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MARK SKANDERA

Abstract. A number of authors studying permutation statistics on the symmetric

group S

n

have considered pairs (x, Y), where x is an Eulerian statistic and Y is a

Mahonian statistic. Of special interest are pairs involving the statistics des, exc,

maj, and inv, which arise often in combinatorics. One pair of statistics which has a

particularly nice joint distribution on S

n

is (des, maj). A second pair, (exc, den),

was shown to be equidistributed with (des, maj) by Foata and Zeilberger in 1989.

This left open the problem of �nding a natural Eulerian statistic z such that (z; inv)

is equidistributed with (des, maj) and (exc, den). We present such a statistic z,

along with a simple bijective proof that the pairs of statistics are equidistributed.

1. Introduction

Let S

n

be the symmetric group on n letters. A permutation statistic is a function

� : S

n

! N which maps permutations to nonnegative integers. The distribution of a

permutation statistic on S

n

is simply a count of the number of permutations � in S

n

for which �(�) = k, for all possible values of k.

For example, \des" is a statistic counting the number of descents of a permutation.

Writing � = �

1

; : : : ; �

n

, we call i a descent in � if �

i

> �

i+1

. Therefore,

des(�) = #fij�

i

> �

i+1

; i = 1; : : : ; n� 1g:(1.1)

The number of permutations in S

n

with k � 1 descents is equal to the Eulerian

number A(n; k). The numbers A(n; k) are often written as the coe�cients of the

Eulerian polynomial

A

n

(x) =

X

�2S

n

A(n; k)x

k

=

X

�2S

n

x

1+des(x)

:(1.2)

While no closed formula is known for the Eulerian polynomials, their generating

function is

1 +

X

n�1

A

n

(x)u

n

n!

=

1

1�

P

n�1

(x�1)

n�1

u

n

n!

;(1.3)
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and the coe�cients A(n; k) satisfy the recurrence

A(n; k) = kA(n� 1; k) + (n� k � 1)A(n� 1; k � 1);(1.4)

subject to the initial conditions

A(1; k) =

(

1 for k = 1

0 otherwise:

A permutation statistic, like des, whose distribution on S

n

is given by the nth

Eulerian polynomial A

n

(x) is known as an Eulerian statistic. A second Eulerian

statistic is \exc", the number of excedances of a permutation.

exc(�) = #fij�

i

> ig:(1.5)

Thus,

X

�2S

n

x

1+des(x)

=

X

�2S

n

x

1+exc(x)

= A

n

(x):(1.6)

Another important class of permutation statistics, distributed di�erently than the

class of Eulerian statistics, is the class of Mahonian statistics.

An important example is maj, the major index of a permutation. If we de�ne the

descent set of a permutation to be

D(�) = fij�

i

> �

i+1

g;(1.7)

then maj is de�ned by

maj(�) =

X

i2D(�)

i:(1.8)

Another Mahonian statistic is inv, the number of inversions of a permutation.

inv(�) = #f(i; j)ji < j and �

i

> �

j

g:(1.9)

The distribution on S

n

of any Mahonian statistic is given by the q-analog of n

factorial. Thus,

X

�2S

n

q

maj(x)

=

X

�2S

n

q

inv(x)

= (1 + q)(1 + q + q

2

) � � � (1 + q + q

2

+ � � �+ q

n�1

):(1.10)

Following Clark and Steingrimmson [?], we will write Eulerian statistics with low-

ercase letters and Mahonian statistics with capitals.

Naturally extending the study of single permutation statistics and their distribu-

tions on S

n

, one may consider pairs of permutation statistics and their joint distri-

butions on S

n

. For example, the generating function for (des, maj) on S

n

is given by

Carlitz's q-Eulerian polynomial [?] B

n

(t; q). A second pair of statistics, (exc, den)
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was conjectured by Denert [?] and shown by Foata and Zeilberger [?] and Han [?]

To have the same joint distribution as (des, maj).

