[x] and a particular n!-dimensional subspace of C[x] called the immanant space.
We recall the definition of the bideterminant basis of the immanant space and Clausen’s
use of this basis to construct irreducible Sn-modules [5]. In Section 5, we use the basis of
Kazhdan-Lusztig immanants introduced in [7] to transfer the traditional Kazhdan-Lusztig
representations from C[Sn] to the immanant space of C[x]. Borrowing ideas from Clausen,
and applying vanishing properties of Kazhdan-Lusztig immanants obtained in [24], we mod-
ify the above representations in Section 6. This leads to our main result that the resulting
modified representations, which do not rely upon the Kazhdan-Lusztig preorders, have ma-
trices equal to those corresonding to the original Kazhdan-Lusztig representations in [15].
We finish by showing that the relationship between the bideterminant and Kazhdan-Lusztig
immanant bases studied in [24, Sec. 5] leads to unitriangular transition matrices relating
Clausen’s irreducible representations of Sn to those of Kazhdan and Lusztig.

2. The symmetric group, tableaux, and partial orders

The standard presentation of the symmetric group Sn is given by generators s1, . . . , sn−1

and relations

(2.1)

s2
i = 1, for i = 1, . . . , n − 1,

sisjsi = sjsisj, if |i − j| = 1,

sisj = sjsi, if |i − j| ≥ 2.

We let Sn act on rearrangements of the letters [n] = {1, . . . , n} by

(2.2) si ◦ v1 · · · vn =
def

v1 · · · vi−1vi+1vivi+2 · · · vn,

and we define the one-line notation of a permutation w = si1 · · · siℓ ∈ Sn by

(2.3) w1 · · ·wn =
def

si1 ◦ (· · · (siℓ ◦ (1 · · ·n)) · · · ).
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It is well known that this one-line notation does not depend upon the particular expression
si1 · · · siℓ for w. We say that such an expression is reduced if ℓ is as small as possible. We
then call ℓ = ℓ(w) the length of w.

We define the Bruhat order on Sn by v ≤ w if some (equivalently every) reduced expression
for w contains a reduced expression for v as a subword. (See [2] for more information). We call
a generator s a left ascent for a permutation v if we have sv > v, and a left descent otherwise.
Right ascents and descents are defined analogously. We denote the unique maximal element
in the Bruhat order by w0. This permutation has one-line notation n(n− 1) · · ·21. It is well
known that the maps v 7→ w0vw0 and v 7→ v−1 induce automorphisms of the Bruhat order,
while the maps v 7→ vw0 and v 7→ w0v induce antiautomorphisms. Thus we have

(2.4) v ≤ w ⇔ v−1 ≤ w−1 ⇔ w0vw0 ≤ w0ww0 ⇔ ww0 ≤ vw0 ⇔ w0w ≤ w0v.

Important in the study of Sn are weakly decreasing sequences λ = (λ1, . . . , λk) of positive
integers which sum to n. We call such a sequence an integer partition of n and write λ ⊢ n or
|λ| = n. The components of λ are called parts. A left-justified array of boxes with λi boxes
in row i (1 ≤ i ≤ k) is called a Young diagram of shape λ. Transposing this diagram as one
would transpose a matrix, we obtain a diagram whose shape is another integer partition of
n which we denote by λ⊤. (This is often called the conjugate of λ.) We define the dominance
order on partitions of n by declaring λ � µ if we have

(2.5) λ1 + · · ·+ λi ≤ µ1 + · · · + µi,

for i = 1, . . . , n (with λi and µj defined to be zero for i, j larger than the number of parts of
these partitions). It is well known that we have λ � µ if and only if λ⊤� µ⊤.

Given a partition λ = (λ1, . . . , λr) ⊢ n, define a subset J = J(λ) of the generators
{s1, . . . , sn−1} by

(2.6) J =
def

{s1, . . . , sn−1} r {sλ1
, sλ1+λ2

, sλ1+λ2+λ3
, . . . , sn−λr

},

and let WJ be the subgroup of Sn generated by J . This subgroup (and any subgroup
isomorphic to it) is called a Young subgroup of Sn of type λ. Each coset of the form vWJ

forms an interval in the Bruhat order, i.e., a subposet with a unique minimal and maximal
element. The permutation v is maximal in vWJ if and only if we have vs < v for all
generators s ∈ J , equivalently, if and only if the one-line notation of v−1 satisfies

(2.7)

v−1
1 > · · · > v−1

λ1
,

v−1
λ1+1 > · · · > v−1

λ1+λ2
,

...

v−1
n−λr+1 > · · · > v−1

n .

Let W J
+ be the set of Bruhat-maximal representatives of the cosets {vWJ | v ∈ Sn}.

Filling a Young diagram of shape λ ⊢ n with positive integers, we obtain a Young tableau
T of shape λ and write sh(T ) = λ. T is called injective if no number appears more than once
in T , column-(semi)strict if entries (weakly) increase downward in columns, row-(semi)strict
if entries (weakly) increase to the right in rows, semistandard if it is column-strict and
row-semistrict, and standard if it is injective, semistandard, and has entries 1, . . . , n. A
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standard tableau is called superstandard if it contains 1, . . . , n in reading order. We denote
the superstandard tableau of shape λ by T (λ). For example,

(2.8) T (4, 2, 1) =
1 2 3 4
5 6
7

.

