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(1) &, class functions y : 6,Z.
(2) Interpretations for y(w).
(3) Interpretations for x (> c,w).



S, class functions and interpretations

—1

Call x : &, — Z a class function if x(w) = x(v™ wv).

[nterpret x(w) € N as |T (w)| for some set T
Interpret y(w) € Z as (—1)ISWHT(w)| for some sets S, T

triv(w) =1, sen(w) = (—1)6(“}).

) RN G2 A W S
For A= n, and n* = tHVTGZ? e = sgnTGZ, we have

() = ITHw), Mw) = (1)1 Ty(w)],
where Ty(w) = # colorings: {cycles of w} — |r] = {1,...,r}
with A; letters having color .



For irreducible characters X)‘, Murnaghan-Nakayama rule gives
A S(T
Nw) = (1%,
Tel(w)
where U(w) = (something) and S(T') = (something else).

A A

n”, € related to irr. characters x* as hy, ey to Schur fns. s,

77)\ = Z K/L,)\X'ua hy = Z K,u,)\s,ua

p p
_ M _
EA_ZK/LT,AX . QA_ZKJ,ASM'
v p



Define monomial class functions (virtual characters) qb)‘ by

o = Z K;}LXM, where m)y = Z K;,ibsﬂ.
p p
Then for A = (Aq, ..., Ar) we have

w) = (1" (w)),
where V) (w) = # ways to cut cycles of w into paths of cardinali-
ties A, ..., Ap.



Linear extension of x: G, - Z to x : Z|&,] — Z

Idea (G-J, G): Define x(v + cw) = x(v) + e¢x(w) and study
evaluations (X [1 - Xp,) for X,y € Z|Sp] defined by

Zw Xg =€,

UJESCL la,b]

where Sy, 1= (Sa; - - - Sp—1).

Example: In G5,
X[2,4] = 12345 + 13245 + 12435 + 14235 + 13425 + 14325

— €+ S9 + 83 + $983 + 5359 + $98359.

Conj (G-J, G, S): x(X7,--- X1 ) € Nfor x € {x*, e}, n*, o*}.



Combinatorial interpretation of Xy --- X

Fix n and define planar networks {Fl, |1 < a <b < nj by

)

4 4 4 4 4
3 3 3 3 3
Fpg =222, F[2,4]:2; ég» F[1,4]:§><

1 1le—

—

, etc.

RDNWPM

For the concatenation F' = Fy --- F , define B(F) € Z|Gy] by
BE) =) (w, Flu,

wes),
where v(w, F') = # path families (7, ...,7m,) covering F', with
m; a path from source ¢ to sink w; for all 2.

Fact: (G—J, G) le - -X]T — ﬁ(Fh . -F]T).
B(F11 21Fp31F71 91) = (e + s1)(e + s2)(e + 1)
= 2€ + 251 + 89 + 5189 + $951 + 5159257.




For F' = Fp, --- I, define an F'-tableau to be a (French) Young
tableau holding paths (7, ..., m,) which cover F', with m; a path
from source 7 to sink ¢. Call the tableau column-strict it

T
TG

= 7; lies entirely below 7.

Fact: (K-McG 59, L. 72, L 50, M-W ’85)
sgn(X7p, - -+ X ) = #column-strict F-tableaux of shape 1";

e)‘(X I; - X1,) = #FFeolumn-strict F-tableaux of shape A

Ex: For F' = 3@3, we have

1 1

e?L(B(F)) = 2 column-strict F-tableaux of shape 21" = 21

3—/™v—3 3—/™v—3

INA1 2N\ 2 2N\__ 2 1/\1




Call an F-tableau row-semistrict if
o< = m; intersecting or entirely above ;.

Fact: triv(Xy, --- X ) = #frow-semistrict F-tableaux of shape n;
77)‘(X I - X [r) = #row-semistrict F-tableaux of shape A.

Ex: For F = = 6, we have 21 (B(F)) = 9 row-semistrict
F-tableaux of shape 21:

4— 000 4 4— 0 4 4— 00 4
3 3 3 3 3 3 3 3
1 1 1 1 1 1 1 1
Y Y Y, Y

4 4 4 4 4 4

3 3 3 3 3 3

1 1 1 1 1 1

7 Y *




Irreducible characters
Thm: (JS '91) XXy, -+ X1) > 0.
No combinatorial interpretation has been conjectured.

Call an F-tableau semistandard if it is column-strict and row-
semistrict.

Thm: For A a hook shape,
X)‘(X I, -+ X1,.) = #semistandard F-tableaux of shape .

Ex: For F = = 6, we have y2L(B(F)) = 2 semistandard
F-tableaux of shape 21:

b 4 Y
3 3 3 3
2}—62 2}—{2
1 17 1 1,



Monomial class functions
Conj: (JS '91) oNXp, -+ X1 ) > 0.
No combinatorial interpretation has been conjectured.