X

�2S

n

t

des(�)

q

maj(x)

=

X

�2S

n

t

exc(�)

q

den(x)

= B

n

(t; q):(1.11)

Writing B

n

(t; q) as

B

n

(t) =

n

X

k=0

B

n;k

(q)t

k

(1.12)

Carlitz [?] showed that the coe�cients B

n;k

(q) satisfy the recurrence relation

B

n;k

(q) = [k + 1]

q

B

n�1;k

(q) + q

k

B

n�1;k�1

(q);(1.13)

with initial conditions B

0;k

(q) = �

0;k

:

Wishing for a formula analogous to ? and containing the statistic inv, Foata [?]

asked (more or less) for a natural Eulerian statistic z such that (z, inv) has this same

joint distribution. There is, in fact, a natural Eulerian statistic with this property.

We will call it \zc", and will de�ne it in Section ??

Theorem 1.1. The statistic zc is Eulerian, and the pair (zc, inv) is distributed on

S

n

like (des, maj).

In Section 2, we will de�ne the code and major index table of a permutation, and

note several properties of these. We will also de�ne a bijection � which maps maj to

inv. In Section 3, we will de�ne the statistic \zc" and give a simple bijective proof

of Theorem 3.1. This statistic is easily seen to be Eulerian, (and show that the map

� from section x ...) In Section ?? we will re�ne Theorem 3.1 by associating to a

permutation � with z(�) = k a set of k numbers. Analogous to the descent set of

a permutation which sums to maj(�), the zc set sums to inv(�). To prove this, we

again use the bijection �. We conclude in Section ?? by showing that � is not the

only bijection which proves all of the results.

2. Codes and major index tables

Let us de�ne M

n

to be the set of vectors v of length n, whose components are non-

negative integers, which are componentwise less than or equal to the \stair vector"

of length n : (n� 1; n� 2; : : : ; 1; 0).

M

n

= fv 2 N

n

jv � (n� 1; n� 1; : : : ; 1; 0)g:(2.1)
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Throughout, we will follow the conventional notation for vector inequalities. That

is, if v and w have the same dimension, n, then we write

v � w if v

i

� w

i

for i = 1; : : : ; n:

v < w if v

i

< w

i

for i = 1; : : : ; n:

Informally, we will refer to the elements of M

n

as substair vectors of length n.

Clearly, the cardinality of the set M

n

is n!, and bijections between M

n

and S

n

are

widely used in combinatorics.

One such bijection sends a permutation to its code. We will denote this bijection

by 
.


 : S

n

!M

n

� 7! code(�):

The code of � = �

1

; : : : ; �

n

is de�ned to be the vector code(�) = c

1

; : : : ; c

n

, where

c

i

counts the number of letters in � which are to the right of position i and smaller

than �

i

.

Example 2.1.

� = 2 8 4 3 6 7 9 5 1

code(�) = 1 6 2 1 2 2 2 1 0

(2.2)

The map 
 is well known to be a bijection. (See, for example [Gupta] and [EC1].)

It is not hard to see that the sum of the components of code(�) is inv(�).

A second bijection between S

n

andM

n

which is less well known sends a permutation

to its major index table. We will denote this bijection by �.

� : S

n

!M

n

� 7! majtable(�):

The major index table is a substair vector whose entries sum to maj(�). The major

index table of � = �

1

; : : : ; �

n

is de�ned to be the vector majtable(�) = m

1

; : : : ; m

n

,

where m

i

roughly counts the contribution of the letter i to maj(�).

More precisely, we de�ne the major index table as follows. Given a permutation

�, denote by �

(k)

be the restriction of � to the letters k through n. Building � one

letter at a time in the order n; n�1; : : : ; 1, we construct the sequence of permutations

�

(n)

= n; �

(n�1)

; : : : ; �

(1)

= �. We de�nem

n

= 0 andm

i

(�) =maj(�

(i)

)� maj(�

(i+1)

).

That is, m

i

is the amount by which the major index increases with the insertion of i.
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Example 2.2. Let � = 413265. Inserting the letters in the order 6; 5; : : : ; 1, we

obtain the following sequence of permutations. Descents are marked by bars.

�

(i)

maj(�

(i)

) m

i

6 0 0

6j5 1 1

46j5 2 1

4j36j5 4 2

4j3j26j5 7 3

4j13j26j5 9 2

Calculating maj for each of these, and subtracting, we have

majtable(413265) = m = 232110:

The map � : S

n

!M

s

, taking a permutation to its major index table, is known to

be a bijection. While the result is di�cult to �nd stated explicitly in the literature,

it is nearly stated in [Gupta], [Carlitz], [Rawling].