Analogous to transposition of a partition is transposition T 7→ T⊤of a tableau. Analogous to
the dominance order on partitions of n is an iterated dominance order on standard tableaux
of size n, which we define by declaring S EI T if we have

(2.9) sh(T[i]) � sh(U[i])

for i = 1, . . . , n, where T[i] is the subtableau of T consisting of all entries less than or equal
to i. It is easy to see that the superstandard tableau T (λ) is maximal among tableaux of
shapes {µ |µ � λ} in iterated dominance.

We define a bitableau to be a pair of tableaux of the same shape, and say that it posesses a
certain tableau property of both of its tableaux posess this property. We extend the iterated
dominance order on standard tableaux of size n to an iterated dominance order on standard
bitableaux of size n by declaring (T, U) EI (T ′, U ′) if we have

(2.10) T EI T ′, U EI U ′.

For each permutation v ∈ Sn, we define the bitableau (P (v), Q(v)) by applying the Robinson-
Schensted column insertion algorithm to v1 · · · vn. (See, e.g., [25, Sec. 3.1-3.2].) We define
the shape of v to be the partition sh(v) = sh(P (v)) = sh(Q(v)) of n. Following [24], we use
the map v 7→ (P (v), Q(v)) to transfer the iterated dominance order on standard bitableaux
of size n to Sn. To be precise, we define the iterated dominance order on Sn by declaring
v ≤I w if we have

(2.11) (P (v), Q(v)) EI (P (w), Q(w)).

It is well known that the Robinson-Schensted bitableaux satisfy

(2.12)

(P (v−1), Q(v−1)) = (Q(v), P (v)),

(P (w0v), Q(w0v)) = (P (v)⊤, evac(Q(v))⊤),

(P (vw0), Q(vw0)) = (evac(P (v))⊤, Q(v)⊤),

(P (w0vw0), Q(w0vw0)) = (evac(P (v)), evac(Q(v))),

where evac is Schützenberger’s evacuation algorithm. (See [2, Sec.A3.9], where left and right
multiplication by w0 correspond to our right and left multiplication by w0, respectively.) It
is therefore easy to see that we have

(2.13) sh(v) = sh(v−1) = sh(w0vw0) = sh(w0v)⊤= sh(vw0)
⊤.

It is also easy to see that the map v 7→ v−1 induces an automorphism of the iterated
dominance order on Sn,

(2.14) v ≤I w ⇔ v−1 ≤I w−1.

On the other hand, none of the maps v 7→ vw0, v 7→ w0v, v 7→ w0vw0 induces an automor-
phism or an antiautomorphism in general.



CLAUSEN AND KAZHDAN-LUSZTIG REPRESENTATIONS 5

Superstandard tableaux can be used to prove the maximality of certain permutations
within cosets of the form vWJ .

Lemma 2.1. Fix a partition λ = (λ1, . . . , λr) ⊢ n and define the Young subgroup WJ as in
(2.6). Then each permutation v satisfying P (v) = T (λ) is maximal in the coset vWJ .

Proof. For each index j = 1, . . . , r, the letters

(2.15) (λ1 + · · ·+ λj−1 + 1), (λ1 + · · ·+ λj−1 + 2), . . . , (λ1 + · · ·+ λj)

appear in the jth row of T (λ) = P (v) = Q(v−1). Properties of the Robinson-Schensted
column correspondence then imply that the one-line notation v−1

1 · · · v−1
n of v−1 satisfies

(2.16) v−1
λ1+λ2+···+λj−1+1 > v−1

λ1+λ2+···+λj−1+2 > · · · > v−1
λ1+λ2+···+λj

.

�

More general results in the literature relate subsequences of the one-line notation of an
arbitrary permutation v to subtableaux of P (v) and Q(v). (See, e.g., [25, Sec. 3.3-3.5].) In
particular, let us define for each permutation v ∈ Sn and each index j ≤ n the permutation
v[j] ∈ Sj by arranging 1, . . . , j in the same relative order as the letters in the subword v1 · · · vj

of the one-line notation of v. Schützenberger showed the following relationship between v[j]

and the standard tableau Q(v)[j] of size j. (See [16, Thm. 5.1.4C].)

Lemma 2.2. For v ∈ Sn and 1 ≤ j ≤ n we have sh(v[j]) = sh(Q(v)[j]).

3. Kazhdan and Lusztig’s Hn(q)-modules

A quantum analog of the symmetric group algebra C[Sn] is known as the Hecke algebra

Hn(q). This noncommutative ring with multiplicative identity T̃e = 1 is generated as a

C[q
1

2 , q¯
1

2 ]-algebra by elements {T̃si
| 1 ≤ i ≤ n − 1}, subject to the relations

(3.1)

T̃ 2
si

= (q
1

2 − q¯
1

2 )T̃si
+ T̃e, for i = 1, . . . , n − 1,

T̃si
T̃sj

T̃si
= T̃sj

T̃si
T̃sj

, if |i − j| = 1,

T̃si
T̃sj

= T̃sj
T̃si

, if |i − j| ≥ 2.

It is easy to see that the specialization of Hn(q) at q
1

2 = 1 is simply the group algebra C[Sn].

Inverses of these generators are given by T̃−1
s = T̃s − (q

1

2 − q¯
1

2 )T̃e and a multiplication rule
is given by

(3.2) T̃sT̃v =

{
T̃sv if sv > v,

T̃sv + (q
1

2 − q¯
1

2 )T̃v if sv < v.

If si1 · · · siℓ is a reduced expression for v ∈ Sn, we define the element T̃v ∈ Hn(q) by

(3.3) T̃v = T̃si1
· · · T̃siℓ

.

