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Total nonnegativity

Given an n X n matrix A and two subsets
I,I' of [n] = {1,...,n}, let Ag p be the
(I, I")-minor of A: the determinant of the
submatrix of A corresponding to rows I and
columns I”.

5630
4740
1442

0123

6 3
A{l,S},{Q,S} — det [4 4] = 12.
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Define a matrix to be totally nonnegative
(TNN) if each of its minors is nonnegative.

Such matrices arise in various mathemati-
cal settings:

1. representation theory
2. algebraic geometry

3. stochastic processes
4. matroids

5. electrical networks

6. roots of polynomials
7. posets

8. differential equations



Planar networks

Define a planar network of order n to be
a directed acyclic planar graph, in which 2n
boundary vertices are labeled counterclock-
wise as S1,...,8n,tn,...,t1 as below.
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Define the path matriz of a planar network
by A = la;;|, where a;; counts paths from
si to t;.



Theorem: (Karlin-McGregor '59, Lind-
strom ’73) The path matrix of a planar net-
work 1s always TNN.

Proot idea: A ;r counts families of nonin-
tersecting paths from sources

Sp={sili€l}
to sinks
Ty ={t;|t e ]/}.

More generally, if we weight edges in the
network by positive real numbers, and de-
fine the weight of a path to be the product
of its edge weights, then the corresponding
wetghted path matrix 1s TNN.



Theorem: (Whitney 52, Loewner 55,
Cryer '76, Brenti '95) A TNN matrix is al-
ways the weighted path matrix of a planar
network.

Proof idea: A TNN matrix A can be fac-
tored into elementary TNN matrices each of
which 1s easily representable by a planar net-
work. The concatenation of these networks
represents A.

Question: Is an integer TNN matrix al-
ways the (unweighted) path matrix of a pla-
nar network?



TNN polynomials

Call a polynomial f(x11,...,Znp) in n’

variables totally nonnegative it tor any TNN
matrix A = [a; ;], we have

f(al,la e aan,n) > 0.

Theorem: (Lusztig '94) The elements of
Zelevinsky and Berenstein’s dual canonical

basis for the coordinate ring of GL, are
TNN.

Problem: Find a simple description of
the dual canonical basis for GL,.

Problem: Find a simple description of
any family of TNN polynomials.



Inequalities in principal minors

Observation: (FGJ '01) The inequality

A14.14A893 93 < A1313094 94
holds for all TNN matrices.

Equivalently, the polynomial

A13.13894 94 — A4 14493 93
1s TNN.



Theorem: (FGJ ’01) The inequality
A] ]A < AJ JA

holds for all TNN matrlces if and only if the
set partition (J, J) of [n] is at least as sparse
as (I, 7).

i.e., if for each subinterval B of [n], we have

max{|BNI|,|BNI|} > max{|BNJ|,|BnNJ|}.

U il
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Inequalities in nonprincipal minors

Observation: The inequality

A13.94894 13 < A1313094 94
holds for all TNN matrices.

Equivalently, the polynomial

A13.130894 94 — A13 24094 13
1s TNN.
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Question: When does A I, ['Aff < A J J’AIT
hold for all TNN matrices?

Write (I, I') and (J', J') backwards.
4 3 2 1

Swap (I',I'), swap (J', J'), renumber.
1 2 3 4 5 6 7 8

Answer: When the set partition (J " g
of [2n] is at least as sparse as (1", I").
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Theorem: (MS '01) The inequality

Ap gy <A g A5

holds for all TNN matrices it and only if the

set partition (J”, J") of [2n] is at least as

sparse as (I", I'"), where
I"=1u{2n+1—i|iel},
J'=Ju{on+1-75|j€e '}

Corollary: The above inequality holds
for all TNN matrices if and only if the in-
equality

A[//J//A[,, N < AJ// A
holds for all TNN matrices.