Proposition 2.1. The map � : S

n

! M

n

, taking a permutation to its major index

table, is a bijection.

Proof. One inverts � by writing partial permutations n = �

(n)

; : : : ; �

(1)

in such a way

that for i = n�1; : : : ; 1, the permutation �

(i)

is obtained from �

(i+1)

by inserting the

letter i into the unique position such that maj�

(i)

�maj�

(i+1)

= m

i

. This is possible

by the following lemma.

Lemma 2.2. Let � be a word on the letters fi + 1; : : : ; ng, and suppose � has k

descents. Let a

1

< � � � < a

n�i�k

= n be the positions of the n � i � k ascents, let

d

k�1

< � � � < d

0

be the positions of the k descents, and de�ne d

k

= 0. The insertion

of the letter i into one of the n� i + 1 possible positions in � creates a new word �0

with at most k + 1 descents and maj(�0) at most maj(�0) + n� i. In particular,

1. The insertion of i into position d

`

+1 of � creates no new descent, and increases

maj by `, for ` = 0; : : : ; k.

2. The insertion of i into position a

`

+1 of � creates one new descent and increases

maj by k + `, for ` = 1; : : : ; n� i� k.

Proof. (1.) Insertion of i causes each of the ` descent positions to the right of position

d

`

to increase by one.

(2.) Suppose that there are p descents before position a

`

, and k � p after. Thus,

a

`

= p+ `. The insertion of i creates a new descent at position a

`

, and increases k�p

descents by one each. Thus, maj increases by k � p+ a

`

= k + `.
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Combining the bijections 
 and �, we have a bijection from S

n

to itself. Using

this bijection, we prove the equidistribution on S

n

of maj and inv as a corollary of

Lemma 2.2.

Corollary 2.3. The permutation statistics inv and maj are equally distributed on

S

n

.

Proof. The map � : S

n

! S

n

de�ned by � = 


�1

� is a bijection satisfying

maj(�) = inv(�(�)):(2.3)

As another corollary of Lemma 2.2, we can show that des is an Eulerian statistic.

Corollary 2.4. The number of permutations in S

n

with k � 1 descents is equal to

the Eulerian number A(n; k)

Proof. Each permutation � in S

n

, ... Using the recursive de�nition of the Euler-

ian numbers (Equation 1.4), there is a simple way to see that these numbers count

permutations by descents. (See [?].)

Namely, if we think of each permutation � in S

n

as being built from a permutation

on the letters [n�1], with the letter n inserted somewhere. That is, each permutation

on n letters may be built uniquely by inserting the letter n into a permutation on

n � 1 letters. In every permutation on n � 1 letters having k descents, there are k

insertions of n which result in a permutation on n letters with k descents, and n� k

insertions which result in a permutation on n letters with k + 1 descents.

Thus, the number of permutations on n letters with k descents is given by the

recursion 1.4.

3. Main Result

Before restating and proving the main result, we introduce a function z on M

n

and

de�ne two permutation statistics zc, and zm.

De�nition 3.1. Let v = v

1

; : : : ; v

n

be a sub-stair vector of length n. De�ne z :

M

n

! N to be the fuction which maps v to the length ` of the longest subsequence

b = v

i

`

; v

i

`�1

; : : : ; v

i

1

of v, which is strictly greater than the stair vector of size `. That

is, such that b > (`� 1; `� 2; : : : ; 0).

De�ne the permutation statistics zc and zm by

zc(�) = z(code(�));

zm(�) = z(majtable(�)):
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While there may be several such subsequences of maximum length, identifying one

and calculating this maximum length is quite easy. Let v be a given vector. Starting

from the rightmost component of v and reading left, we circle the �rst letter which

is at least one, the next which is at least two, etc., until we cannot continue. The

number of circled components of v is then z(v). Let us refer to this method of circling

letters as the standard calculation of z(v).

An equivalent description of the standard calculation of z(v) is to say that the

rightmost nonzero position is circled, and that each letter which is greater than the

number of circles to its right is circled as well.