It is known that this definition does not depend upon the particular reduced expression for
v and that the natural collection of elements {T̃v | v ∈ Sn} forms a basis of Hn(q) as a

C[q
1

2 , q¯
1

2 ]-module.
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An involutive automorphism of Hn(q) called the bar involution is defined by

(3.4)
∑

v

avT̃v 7→
∑

v

avT̃v =
∑

v

av T̃−1
v−1 ,

where q
1

2 = q¯
1

2 . We call an element g of Hn(q) bar-invariant if it satisfies g = g. Kazhdan and
Lusztig showed [15] that Hn(q) has a unique basis of bar-invariant elements {Cv(q) | v ∈ Sn}
satisfying

(3.5) Cv(q) ∈ T̃v +
∑

u<v

q
1

2 Z[q
1

2 ]T̃u.

Expanding Cv(q) in terms of the natural basis and defining

(3.6) ǫu,v =
def

(−1)ℓ(v)−ℓ(u), qu,v =
def

(q
1

2 )ℓ(v)−ℓ(u),

we have

(3.7) Cv(q) =
∑

u≤v

ǫu,vqu,vPu,v(q
−1)T̃u,

where {Pu,v(q) | u, v ∈ Sn} are polynomials belonging to N[q]. This basis is called the
Kazhdan-Lusztig basis for Hn(q), and the polynomials {Pu,v(q) | u, v ∈ Sn} are called the
Kazhdan-Lusztig polynomials.

The proof in [15, Sec. 2.2] of the existence of this basis relies upon the function

(3.8) µ(u, v) =
def

{
coefficient of q(ℓ(v)−ℓ(u)−1)/2 in Pu,v(q), if u < v,

0 otherwise,

and leads to the formula

(3.9) T̃sCv(q) =






q
1

2 Cv(q) + Csv(q) +
∑

u<v
su<u

µ(u, v)Cu(q) if sv > v,

−q¯
1

2 Cw(q) if sv < v,

describing the action of T̃s on the basis element Cv(q). Observe that the function µ satisfies
µ(u, v) = 0 if ℓ(v) − ℓ(u) is even, since Pu,v(q) belongs to N(q). Since the Kazhdan-Lusztig
polynomials satisfy Pu,v(q) = Pw0uw0,w0vw0

(q) (see, e.g., [3, Cor. 4.3]), we also have the identity
µ(u, v) = µ(w0uw0, w0vw0). Furthermore, Kazhdan and Lusztig showed [15, Cor. 3.2] that
we have µ(u, v) = µ(w0v, w0u), even though Pu,v(q) and Pw0v,w0u(q) are not equal in general.

In order to construct irreducible representations of Hn(q), Kazhdan and Lusztig defined
several preorders on Sn. The left preorder ≤L is defined to be the transitive closure of the
relation ⋖L on Sn, where we declare v ⋖L u if Cv(q) appears with nonzero coefficient in the

expansion of T̃wCu(q) for some w ∈ Sn. It is known that we have

(3.10)
w ≤L v

w ≤L v ≤L w

⇒

⇒

sh(v) � sh(w),

P (v) = P (w).

It is also known that the maps v 7→ w0v, v 7→ vw0 reverse the left preorder, while the map
v 7→ w0vw0 preserves it. (See [2, Prop. 6.2.9]). On the other hand, the map v 7→ v−1 does
not in general preserve or reverse the left preorder. Thus we have

(3.11) w ≤L v ⇔ w0ww0 ≤L w0vw0 ⇔ vw0 ≤L ww0 ⇔ w0v ≤ w0w.
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The Kazhdan-Lusztig construction (as described in [13, Appendix]) of the irreducible
Hn(q)-module indexed by a partition λ ⊢ n requires one to fix a standard tableau T of shape
λ and a permutation v satisfying P (v)⊤= T . One then lets Hn(q) act by left multiplication

on the C[q
1

2 , q¯
1

2 ]-module

(3.12) Kλ =
def

span{Cw(q) |P (w)⊤= T},

regarded as the quotient

(3.13) span{Cw(q) |w ≤L v}/span{Cw(q) |w ≤L v, w 6≥L v}.

The quotient is necessary because Kλ is not in general closed under the action of Hn(q).

The specialization Kλ(1) of Kλ at q
1

2 = 1 is an irreducible Sn-module indexed by λ. Even
in this simpler setting, the quotient (3.13) is necessary.

4. The polynomial ring and Clausen’s Sn-modules

Many Sn-modules in the literature are subspaces of the group algebra C[Sn]. An alter-
native construction due to Clausen [5] uses subspaces of the polynomial ring in n2 variables
instead.

Let x = (xi,j) be an n×n matrix of variables. The polynomial ring C[x] = C[x1,1, . . . , xn,n]
has a natural grading

(4.1) C[x] =
⊕

r≥0

Ar(x),

where Ar(x) is the span of all monomials of total degree r. Further decomposing each space
Ar(x), we define a multigrading

(4.2) C[x] =
⊕

r≥0

Ar(x) =
⊕

r≥0

⊕

L,M

AL,M(x),

where L = {ℓ(1) ≤ . . . ≤ ℓ(r)} and M = {m(1) ≤ . . . ≤ m(r)} are r-element multisets of
[n], written as weakly increasing sequences, and where AL,M(x) is the span of monomials
whose row and column indices are given by L and M , respectively. We refer to the space

(4.3) A[n],[n](x) = span{x1,w1
· · ·xn,wn

|w ∈ Sn},

as the immanant space of C[x], and define the notation

(4.4) xu,v =
def

xu1,v1
· · ·xun,vn

for permutations u, v ∈ Sn. We define the (L, M) generalized submatrix of x by

(4.5) xL,M =




xℓ(1),m(1) · · · xℓ(1),m(r)

xℓ(2),m(1) · · · xℓ(2),m(r)
...