Thm: (CSS’10) For A having at most 2 columns, gb)‘(X]l e X[T)
= # column-strict F-tableaux of shape A, if no column-strict F-
tableaux of shape u exists for < A (0 otherwise).

Ex: For F = = 6, we have ¢?1(B(F)) = 2 column-strict F-
tableaux of shape 21 (and none of shape 3):

4 4 4 4
3 3 3 3
2}—{2 2}—{2
1 1’ 1 1,




For F = =<2, we have S(B(F)) = '1(3(F)) = x1Y(B(F)) =

1 column-strict (semistandard) F-tableau of shape 111:
—><.

We have €21(5(F)) = 3 column-strict F-tableaux of shape 21' =
21:

3 3

2}—62

1 1
Y

X21(5 (F)) = 2 of which are semistandard.

We have ¢?1(B(F)) = 0, since there is a column-strict F-tableau
of shape 111 < 21.

3 3
2}—{2
1 1,



The quantum polynomial ring A(n;q)

Let A(n;q) = C[q%, q?)(z1.1, ..., %nn), modulo

Ti¢TjJ = TjkT; ¢ if1 <7, k< l,
1
Ti ¢Ti ) = q2%; T if £ </,
1 e :
TjkTik = Q2T T k it 1 < g,

1 - o :
T 0T g =T pTi0+(q2 — @)z vy fe<jg k<L

We have Oy (SL(n, )) = A(n;q)/(dety(z) — 1), Whelre
dety(z) = Z (—q ) )y, Lo Ty = Z (—g2)! ) e,

VEG,, vVEG,

DO —

span{z®? |v € G} = (quantum) immanant space.



Multigrading of A(n;q) and immanants

@@ALMTLQ

r>0 (
over r-element multisets L, M of [ ]

1
2 L 2 .
Ex: @] 9231232 — q2011%1 223 5 € A11331222(3; )

By relations, immanant space is
‘A[n],[n] (Tl, q) — Span{xul,vl “ o Luy,vp ‘ u,v c Gn}
= span{ 1y, - Tnu, |V € Gn}.



Natural basis of ALyM(n; q)

Let xp, pr be the L, M generalized submatrix of z.
Let generators I, J of &, stabilize x, /.

T11 12 T12 12 [ = {5y, 55}
T )
| T11 T12 T12 12 B
Fx: T1133,1222 = . J ={s2,53},
T3] 32 32 232 S -6,
/’n — .
231 32 32 32

Natural basis of Ap, pr(n;q) is {(zp pr)9" [v € WJ]F’J}, where

W[ = = {v € &, | v maximal in WyoW ;}.
Wi’ = {4132, 4321},
Ex:  (21133.192) 2% = 2y 0wy 1230050 = q%$1,1$1,2$§,2,
(21133,1922) 2 = 2y o1y 930231 = q%ﬂﬁizﬂis,lxsg-



Canonical bases

Modification U of Uy(sl(n, C)) has canonical basis.
This aids in construction of Uy(sl(n, C))-modules |L 90.

Modification A(n; q) of O¢(SL(n,C)) has dual canonical basis.
This aids in construction of Uy(sl(n, C))-modules [T 91, D 92].

Uq(sl(n,C)), Oy(SL(n,C)) are dual Hopf algebras.
U, A(n;q) are not Hopf algebras.

Explicit duality of bases not published |D, G-L|.
Some choices are involved.



Dual canonical basis of Ay y(n;q)

—1

Define the bar involution on A(n q) by g = ¢ and

(q2) a(a)—o(b),,.

La,by " Lap,b, ar,by " Laq,bys

where a(a) = #{(i. ) i < j.a; = a;).

Theorem: (L) Ay p/(n;q) has a unique bar-invariant basis
{B@LU’M(:U; q) | w € W]’J} satisfying

LM
By (x:q) € 5’7LM€U+ZQQZC]2 (xp a)"

w>v
Call this the dual canonical basis.

Specializations at ¢ = 1 have important nonnegativity properties
L, H, R-S, S] and applications [L-P-P].



Dual canonical basis of Ay, 1, (n;q)

Immanants in DCB are {Immy(z;q) |v € &}, where

Immv(a}; q) = Z €v,wy zlu v ’w(Q)ml,wl © Ty
w>v

(—1)tw) =)

Cv,w =
qQuw = (q%>€(w)—€(v)
Qo w( ) wow wOU<Q)

)

)

Nonquantum (g = 1) analogs in Clxy 1, ..., %nn| are

Immv(a?) — Z GU,va,w<1)x1,w1 o Inawy,

w>v