Example 3.2. Let � = 368459172. Then code(�) = 245223010. Starting from the

right, we circle the 1, 3, 5, and 4. Thus,

zc(�) = z(code(�)) = 4:(3.1)

It is easy to see from the recursive de�nition of Eulerian numbers (Equation 1.4)

that the statistic zc is Eulerian. Noting that each code vector c = (c

1

; : : : ; c

n

) in

M

n

is constructed uniquely from a code vector (c

2

; : : : ; c

n

) in M

n�1

and a letter

0; : : : ; n� 1 inserted in front of the code. Temporarily letting �(n; k) be the number

of permutations � in S

n

with zc(�) = k � 1, we see that one obtains a permutation

� in S

n

with zc(�) = k � 1 by taking one of the �(n � 1; k) permutations in S

n�1

with zc = k � 1 and inserting a letter 0; : : : ; k � 1 in front of its code, or by taking

one of the �(n� 1; k� 1) permutations in S

n�1

with zc = k� 2 and inserting a letter

k�1; : : : ; n�1 in front of its code. Thus, the numbers �(n; k) are in fact the numbers

A(n; k).

Analogously, we can show that the statistic z is Eulerian directly from the recur-

rence relations 1.4.

Identifying a permutation with its code, note that each code in M

n

can be built

uniquely from a code in M

n�1

by inserting a letter 1; : : : ; n� 1 in front of the code.

If z(code(�)) = k, then inserting a letter greater than k increases zc, while inserting

a letter less than or equal to k leaves it unchanged.

Theorem 3.1. The pairs of permutation statistics (des, maj) and (zc, inv) are

equally distributed on S

n

.

Proof. Let � be a permutation in S

n

. As we have seen, the bijection � : S

n

! S

n

in the proof of Corollary 2.4 satis�es inv(�) = maj(�(�)). We now show that in

addition, des(�) = zc(�(�)).

Since majtable(�) = code(�(�)), it will su�ce to show that des(�) = zm(�). Let

m = majtable(�) = m

1

; : : : ; m

n

be the major index table of �, and let �

(n)

; : : : ; �

(1)

be the partial permutations as in the calculation of m. Suppose that we have circled

positions of m as in the standard calculation of zm.
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Fix i < n and assume that the number of circled positions in m

i+1

; : : : ; m

n

is equal

to the number of descents in �

(i+1)

. Certainly this is true if there are no circled

positions of m which are strictly to the right of position i. By Lemma 2.2, the

insertion of the letter i into �

(i+1)

creates a new descent if and only if m

i

is greater

than the number of descents in �

(i+1)

. In this case, position i must be circled. Thus,

the assumption is true for any i between 1 and n.

4. The zc-set of a permutation

Theorem 3.1 states that the relationship of the statistics zc and inv is analogous

to that of des and maj. The analogy is deeper, in fact. For just as a permutation

with k descents has a descent set of k numbers which sum to maj, a permutation

with zc = k has a zc-set of k numbers which sums to inv. In order to give a concise

description of the zc-set, we de�ne a set of n � 2 operators on M

n

. As we will see,

these operators constitute an action of the 0-Hecke algebra on M

n

.

Let H be a set of n � 2 operators �

1

; : : : ; �

n�2

. Applied to a sub-stair vector

v = v

1

; : : : ; v

n

in M

n

, the operator �

i

will modify the ith and (i + 1)st components

of v and will �x all other components. Letting v

0

= �

i

v, we de�ne the operator �

i

as

follows.

(v

0

i

; v

0

i+1

) =

8

>

<

>

:

(v

i

; v

i+1

) if v

i

> v

i+1

or v

i

= v

i+1

= 0;

(v

i+1

+ 1; v

i

� 1) if v

i

� v

i+1

and v

i

6= 0;

(v

i+1

; v

i

) if v

i

= 0 and v

i+1

> 0:

(4.1)

Note that v

0

i

+ v

0

i+1

= v

i

+ v

i+1

, and that v

0

i

> v

0

i+1

, unless both are zero.

Example 4.1. Consider the action of �

1

on �ve di�erent vectors in M

4

.

�

1

(3200) = 3200;

�

1

(0010) = 0010;

�

1

(1200) = 3000;

�

1

(2200) = 3100;

�

1

(0110) = 1010:

It is not di�cult to see that the operators in the set H satisfy the relations of

H

n�2

(0), the 0-Hecke algebra on n� 2 generators:

�

i

�

j

= �

j

�

i

for ji� jj � 2;

�

i

�

i+1

�

i

= �

i+1

�

i

�

i+1

;

�

2

i

= �

i

:
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To simplify the arguments that follow, let us introduce notation for several other ele-

ments ofH

n�2

(0). For i = 1; : : : ; n�2, we will denote by !

i

the element �

n�2

�

n�3

� � � �

i

.

