INEQUALITIES IN PRODUCTS OF MINORS OF TOTALLY NONNEGATIVE MATRICES

Mark Skandera

(U. Michigan)

Outline

- 1. Totally nonnegative matrices
- 2. Interpretation in terms of path families
- 3. Inequalities in products of minors
- 4. Characterization theorems
- 5. Open questions

Total nonnegativity

Given an $n \times n$ matrix A and two subsets I, I' of $[n] = \{1, \ldots, n\}$, let $\Delta_{I,I'}$ be the (I, I')-minor of A: the determinant of the submatrix of A corresponding to rows I and columns I'.

$$A = \begin{bmatrix} 5 & 6 & 3 & 0 \\ 4 & 7 & 4 & 0 \\ 1 & 4 & 4 & 2 \\ 0 & 1 & 2 & 3 \end{bmatrix},$$

$$\Delta_{\{1,3\},\{2,3\}} = \det \begin{bmatrix} 6 & 3 \\ 4 & 4 \end{bmatrix} = 12.$$

Define a matrix to be totally nonnegative (TNN) if each of its minors is nonnegative.

Such matrices arise in various mathematical settings:

- 1. representation theory
- 2. algebraic geometry
- 3. stochastic processes
- 4. matroids
- 5. electrical networks
- 6. roots of polynomials
- 7. posets
- 8. differential equations

Planar networks

Define a planar network of order n to be a directed acyclic planar graph, in which 2n boundary vertices are labeled counterclockwise as $s_1, \ldots, s_n, t_n, \ldots, t_1$ as below.

Define the path matrix of a planar network by $A = [a_{ij}]$, where a_{ij} counts paths from s_i to t_j .

Theorem: (Karlin-McGregor '59, Lindström '73) The path matrix of a planar network is always TNN.

Proof idea: $\Delta_{I,I'}$ counts families of nonintersecting paths from sources

$$S_I = \{s_i \mid i \in I\}$$

to sinks

$$T_{I'} = \{t_i \mid i \in I'\}.$$

More generally, if we weight edges in the network by positive real numbers, and define the weight of a path to be the product of its edge weights, then the corresponding weighted path matrix is TNN.

Theorem: (Whitney '52, Loewner '55, Cryer '76, Brenti '95) A TNN matrix is always the weighted path matrix of a planar network.

Proof idea: A TNN matrix A can be factored into elementary TNN matrices each of which is easily representable by a planar network. The concatenation of these networks represents A.

Question: Is an integer TNN matrix always the (unweighted) path matrix of a planar network?

TNN polynomials

Call a polynomial $f(x_{1,1}, \ldots, x_{n,n})$ in n^2 variables totally nonnegative if for any TNN matrix $A = [a_{i,j}]$, we have

$$f(a_{1,1},\ldots,a_{n,n})\geq 0.$$

Theorem: (Lusztig '94) The elements of Zelevinsky and Berenstein's dual canonical basis for the coordinate ring of GL_n are TNN.

Problem: Find a simple description of the dual canonical basis for GL_n .

Problem: Find a simple description of any family of TNN polynomials.

Inequalities in principal minors

Observation: (FGJ '01) The inequality $\Delta_{14,14}\Delta_{23,23} \leq \Delta_{13,13}\Delta_{24,24}$ holds for all TNN matrices.

Equivalently, the polynomial $\Delta_{13,13}\Delta_{24,24} - \Delta_{14,14}\Delta_{23,23}$ is TNN.

Theorem: (FGJ '01) The inequality

$$\Delta_{I,I}\Delta_{\overline{I},\overline{I}} \leq \Delta_{J,J}\Delta_{\overline{J},\overline{J}}$$

holds for all TNN matrices if and only if the set partition (J, \overline{J}) of [n] is at least as sparse as (I, \overline{I}) .

i.e., if for each subinterval B of [n], we have

$$\max\{|B \cap I|, |B \cap \overline{I}|\} \ge \max\{|B \cap J|, |B \cap \overline{J}|\}.$$

$$I, \bar{I}$$
 J, \bar{J}

Inequalities in nonprincipal minors

Observation: The inequality

$$\Delta_{13,24}\Delta_{24,13} \le \Delta_{13,13}\Delta_{24,24}$$

holds for all TNN matrices.

Equivalently, the polynomial

$$\Delta_{13,13}\Delta_{24,24} - \Delta_{13,24}\Delta_{24,13}$$

is TNN.

Question: When does $\Delta_{I,I'}\Delta_{\overline{I},\overline{I'}} \leq \Delta_{J,J'}\Delta_{\overline{J},\overline{J'}}$ hold for all TNN matrices?

Write $(I', \overline{I'})$ and $(J', \overline{J'})$ backwards.

Swap $(I', \overline{I'})$, swap $(J', \overline{J'})$, renumber.

Answer: When the set partition $(J'', \overline{J''})$ of [2n] is at least as sparse as $(I'', \overline{I''})$.

Theorem: (MS '01) The inequality

$$\Delta_{I,I'}\Delta_{\overline{I},\overline{I'}} \leq \Delta_{J,J'}\Delta_{\overline{J},\overline{J'}}$$

holds for all TNN matrices if and only if the set partition $(J'', \overline{J''})$ of [2n] is at least as sparse as $(I'', \overline{I''})$, where

$$I'' = I \cup \{2n + 1 - i \mid i \in \overline{I'}\},\$$

 $J'' = J \cup \{2n + 1 - j \mid j \in \overline{J'}\}.$

Corollary: The above inequality holds for all TNN matrices if and only if the inequality

$$\Delta_{I'',I''}\Delta_{\overline{I''},\overline{I''}} \leq \Delta_{J'',J''}\Delta_{\overline{J''},\overline{J''}}$$

holds for all TNN matrices.