JJ"
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Combinatorial interpretation of the
products of minors

Let A be the path matrix of a planar net-
work GG of order n. Then A . I’AT 77 counts

path families (7, ..., m,) in G such that

1. Bach path begins in Sy and ends in 1
or a begins in 57 and ends in I° i

2. The paths from S; to T are pairwise
disjoint, as are the paths from 57 to T- -

We will say that such a path family obeys
the (I,1") crossing rule.
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Path families which cover a planar
network

Question: When do path families which
obey the (J, J') crossing rule outnumber those
which obey the (I, I") crossing rule in every
planar network?

Observation: It suffices to consider only
those planar networks which can be covered
by n paths.
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Comparison reduces to existence

Proposition: Let GG be a planar network.
Path families which cover G and obey the
(J, J') crossing rule cannot outnumber those
which cover G and obey the (I, I’) crossing
rule, unless there are none of the latter.

Proof idea: Suppose that G can be cov-
ered by at least one path family which obeys
each crossing rule. Then the number of such
path families is 2k, where k is the number of
cyclic components of the graph ¢(G) defined
on the next page.



Counting covering path families

A planar network G.
0
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The graph ¢(G).
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Existence reduces to matching

Corollary: G can be covered by a path
family which obeys the (I, I") crossing rule
if and only if n path components of ¢(G)
induce a perfect matching of 5y U 1% with
SUTT.

Corollary: More path tamilies which cover
G obey the (J, J') crossing than the (I, 1)
crossing rule if and only if ¢(G) induces a
matching of S; U T with 5+ U Ty, and
does not induce a matching of Sy U717 with
S7UTp.



The graph ¢(G)

>C>

The matching 1 (G) induced by ¢(G
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Two embeddings of (G)
1 14
D [
3 >\f 12
4 11
5 :> 10
6 9
7 :> <:8
s [/f\ /“;zf\\ir 1

9 10 11 12 13 14

Define I = TU{2n +1—i|i e T'},
J'=Ju{on+1—j|je T
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Matching reduces to examining
intervals

m/mmm\r 1

9 10 11 12 13 14

Suppose that 1(G) is a matching of J”
with J” and not a matching of I with 1"
Then some arc (by, by) has both endpoints
in I” (or I") and exactly one endpoint in
each of J"” and J”. Choosing this arc to
minimize by — by, we have

max{|BNI"|,|BNT"|} =} B| +1,
BnJ" =|BnJ"| =1 B].
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Conversely, suppose we are given subsets
I, J of [n] such that the partition (I", I'") of
2n] is not less sparse than (J”, J”). Then
by definition there is an interval B such that

BNI"|=]BNI"=4|B|
max{|BNJ"|,|BNJ"} = %|B[ + 1.

It 1s then easy to create a planar network
G in which families which obey the (I, 1)
crossing rule outnumber those which obey
the (J, J') crossing rule.

The path matrix of GG then satisfies

A[)]/AT’F > AJ) J/Aj)?.



Create a matching H including edge (b1, b9).

D
-
D C

Create a planar network G s.t. (G

3

N N Y
AL



23

Corollary of main theorem

Corollary: (MS '01) Assume that
A[]/A]], < AJJ/AJJ/
holds for all TNN matrices, and let A be a

TNN matrix which is the (weighted) path
matrix of the planar network G.

The nonnegative number
AJJ/AJ ¥ — Ay ]/A[ 77
is equal to the weighted sum of path families
in G which obey the (J, J') crossing rule and

can not be covered by any path tamily which
obeys the (I, I") crossing rule.



24

Theorem: (MS '01) The inequality
ArrAr K < Ag AL L
holds for all TNN matrices if and only if we

can delete repeated indices and reduce to the
previous theorem.

Corollary: All of the inequalities of the
above form are consequences of inequalities
of the form

ALIATT S AJIAT T

where I, J are n-subsets of [2n)].
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Open questions

1. Which TNN polynomials can be written
as subtraction-free rational expressions (or
Laurent polynomials) in matrix minors?

2. How can one characterize inequalities
that hold between products of £ minors of

TNN matrices, for k& > 27

3. Which TNN polynomials when applied
to Jacobil-Trudi matrices evaluate to schur-
positive symmetric functions?

4. Is there a true combinatorial interpreta-
tion for the minors of integer TNN matrices?