Now, let ! be the product of these n� 2 elements.

! = !

1

� � �!

n�2

:(4.2)

Analogously to the de�nitions of the functions z, zc, and zm, we we will de�ne a

z-set for any substair vector, and will de�ne the zc-set and zm-set of a permutation

to be the z-sets of its code vector and major index table, respectively.

De�nition 4.2. The z-set of a substair vector v = v

1

; : : : ; v

n

, denoted Z(v), is the

set of distinct, nonzero letters in !(v). The zc-set of a permutation � = �

1

; : : : ; �

n

,

denoted ZC(�), is Z(code(�)), the set of distinct nonzero letters in !(code(�)). Sim-

ilarly, we de�ne zm-set of a permutation, denoted ZM(�), to be Z(majtable(�)), the

set of distinct nonzero letters in !(majtable(�)).

In Example 4.1, consider the action of the element ! in H

4

(0) on the substair vector

332110 in M

6

. We compute

!

1

= �

4

�

3

�

2

�

1

;

!

2

= �

4

�

3

�

2

;

!

3

= �

4

�

3

;

!

4

= �

4

;

! = !

1

!

2

!

3

!

4

= (�

4

�

3

�

2

�

1

)(�

4

�

3

�

2

)(�

4

�

3

)(�

4

):

An \X" below entries i and i+ 1 of a row in the �gure signi�es that the action of �

i

on this row switches (and possibly changes) the two entries, while \)(" signi�es that

the action of �

i

�xes the two entries.

Theorem 4.1. 1. Given a permutation � on n letters with zc(�) = k, then the zc-set

of �, as de�ned above, is a set of k distinct letters in [n� 1] which sum to inv(�).

2. For any subset S of [n � 1], the number of permutations � with zc-set S equals

the number of permutations � with descent set S.

Proof. Let � : S

n

! S

n

be the bijection in the proofs of Corollary 2.4 and of Theo-

rem 3.1, and let � be any permutation in S

n

. In Lemma ??, we will show that the

descent set of � is equal to the zm-set of �. Using this identity, and the fact that

ZM(�) = Z(majtable(�)) = Z(code(�(�))) = ZC(�(�));(4.3)

we have that the zc-set of any permutation is the descent set of another. Thus, we

prove both statements (1) and (2).
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mωωη

2

2

  3    2      1        1          0

        0      2    2  3

2 3 3 1 0 0

2 3 3 1 0 0

2 4 2 1 0 0

2 4 2 1 0 0

2 4 2 1 0 0

5 1 2 1 0 0

5 3 0 1 0 0

5 3 1 0 0 0

5 3 1 0 0 0

          0

m

m

m

m

m

m

m

m

m

m

ω

ω

ωω

ωω

ωωω

ωωω

ωωω

ωωω

ω

ηη

ηη

η

η

η

η

η

4

4

4

4

4

4

4

4

4

4

3

3

3

3

3

3

3

2

2

2

3

2

23

2

1

12

123

=

=

=

=

=

=

=

=

=

=

=

Figure 4.1

The following lemma relates the \partial" permutations f�

(1)

; : : : ; �

(n�1)

g; from the

de�nition of the major index table, to the vectors fm;!

n�2

m;!

n�3

!

n�2

m; : : : ; !mg;

which result from action of H

n�2

(0) on m = majtable(�).

Lemma 4.2. Let m be the major index table of a permutation � in S

n

, and let the

0-Hecke algebra H

n�2

(0) act on M

n

as above. Then, for i = 1; : : : ; n � 2, the last

n � i + 1 components of the vector !

i

� � �!

n�2

m are the descent set of �

(i)

, arranged

in decreasing order, and followed by zeros.

Note that the analogous statements for n and n � 1 are trivially true: The set of

non-zero letters in fm

n

g is empty always, as is the descent set of �

(n)

= n. Similarly,

the set of nonzero letters in fm

n�1

; m

n

g is f1g if �

(n�1)

is (n; n � 1), and empty

otherwise, as is the descent set of �

(n�1)

.