Combinatorial interpretation of the products of minors

Let A be the path matrix of a planar network G of order n. Then $\Delta_{I,I'}\Delta_{\overline{I},\overline{I'}}$ counts path families (π_1,\ldots,π_n) in G such that

- 1. Each path begins in S_I and ends in $T_{I'}$ or a begins in $S_{\overline{I}}$ and ends in $T_{\overline{I'}}$.
- 2. The paths from S_I to $T_{I'}$ are pairwise disjoint, as are the paths from $S_{\overline{I}}$ to $T_{\overline{I'}}$.

We will say that such a path family obeys the (I, I') crossing rule.

Path families which cover a planar network

Question: When do path families which obey the (J, J') crossing rule outnumber those which obey the (I, I') crossing rule in every planar network?

Observation: It suffices to consider only those planar networks which can be covered by n paths.

Comparison reduces to existence

Proposition: Let G be a planar network. Path families which cover G and obey the (J, J') crossing rule cannot outnumber those which cover G and obey the (I, I') crossing rule, unless there are none of the latter.

Proof idea: Suppose that G can be covered by at least one path family which obeys each crossing rule. Then the number of such path families is 2^k , where k is the number of cyclic components of the graph $\phi(G)$ defined on the next page.

Counting covering path families

A planar network G.

The graph $\phi(G)$.

Existence reduces to matching

Corollary: G can be covered by a path family which obeys the (I, I') crossing rule if and only if n path components of $\phi(G)$ induce a perfect matching of $S_I \cup T_{\overline{I'}}$ with $S_{\overline{I}} \cup T_{I'}$.

Corollary: More path families which cover G obey the (J, J') crossing than the (I, I') crossing rule if and only if $\phi(G)$ induces a matching of $S_J \cup T_{\overline{J'}}$ with $S_{\overline{J}} \cup T_{J'}$, and does not induce a matching of $S_I \cup T_{\overline{I'}}$ with $S_{\overline{J}} \cup T_{\overline{J'}}$.

The graph $\phi(G)$.

The matching $\psi(G)$ induced by $\phi(G)$.

Two embeddings of $\psi(G)$

Define
$$I'' = I \cup \{2n + 1 - i \mid i \in \overline{I'}\},\ J'' = J \cup \{2n + 1 - j \mid j \in \overline{J'}\}.$$

Matching reduces to examining intervals

Suppose that $\psi(G)$ is a matching of J'' with $\overline{J''}$ and not a matching of I'' with $\overline{I''}$. Then some arc (b_1, b_2) has both endpoints in I'' (or $\overline{I''}$) and exactly one endpoint in each of J'' and $\overline{J''}$. Choosing this arc to minimize $b_2 - b_1$, we have

$$\max\{|B \cap I''|, |B \cap \overline{I''}|\} = \frac{1}{2}|B| + 1, |B \cap J''| = |B \cap \overline{J''}| = \frac{1}{2}|B|.$$

Conversely, suppose we are given subsets I, J of [n] such that the partition $(I'', \overline{I''})$ of [2n] is not less sparse than $(J'', \overline{J''})$. Then by definition there is an interval B such that

$$|B \cap I''| = |B \cap \overline{I''}| = \frac{1}{2}|B|,$$

 $\max\{|B \cap J''|, |B \cap \overline{J''}|\} = \frac{1}{2}|B| + 1.$

It is then easy to create a planar network G in which families which obey the (I, I') crossing rule outnumber those which obey the (J, J') crossing rule.

The path matrix of G then satisfies

$$\Delta_{I,I'}\Delta_{\overline{I},\overline{I'}} > \Delta_{J,J'}\Delta_{\overline{J},\overline{J'}}.$$

Create a matching H including edge (b_1, b_2) .

Create a planar network G s.t. $\psi(G) = H$.

Corollary of main theorem

Corollary: (MS '01) Assume that

$$\Delta_{I,I'} \Delta_{\overline{I},\overline{I'}} \leq \Delta_{J,J'} \Delta_{\overline{J},\overline{J'}}$$

holds for all TNN matrices, and let A be a TNN matrix which is the (weighted) path matrix of the planar network G.

The nonnegative number

$$\Delta_{J,J'}\Delta_{\overline{J},\overline{J'}} - \Delta_{I,I'}\Delta_{\overline{I},\overline{I'}}$$

is equal to the weighted sum of path families in G which obey the (J, J') crossing rule and can not be covered by any path family which obeys the (I, I') crossing rule.

Theorem: (MS '01) The inequality

$$\Delta_{I,I'}\Delta_{K,K'} \leq \Delta_{J,J'}\Delta_{L,L'}$$

holds for all TNN matrices if and only if we can delete repeated indices and reduce to the previous theorem.

Corollary: All of the inequalities of the above form are consequences of inequalities of the form

$$\Delta_{I,I}\Delta_{\overline{I},\overline{I}} \leq \Delta_{J,J}\Delta_{\overline{J},\overline{J}},$$

where I, J are n-subsets of [2n].

Open questions

- 1. Which TNN polynomials can be written as subtraction-free rational expressions (or Laurent polynomials) in matrix minors?
- 2. How can one characterize inequalities that hold between products of k minors of TNN matrices, for k > 2?
- 3. Which TNN polynomials when applied to Jacobi-Trudi matrices evaluate to schurpositive symmetric functions?
- 4. Is there a true combinatorial interpretation for the minors of integer TNN matrices?