...
xℓ(r),m(1) · · · xℓ(r),m(r)


 .

It is clear that for each pair (u, v) of permutations in Sr, the monomial (xL,M)u,v belongs to
AL,M(x).

Given subsets I, J ⊂ [n] we define the I, J minor of x to be the determinant

(4.6) ∆I,J(x) =
def

det(xI,J),
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and given a semistandard bitableau (S, T ), we define the bideterminant (S | T )(x), to be the
polynomial

(4.7) (S | T )(x) = ∆I1,J1
(x) · · ·∆Ik,Jk

(x),

where I1, . . . , Ik are the sets of entries in columns 1, . . . , k of S and J1, . . . , Jk are the sets of
entries in columns 1, . . . , k of T . For example, we have

(4.8)

(
1 2 4
3

1 3 4
2

)
(x) = ∆13,12(x)x2,3x4,4 = x1,1x3,2x2,3x4,4 − x1,2x3,1x2,3x4,4.

For each permutation v in Sn, we follow [24] in defining the bideterminant Rv(x) by

(4.9) Rv(x) =
def

(Q(v) |P (v))(x),

where (P (v), Q(v)) is the bitableau obtained by applying the Robinson-Schensted column
insertion algorithm to v. (Note the reversal of the tableaux.) With little effort one can
see that each semistandard bideterminant can be viewed as a standard bideterminant of
a generalized submatrix. Similarly, each standard bideterminant evaluated at generalized
submatrix of x is either zero or is equal to a semistandard bideterminant. It follows that for
multisets L, M of [n] with |L| = |M | = r, we may describe the space AL,M(x) as

(4.10) AL,M(x) = span{Rw(xL,M) |w ∈ Sr}.

A natural Sn-action on C[x] is given by

(4.11) s ◦ g(x) =
def

g(sx),

where g belongs to C[x] and sx is interpreted as the product of the permutation matrix of the
standard generator s and the matrix x. Clausen [5, Thm. 8.1] showed that one can construct
an irreducible Sn-module indexed by λ ⊢ n by defining the multiset M = 1λ1 · · ·nλn and by
letting Sn act on the space

(4.12) Bλ =
def

span{Rw(x[n],M) |P (w) = T (λ)}.

5. The quantum polynomial ring and Kazhdan-Lusztig immanants

A quantum analog of the polynomial ring C[x] is known as the quantum polynomial ring

A(x; q). This noncommutative ring with multiplicative identity 1 is generated as a C[q
1

2 , q¯
1

2 ]-
algebra by the n2 variables x = (x1,1 . . . , xn,n), with relations

(5.1)

xi,ℓxi,k = q
1

2 xi,kxi,ℓ,

xj,kxi,k = q
1

2 xi,kxj,k,

xj,kxi,ℓ = xi,ℓxj,k,

xj,ℓxi,k = xi,kxj,ℓ + (q
1

2 − q¯
1

2 )xi,ℓxj,k,

for all pairs of variables with indices satisfying i < j and k < ℓ. A natural basis for A(x; q) as

a C[q
1

2 , q¯
1

2 ]-module consists of the set of monomials in which variables appear in lexicographic
order. We can use the relations above to convert any other monomial to this standard form.
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Analogous to the multigrading (4.2) of C[x] is the multigrading

(5.2) A(x; q) =
⊕

r≥0

Ar(x; q) =
⊕

r≥0

⊕

L,M

AL,M(x; q)

of A(x; q), where Ar(x; q) is the span of all monomials of total degree r, and where AL,M(x; q)
is the span of monomials whose row and column indices are given by r-element multisets
L and M of [n]. We again call the space A[n],[n](x; q) the (quantum) immanant space of
A(x; q), and we call {xe,w |w ∈ Sn} the natural basis of A[n],[n](x; q).

It is easy to see that the monomials {xu,v | u, v ∈ Sn} belong to the immanant space and
satisfy

(5.3) xsu,v =





xu,sv if su > u and sv > v, or if su < u and sv < v,

xu,sv + (q
1

2 − q¯
1

2 )xu,v if su > u and sv < v,

xu,sv − (q
1

2 − q¯
1

2 )xu,v if su < u and sv > v.

Define a left action of the Hecke algebra on A[n],[n](x; q) by

(5.4) T̃s ◦ xe,v =
def

xs,v =

{
xe,sv if sv > v,

xe,sv + (q
1

2 − q¯
1

2 )xe,v if sv < v.

With a bit more work, we obtain the following formulae describing the action on monomials
of the form xu,v not necessarily belonging to the natural basis.