In Figure 4.2, we show that the statement of the lemma is true for the permuta-

tion 413265, which has major index table 232110. (For i = 5; : : : ; 1, the last 7 � i

components of !

i

� � �!

4

are underlined.)

Proof. We will prove this by induction. To begin the induction, we claim that this is

true for i = n � 1. Namely, the last two (= n � (n � 1) + 1) components of m are

themselves the descent set of the partial permutation �

(n�1)

, followed by zeros.
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mωωη

2

2

  3    2      1        1          0

        0      2    2  3

2 3 3 1 0 0

2 3 3 1 0 0

2 4 2 1 0 0

2 4 2 1 0 0

2 4 2 1 0 0

5 1 2 1 0 0

5 3 0 1 0 0

5 3 1 0 0 0

5 3 1 0 0 0

          0

m

m

m

m

m

m

m

m

m

m

ω

ω

ωω

ωω

ωωω

ωωω

ωωω

ωωω

ω

ηη

ηη

η

η

η

η

η

4

4

4

4

4

4

4

4

43

3

3

3

3

3

3

2

2

2

3

2

23

2

1

12

123

=

=

=

=

=

=

=

=

=

=

=

π

π

π

π(2)

(3)

(4)

(5)

π

=

=

=

=

=

6 5

46 5

4 36 5

4 3 26 5

4 13 26 5

Figure 4.2

If the insertion of the letter n�1 into �

(n)

causes no descent, then m

n�1

= m

n

= 0,

and the set of nonzero letters is empty. If it does cause a descent, then that descent

is in position 1, and m

n�1

= 1. Thus, D(�

(n�1)

) = f1g.

Now �x i < n and assume that the permutation �

(i+1)

on the letters fi+1; : : : ; ng

has k descents at positions d

0

> � � � > d

k�1

, and that the result of the action of

!

i+1

� � �!

n�2

on m is

!

i+1

� � �!

n�2

m = (m

1

; : : : ; m

i

; d

0

; d

1

; : : : ; d

k�1

; 0; : : : ; 0):(4.4)

That is, the nonzero letters in the last n�i+1 positions of the vector !

i+1

� � �!

n�2

m

are the descent set of the partial permutation �

(i+1)

, arranged in decreasing order, and

followed by zeros. Note that the descent set, viewed as a sequence, is componentwise

greater than the stair vector of length k:

(d

0

; : : : ; d

k�1

) > (k � 1; : : : ; 0):(4.5)

We consider two cases.

Case 1: (m

i

� k). If m

i

is less than or equal to k, then the insertion of i into �

(i+1)

creates no new descents, and causes the greatest m

i

descent positions to increase by
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one. Thus, �

(i)

has descent set

D(�

(i)

) = fd

0

+ 1; : : : ; d

m

i

+ 1; d

m

i

+1

; : : : ; d

k�1

; g:(4.6)

Now consider the action of !

i

= �

n�2

� � � �

i

on !

i+1

� � �!

n�2

m. As we apply the

generators �

i

; �

i+1

; : : : , the number m

i

moves to the right and decreases, while the

numbers d

0

; d

1

; : : : move to the left and increase. By Equation 4.8, m

i

will move

right until it becomes zero, increasing the �rst m

i

numbers d

0

; : : : ; d

m

i

�1

. It will then

continue to move right without increasing the numbers d

m

i

; : : : ; d

k�1

.

�

i

!

i+1

� � �!

n�2

m = (: : : ; m

i�1

; d

0

+ 1; m

i

� 1; d

1

; : : : ; d

k�1

; 0; : : : );

�

i+1

�

i

!

i+1

� � �!

n�2

m = (: : : ; m

i�1

; d

0

+ 1; d

1

+ 1; m

i

� 2; d

2

; : : : ; d

k�1

; 0; : : : );

.

.

.

�

m

i

� � � �

i

!

i+1

� � �!

n�2

m = (: : : ; m

i�1

; d

0

+ 1; : : : ; d

m

i

�1

+ 1; 0; d

m

i

; : : : ; d

k�1

; 0; : : : );

.

.

.

!

i

� � �!

n�2

m = (: : : ; m

i�1

; d

0

+ 1; : : : ; d

m

i

�1

+ 1; d

m

i

; : : : ; d

k�1

; 0; : : : ):

(4.7)

Case 2: (m

i

> k). If m

i

is greater than k, then the insertion of i into �

(i+1)

creates

one new descent. Let j be the number of descents to the right of the position into

which i is inserted. The new descent must therefore occur at position m

i

� j, and the

number m

i

� j must satisfy

d

j

< m

i

� j � d

j�1

:(4.8)

Since the insertion of i into position m

i

� j of �

(i+1)

causes j descent positions to

increase by one, the new descent set must be

D(�

(i)

) = fd

0

+ 1 : : : ; d

j�1

+ 1; m

i

� j; d

j

; : : : ; d

k�1

; g:(4.9)

Now consider the action of !

i

= �

n�2

� � ��

i

on !

i+1

� � �!

n�2

m. Again, as we apply the

generators �

i

; �

i+1

; : : : , the number m

i

moves one position to the right and decreases,

while the numbers d

0

; d

1

; : : : move to the left and increase. By Equation 4.11, m

i

will move right only until it becomes m

i

� j, which is greater than d

j

. Beyond d

j

, no
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entries will change.

�

i

!

i+1

� � �!

n�2

m = (: : : ; m

i�1

; d

0

+ 1; m

i

� 1; d

1

; : : : ; d

k�1

; 0; : : : );

�

i+1

�

i

!

i+1

� � �!

n�2

m = (: : : ; m

i�1

; d

0

+ 1; d

1

+ 1; m

i

� 2; d

2

; : : : ; d

k�1

; 0; : : : );

.

.

.

�

i+j

� � � �

i

!

i+1

� � �!

n�2

m = (: : : ; m

i�1

; d

0

+ 1; : : : ; d

j�1

+ 1; m

i

� j; d

j

; : : : ; d

k�1

; 0; : : : );

.

.

.

!

i

� � �!

n�2

m = (: : : ; m

i�1

; d

0

+ 1; : : : ; d

j�1

+ 1; m

i

� j; d

j

; : : : ; d

k�1

; 0; : : : ):

5. More bijections

Looking again at the bijection above, we note the surprising fact that the order of

insertion of the letters 1; : : : ; n was not critical. That is, if we were to insert the letters

1; : : : ; n in some di�erent order � = �

1

; : : : ; �

n

, we would obtain another bijection.

Let us refer to the resulting vector as the � major index table.

Proposition 5.1. The map �

�

: S

n

! M

n

, taking a permutation to its � major

index table, is a bijection.

Assume that the letters �

n

; : : : ; �

i+1

have been inserted already, and that the re-

sulting partial permutation �

(i+1)

has k descents, factoring it into k + 1 subwords

� = w

k

� w

k�1

� � �w

0

.

Let e

k

< � � � < e

0

be the positions in each block of the greatest letter less than or

equal to �

i

. If there is no such letter, de�ne e

k

to be 0 or the position of the last

letter in the previous block. Let a

1

< � � � < a

n�k

= n be the positions of the n � k

other positions.

Observation 5.2. The insertion of �

i

into �

(i+1)

to the right of position e

`

increases

maj by `, for ` = 0; : : : ; k � 1. The insertion of i in front of position 1 increases

maj by k. The insertion of i to the right of position a

`

increases maj by k + `, for

` = 1; : : : ; n� k.

Again, we may prove Theorem 2.1 by induction.

In the remaining sections we will use the term major index table to refer to the

letter order n; n� 1; : : : ; 1, and will mention an order � only when necessary.
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Of course, the map �

�

: S

n

! S

n

de�ned by �

�

= 


�1

�

�

is a bijection satisfying

maj(�) = inv(�

�

(�)):(5.1)

Perhaps not surprising at this point is the fact that we may restate Lemma 4.2 in

terms of the � major index table.

Lemma 5.3. Let m be the � major index table of a permutation � in S

n

, and let the

0-Hecke algebra H

n�2

(0) act on M

n

as above. Then, for i = 1; : : : ; n � 2, the last

n� i+ 1 components of the vector !

i

� � �!

n�2

m are the descent set of �

(�;i)

, arranged

in decreasing order, and followed by zeros.

Thus, the ZC set of a permutation in no way depends upon the choice of � in the

construction of a � major index table.

It is not hard to see that any of the bijections �

�

would su�ce to prove the main

theorem as well.