Lemma 5.1. We have

(5.5) T̃sj
◦ xu,v =

{
xusj ,v if usj > u,

xusj ,v + (q
1

2 − q¯
1

2 )xu,v if usj < u,

Proof. Assume the formula (5.5) to hold for all monomials xu,v with ℓ(u) < k. Certainly it
holds for ℓ(u) = 0, i.e., u = e. Now fix one permutation u of length k, and let si be a left
descent for u. By (5.3) we have

(5.6) T̃sj
◦ xu,v =

{
T̃sj

◦ xsiu,siv if siv > v,

T̃sj
◦ xsiu,siv + (q

1

2 − q¯
1

2 )T̃sj
◦ xsiu,v if siv < v,

which by induction is equal to
(5.7)





xsiusj ,siv if siv > v and siusj > siu,

xsiusj ,siv + (q
1

2 − q¯
1

2 )xsiu,siv if siv > v and siusj < siu,

xsiusj ,siv + (q
1

2 − q¯
1

2 )xsiusj ,v if siv < v and siusj > siu,

xsiusj ,siv + (q
1

2 − q¯
1

2 )(xsiu,siv + xsiusj ,v) + (q
1

2 − q¯
1

2 )2xsiu,v if siv < v and siusj < siu.

Now we return to the right-hand side of the claimed formula. Suppose first that usj > u.
This implies that siu < siusj < usj. By (5.3) we then have

(5.8) xusj ,v =

{
xsiusj ,siv if siv > v,

xsiusj ,siv + (q
1

2 − q¯
1

2 )xsiusj ,v if siv < v,
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which is equal to T̃si
◦ xu,v by the first and third cases of (5.7). Now suppose that usj < u.

Then we have u > siusj or u = siusj. If u = siusj, then usj = siu < u = siusj. Applying
(5.3) to (just the first monomial in)

(5.9) xusj ,v + (q
1

2 − q¯
1

2 )xu,v = xusj ,v + (q
1

2 − q¯
1

2 )xsiusj ,v,

we again obtain the expressions on the right-hand side of (5.8). If u > siusj, then siu < u
and siusj < usj. By (5.3) we then have

(5.10) xusj ,v + (q
1

2 − q¯
1

2 )xu,v =





xsiusj ,siv + (q
1

2 − q¯
1

2 )(xsiusj ,v + xsiu,siv)

+(q
1

2 − q¯
1

2 )2xsiu,v if siv < v,

xsiusj ,siv + (q
1

2 − q¯
1

2 )xsiu,siv if siv > v,

which is equal to T̃si
◦ xu,v by the second and fourth cases of (5.7).

�

Similar to the bar involution on Hn(q) is another bar involution on A[n],[n](x; q) defined by

(5.11)
∑

v

avx
e,v 7→

∑

v

avxe,v =
∑

v

avx
w0,w0v

where q
1

2 = q¯
1

2 . Expressing these elements in terms of the natural basis, we have

(5.12) xe,v =
∑

w≥v

ǫv,wqv,wSv,w(q−1)xe,w,

where {Sv,w(q) | v, w ∈ Sn} belong to Z[q]. It is possible, but not essential for our purposes,
to show that these polynomials are equal to the R-polynomials defined in [15]. Details will
appear in [26]. As before, we call an element g of A[n],[n](x; q) bar-invariant if it satisfies
g = g. This bar involution and that defined in (3.4) are compatible with the action of Hn(q)
on A[n],[n](x; q) in the following sense.

Proposition 5.2. For all v ∈ Sn we have T̃si
◦ xe,v = T̃si

◦ xe,v.

Proof. By the definitions we have

(5.13) T̃si
◦ xe,v = xsi,v = xw0si,w0v.

On the other hand, we have

(5.14)

T̃si
◦ xe,v = (T̃si

− (q
1

2 − q¯
1

2 )T̃e) ◦ xw0,w0v

= T̃si
◦ xw0,w0v − (q

1

2 − q¯
1

2 )xw0,w0v

= xw0si,w0v + (q
1

2 − q¯
1

2 )xw0,w0v − (q
1

2 − q¯
1

2 )xw0,w0v

by Lemma 5.1. �

Du showed [7], [8] that the immanant space A[n],[n](x; q) has a unique basis of bar-invariant
elements {Immv(x; q) | v ∈ Sn} satisfying

(5.15) Immv(x; q) ∈ xe,v +
∑

w>v

q¯
1

2 Z[q¯
1

2 ]xe,w.
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(We follow the notation of [23].) Expanding Immv(x; q) in terms of the natural basis, we
have

(5.16) Immv(x; q) =
∑

w≥v

ǫv,wq−1
v,wQv,w(q)xe,w,

where {Qv,w(q) | v, w ∈ Sn} are polynomials belonging to N[q]. This basis is called the
Kazhdan-Lusztig immanant basis or dual canonical basis of A[n],[n](x; q). Similar to Lusztig’s
D-bases in [17, Sec. 5], the dual canonical basis of A[n],[n](x; q) arose naturally from Lusztig’s
and Kashiwara’s work on canonical bases [14], [18]. (See also [4], [7, Sec. 2.3], [9, Sec. 2], [11],
[19, Sec. 29.5], [29].)

For the benefit of the reader we provide a proof of the existence and uniqueness of the
Kazhdan-Lusztig immanant basis which is analogous to the proof of [15, Thm. 1.1].

Theorem 5.3. For each v ∈ Sn, there is a unique bar-invariant element Immv(x; q) in
A[n],[n](x; q) satisfying

(5.17) Immv(x; q) =
∑

w≥v

ǫv,wq−1
v,wQv,w(q)xe,w,

where Qv,w(q) is a polynomial in q of degree at most 1
2
(ℓ(w)− ℓ(v)− 1) if v < w, and where

Qv,v(q) = 1.

Proof. Uniqueness of this basis follows from rewriting the condition Immv(x; q) = Immv(x; q)
as

(5.18) qu,wQu,w(q−1) − q−1
u,wQu,w(q) =

∑

u<v≤w

q−1
u,vSu,v(q)q

−1
v,wQv,w(q) for all u ≤ w.

In particular, our assumed degree conditions imply that there can be no cancellation of terms
on the left-hand side of Equation (5.18). Thus there is at most one polynomial Qu,w(q)
satisfying this equation when all other polynomials appearing are known.

To prove the existence of this basis we define the function

(5.19) ν(u, v) =
def

{
coefficient of q(ℓ(v)−ℓ(u)−1)/2 in Qu,v(q) if u < v,

0 otherwise.

Note that Immw0
(x; q) = xe,w0, and assume that for some v ∈ Sn we have already defined

{Immw(x; q) |w > v}. Now we choose a generator s of Sn so that sv < v and define

(5.20) Immsv(x; q) = Cs(q) ◦ Immv(x; q) −
∑

w>v
sw>w

ν(v, w)Immw(x; q).

By Proposition 5.2, we see that this element is bar-invariant. To see that its coefficients
satisfy the degree condition, observe that the coefficient of xe,w in Cs(q) ◦ Immv(x; q) is
(5.21){

ǫv,swq−1
v,swQv,sw(q) − ǫv,wq−1

v,wq
1

2 Qv,w(q) = ǫsv,wq−1
sv,w(Qv,sw(q) + qQv,w(q)) if sw > w

ǫv,swq−1
v,swQv,sw(q) − ǫv,wq−1

v,wq¯
1

2 Qv,w(q) = ǫsv,wq−1
sv,w(qQv,sw(q) + Qv,w(q)) if sw < w,
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which is ǫsv,wq−1
sv,w times a polynomial in q of degree at most

(5.22)

{
1
2
(ℓ(w) − ℓ(sv)) if sw > w

1
2
(ℓ(w) − ℓ(sv) − 1) if sw < w.

If sw > w, the leading coefficient of this polynomial is ν(v, w). Thus, the subtraction from
Cs(q) ◦ Immv(x; q) of ν(v, w)Immw(x; q) for each permutation w satisfying v < w < sw gives
an element of A[n],[n](x; q) which satisfies the required degree conditions. �

Du showed [7] the polynomials {Qu,v(q) | u, v ∈ Sn} in the above proof to be equal to the
inverse Kazhdan-Lusztig polynomials introduced in [15, Sec. 3],

(5.23) Qu,v(q) = Pw0v,w0u(q) = Pvw0,uw0
(q).

Thus we have

(5.24) ν(u, v) = µ(w0v, w0u) = µ(vw0, uw0) = µ(u, v),

and Equation (5.20) implies the following formula for the action of natural basis elements of
Hn(q) on the Kazhdan-Lusztig immanants.

Corollary 5.4. For all v ∈ Sn we have
(5.25)

T̃s ◦ Immv(x; q) =





q
1

2 Immv(x; q) + Immsv(x; q) +
∑

w>v
sw>w

µ(v, w)Immw(x; q) if sv < v,

−q¯
1

2 Immv(x; q) if sv > v.

This formula, analogous to (3.9) allows us to relate the left preorder to the Kazhdan-
Lusztig immanant basis of A[n],[n](x; q).

Lemma 5.5. The relation ⋖L defined in Section 3 satisfies w ⋖L v if and only if Immv(x; q)

appears with nonzero coefficient in T̃u ◦ Immw(x; q) for some u ∈ Sn.

Proof. Replacing v, w in Equation (5.25) by vw0, uw0 (respectively), we have
(5.26)

T̃s ◦ Immvw0
(x; q) =






q
1

2 Immvw0
(x; q) + Immsvw0

(x; q) +
∑

u<v
su<u

µ(u, v)Immuw0
(x; q) if sv > v,

−q¯
1

2 Immvw0
(x; q) if sv < v.

Comparing this formula with (3.9), we see that Cu appears with nonzero coefficient in the ex-

pansion of T̃sCv if and only if Immuw0
(x; q) appears with nonzero coefficient in the expansion

of T̃sImmvw0
(x; q). The result now follows from Equation (3.11). �

We now use the Kazhdan-Lusztig immanants and left preorder to define irreducible Hn(q)-
modules analogous to {Kλ | λ ⊢ n}. For each partition λ ⊢ n, we again fix a standard Young
tableau T of shape λ, but now we fix a permutation v satisfying P (v) = T (rather than

P (v)⊤= T ). Then we let Hn(q) act as in (5.4) on the C[q
1

2 , q¯
1

2 ]-module

(5.27) V λ =
def

span{Immu(x; q) |P (u) = T},
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regarded as the quotient

(5.28) span{Immu(x; q) | u ≥L v}/span{Immu(x; q) | u ≥L v, u 6≤L v}.

The quotient is necessary because like Kλ, the C[q
1

2 , q¯
1

2 ]-module V λ is not in general closed
under the action of Hn(q). In other words, the first containment in

(5.29) V λ ⊆ Hn(q)V λ ⊆ V λ ⊕ span{Immu(x; q) | u ≥L v, u 6≤L v}

is often strict.

Theorem 5.6. V λ is an irreducible Hn(q)-module indexed by λ. Furthermore, for each
permutation u in Sn, the Kazhdan-Lusztig basis of Kλ and the Kazhdan-Lusztig immanant

basis of V λ produce the same matrix representing T̃u.

Proof. Fix a standard Young tableau T of shape λ and define the Hn(q)-module Kλ as in
Equation (3.12) to be the span of the basis {Cw(q) |P (w)⊤= T}. For each permutation u in

Sn, define Xλ
1 (T̃u) to be the matrix of T̃u with respect to this basis. Entries of Xλ

1 (T̃u) are
indexed by pairs (w, v) of permutations satisfying P (w)⊤= P (v)⊤= T , and the (w, v) entry

of Xλ
1 (T̃u) is equal to the coefficient au

v,w appearing in the equation

(5.30) T̃uCv(q) =
∑

w∈Sn

au
v,wCw(q).

Now define the Hn(q)-module V λ as in Equation (5.27) to be the span of the basis

(5.31) {Immw(x; q) |P (w) = evac(T )} = {Immww0
(x; q) |P (w)⊤= T}.

For each element u of Sn, define Y (T̃u) to be the matrix of T̃u with respect to this basis.

Entries of Y (T̃u) are indexed by pairs (ww0, vw0) satisfying P (w)⊤ = P (v)⊤ = T , and the

(ww0, vw0) entry of Y (T̃u) is equal to the coefficient bu
vw0,ww0

appearing in the equation

(5.32) T̃u ◦ Immvw0
(x; q) =

∑

w∈Sn

bu
vw0,ww0

Immww0
(x; q).

By Equations (3.9) and (5.25), we have as
v,w = bs

vw0,ww0
for all standard generators s, and

therefore Xλ
1 (T̃s) = Y (T̃s). It follows that we have Xλ

1 (T̃u) = Y (T̃u) for all permutations u
in Sn. �

The specialization V λ(1) of V λ at q
1

2 = 1 is an irreducible Sn-module indexed by λ. Even
in this simpler setting, the quotient (5.28) is necessary.

6. Main results

Recall that the C[q
1

2 , q¯
1

2 ]-modules Kλ (3.12) and V λ (5.27) are not in general closed under

the Hn(q)-actions (3.2) and (5.4). To obtain Hn(q)-modules from these C[q
1

2 , q¯
1

2 ]-modules,
we must view them as the quotients (3.13) and (5.28). Similarly, the vector spaces Kλ(1) and

V λ(1) obtained by specializing Kλ and V λ at q
1

2 = 1 are not closed under the corresponding

Sn-actions. We must specialize the quotients (3.13), (5.28) at q
1

2 = 1 in order to obtain
Sn-modules, and will write Immw(x) = Immw(x; 1) for the nonquantum Kazhdan-Lusztig
immanants in AM,[n](x).
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In contrast, Clausen’s vector space Bλ (4.12) is indeed an Sn-module which requires no
quotient. To examine this fact more closely, we recall the following definition and results
from [24]. Given an n × n matrix A and an integer j ≤ n, we define a partition ν[j](A) of j
by

(6.1) ν[j](A) =
def

(ν1, . . . , νk),

where k is the number of distinct columns in the n × j submatrix A[n],[j], and ν1, . . . , νk are
the multiplicities with which distinct columns appear, written in weakly decreasing order.
The function ν[j] facilitates the statement of sufficient conditions on an n × n matrix which
imply a bideterminant or Kazhdan-Lusztig immanant to vanish on that matrix. (See [24,
Sec. 4].) In particular, we have the following special case of [24, Thms. 4.10-4.11].

Proposition 6.1. Fix a permutation w ∈ Sn and an n × n matrix A. If sh(w−1
[j] ) � ν[j](A)

for some 1 ≤ j ≤ n, then Immw(A) = Rw(A) = 0.

This proposition has the following simple consequence.

Corollary 6.2. Fix an integer partition λ ⊢ n and define the multiset M = 1λ1 · · ·nλn. For
each permutation w satisfying sh(w) ≺ λ or satisfying sh(w) = λ and P (w) 6= T (λ), we have
Immw(x[n],M) = Rw(x[n],M) = 0.

Proof. If w satisfies sh(w) ≺ λ, then the case j = n of Proposition 6.1 implies that we have
Immw(x[n],M) = Rw(x[n],M) = 0. Suppose therefore that sh(w) = λ and P (w) 6= T (λ). Since
the tableau T (λ) is maximal in iterated dominance among all tableaux of shape λ we have
T (λ) ⊲I P (w) = Q(w−1), and there exists an index j such that

(6.2) sh(Q(w−1)[j]) ≺ sh(T (λ)[j]) = ν[j](x[n],M).

By Lemma 2.2 we then have sh(w−1
[j] ) ≺ ν[j](x[n],M), which by Proposition 6.1 implies the

desired result. �

Thus the absence of a quotient in the definition (4.12) of Bλ is explained by applying
Corollary 6.2 to the result [5, Thm. 4.5]

(6.3) Sn ◦ Rv(x) ⊆ span{Ru(x) | u ≤I v}.

We now use the multiset M = 1λ1 · · ·nλn to eliminate the quotient from the definition of
V λ(1), while maintaining an Sn-module equivalent to that defined by Kazhdan and Lusztig
in [15]. Define the space

(6.4) W λ =
def

span{Immw(x[n],M) |P (w) = T (λ)}.

Proposition 6.3. For λ ⊢ n, the space W λ (6.4) is an Sn-module.

Proof. Choose a permutation v satisfying P (v) = T (λ) and define M = 1λ1 · · ·nλn . By (5.29)
we have

(6.5) Sn ◦ W λ ⊆ W λ ⊕ span{Immu(x[n],M) | u ≥L v, u 6≤L v}.

Consider a permutation u satisfying v ≤L u 6≤L v. By (3.10) we have either sh(u) ≺ sh(v)
or sh(u) = sh(v) and P (u) = P (v). In both cases, Corollary 6.2 implies that we have
Immu(x[n],M) = 0, and it follows that Sn ◦ W λ = W λ. �
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Checking that the matrix specialization x 7→ x[n],M introduces no linear relations among
the images of the basis elements {Immw(x) |P (w) = T (λ)}, we see that the module W λ is
irreducible.

Theorem 6.4. For each partition λ ⊢ n, the space W λ defined in (6.4) is an irreducible Sn-
module indexed by λ. Furthermore, the Kazhdan-Lusztig immanant basis of W λ produces the
same matrix representation of Sn as does the Kazhdan-Lusztig basis of Kλ(1).

Proof. Write λ = (λ1, . . . , λr), and define the Young subgroup WJ of Sn and the set W J
+

of maximal coset representatives as in Section 2. By Lemma 2.1, the permutations w sat-
isfying P (w) = T (λ) belong to W J

+. By [7, Sec. 2] and [27, Thm. 2.1], the polynomials
{Immv(x[n],M) | v ∈ W J

+} form a basis of A[n],M(x). Thus the subset {Immv(x[n],M) |P (v) =
T (λ)} is linearly independent and forms a basis of W λ.

Using this basis to represent elements of Sn by matrices, we clearly obtain the same ma-
trices as those obtained by using the basis {Immv(x) |P (v) = T (λ)} for V λ(1). Specializing

Theorem 5.6 at q
1

2 = 1, we see that these matrices are also equal to those obtained by using
the Kazhdan-Lusztig basis of Kλ(1). �

Like Clausen’s module Bλ, the module W λ requires no quotient and therefore does not
rely upon the Kazhdan-Lusztig preorders. Not only do Bλ and W λ have this attribute in
common, they are in fact equal. This follows from work in [24, Sec. 6] on partial filtrations
of the immanant space.

Theorem 6.5. For all partitions λ ⊢ n, Clausen’s module Bλ is equal to the Kazhdan-Lusztig
immanant module W λ.

Proof. By [24, Thm. 6.4], we have the equality of spaces

(6.6) span{Rv(x) | sh(v) � λ} = span{Immv(x) | sh(v) � λ}.

Specializing at x = x[n],M and applying Corollary 6.2 and Theorem 6.4, we then have

(6.7)

Bλ = span{Rv(x[n],M) |P (v) = T (λ)} = span{Rv(x[n],M) | sh(v) � λ}

= span{Immv(x[n],M) | sh(v) � λ}

= span{Immv(x[n],M) |P (v) = T (λ)} = W λ.

�

By [24, Sec. 5], the bitableau and Kazhdan-Lusztig immanant bases of any component
AL,M(x) of C[x] are related by a unitriangular transition matrix having nonnegative integer
entries. Thus for L = [n] and M = 1λ1 · · ·nλn we have

(6.8) A[n],M(x) = span{Rw(x[n],M) |w ∈ W J
+} = span{Immw(x[n],M) |w ∈ W J

+},

and there exist nonnegative integers {d
[n],M
u,v | u, v ∈ W J

+} satisfying

(6.9) Rv(x[n],M) = Immv(x[n],M) +
∑

u<Iv

d[n],M
u,v Immu(x[n],M),

where the relation <I is the iterated dominance order on Sn, defined in Section 2. For

convenience, we define d
[n],M
u,u = 1 and d

[n],M
u,v = 0 if u 6≤I v. By Equation (6.7), the fact

(6.9) restricts nicely to the bitableau and Kazhdan-Lusztig immanant bases of the subspace
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Bλ = W λ of A[n],M(x). Specifically, for v satisfying P (v) = T (λ), the sum on the right-hand
side of (6.9) may be taken over permutations u belonging to the set

(6.10) Z(λ) =
def

{u |P (u) = T (λ)}.

It follows that the matrix representations corresponding to the Kazhdan-Lusztig basis of
Kλ(1) and bideterminant basis of Bλ are related by a unitriangular transition matrix with
integer coefficients. For fixed λ let k = dim W λ be the number of standard Young tableaux
of shape λ, and let the maps Xλ

1 , Xλ
3 : Sn → GLk(C) be the matrix representations of Sn

corresponding to the Kazhdan-Lusztig basis of Kλ and the bideterminant basis of Bλ, each
ordered by any linear extension of the iterated dominance order on Z(λ). Then we have the
following.

Corollary 6.6. For each partition λ ⊢ n, there exists a unitriangular matrix A = A(λ) with
nonnegative integer coefficients such that the matrix representations Xλ

1 , Xλ
3 defined above

are related by

(6.11) Xλ
1 (v) = A−1Xλ

3 (v)A

for all v ∈ Sn.

Proof. Defining Z = Z(λ) as in (6.10), we have that A = (au,v)u,v∈Z = (d
[n],M
u,v )u,v∈Z is

the k × k transition matrix relating the bideterminant basis of Bλ to the Kazhdan-Lusztig
immanant basis. �

It would be interesting to quantize all of the results in this section so that the quantizations
of Theorem 6.5 and Corollary 6.6 would provide an analog in the quantum polynomial ring
A(x; q) of the McDonough-Pallikaros result [21, Thm. 4.1] for the Hecke algebra Hn(q). (⋆
Rephrase this?)
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