PATH TABLEAUX AND COMBINATORIAL INTERPRETATIONS FOR S_n CLASS FUNCTIONS

Sam Clearman, Brittany Shelton, Mark Skandera Lehigh University

Outline

- (1) \mathfrak{S}_n class functions $\chi : \mathfrak{S}_n \mathbb{Z}$.
- (2) Interpretations for $\chi(w)$.
- (3) Interpretations for $\chi(\sum c_w w)$.

\mathfrak{S}_n class functions and interpretations

Call $\chi: \mathfrak{S}_n \to \mathbb{Z}$ a class function if $\chi(w) = \chi(v^{-1}wv)$.

Interpret $\chi(w) \in \mathbb{N}$ as $|\mathcal{T}(w)|$ for some set \mathcal{T} .

Interpret $\chi(w) \in \mathbb{Z}$ as $(-1)^{|\mathcal{S}(w)|} |\mathcal{T}(w)|$ for some sets \mathcal{S} , \mathcal{T} .

$$triv(w) = 1, sgn(w) = (-1)^{\ell(w)}.$$

For $\lambda \vdash n$, and $\eta^{\lambda} = \operatorname{triv} \uparrow_{\mathfrak{S}_{\lambda}}^{\mathfrak{S}_{n}}$, $\epsilon^{\lambda} = \operatorname{sgn} \uparrow_{\mathfrak{S}_{\lambda}}^{\mathfrak{S}_{n}}$, we have $\eta^{\lambda}(w) = |\mathcal{T}_{\lambda}(w)|, \quad \epsilon^{\lambda}(w) = (-1)^{\ell(w)}|\mathcal{T}_{\lambda}(w)|,$ where $\mathcal{T}_{\lambda}(w) = \#$ colorings: {cycles of w} \to $[r] = \{1, \ldots, r\}$ with λ_{i} letters having color i.

For irreducible characters χ^{λ} , Murnaghan-Nakayama rule gives

$$\chi^{\lambda}(w) = \sum_{T \in \mathcal{U}(w)} (-1)^{\mathcal{S}(T)},$$

where $\mathcal{U}(w) = \text{(something)}$ and $\mathcal{S}(T) = \text{(something else)}$.

 η^{λ} , ϵ^{λ} related to irr. characters χ^{μ} as h_{λ} , e_{λ} to Schur fns. s_{μ} :

$$\begin{split} \eta^{\lambda} &= \sum_{\mu} K_{\mu,\lambda} \chi^{\mu}, \quad h_{\lambda} = \sum_{\mu} K_{\mu,\lambda} s_{\mu}, \\ \epsilon_{\lambda} &= \sum_{\mu} K_{\mu,\lambda} \chi^{\mu}, \quad e_{\lambda} = \sum_{\mu} K_{\mu,\lambda} s_{\mu}. \end{split}$$

Define monomial class functions (virtual characters) ϕ^{λ} by

$$\phi^{\lambda} = \sum_{\mu} K_{\lambda,\mu}^{-1} \chi^{\mu}$$
, where $m_{\lambda} = \sum_{\mu} K_{\lambda,\mu}^{-1} s_{\mu}$.

Then for $\lambda = (\lambda_1, \dots, \lambda_r)$ we have

$$\phi^{\lambda}(w) = (-1)^{n+r+\ell(w)} |\mathcal{V}_{\lambda}(w)|,$$

where $\mathcal{V}_{\lambda}(w) = \#$ ways to cut cycles of w into paths of cardinalities $\lambda_1, \ldots, \lambda_r$.

Linear extension of $\chi:\mathfrak{S}_n\to\mathbb{Z}$ to $\chi:\mathbb{Z}[\mathfrak{S}_n]\to\mathbb{Z}$

Idea (G-J, G): Define $\chi(v+cw)=\chi(v)+c\chi(w)$ and study evaluations $\chi(X_{I_1}\cdots X_{I_r})$ for $X_{[a,b]}\in\mathbb{Z}[\mathfrak{S}_n]$ defined by

$$X_{[a,b]} = \sum_{w \in S_{[a,b]}} w, \qquad X_{\emptyset} = e,$$

where $S_{[a,b]} = \langle s_a, \dots, s_{b-1} \rangle$.

Example: In \mathfrak{S}_5 ,

$$X_{[2,4]} = 12345 + 13245 + 12435 + 14235 + 13425 + 14325$$

= $e + s_2 + s_3 + s_2s_3 + s_3s_2 + s_2s_3s_2$.

Conj (G-J, G, S): $\chi(X_{I_1} \cdots X_{I_r}) \in \mathbb{N}$ for $\chi \in \{\chi^{\lambda}, \epsilon^{\lambda}, \eta^{\lambda}, \phi^{\lambda}\}$.

Combinatorial interpretation of $X_{I_1} \cdots X_{I_r}$

Fix n and define planar networks $\{F_{[a,b]} \mid 1 \leq a < b \leq n\}$ by

$$F_{[2,3]} = {\overset{4}{\underset{2}{3}}} {\overset{4}{\underset{3}{3}}}, \quad F_{[2,4]} = {\overset{4}{\underset{2}{3}}} {\overset{4}{\underset{2}{3}}}, \quad F_{[1,4]} = {\overset{4}{\underset{2}{3}}} {\overset{4}{\underset{2}{3}}}, \quad \text{etc.}$$

For the concatenation $F = F_{I_1} \cdots F_{I_r}$, define $\beta(F) \in \mathbb{Z}[\mathfrak{S}_n]$ by

$$\beta(F) = \sum_{w \in \mathfrak{S}_n} \gamma(w, F) w,$$

where $\gamma(w, F) = \#$ path families (π_1, \dots, π_n) covering F, with π_i a path from source i to sink w_i for all i.

Fact: (G-J, G)
$$X_{I_1} \cdots X_{I_r} = \beta(F_{I_1} \cdots F_{I_r}).$$

Ex:
$$F_{[1,2]}F_{[2,3]}F_{[1,2]} =$$

$$\beta(F_{[1,2]}F_{[2,3]}F_{[1,2]}) = (e+s_1)(e+s_2)(e+s_1)$$

$$= 2e + 2s_1 + s_2 + s_1s_2 + s_2s_1 + s_1s_2s_1.$$

For $F = F_{I_1} \cdots F_{I_r}$, define an F-tableau to be a (French) Young tableau holding paths (π_1, \ldots, π_n) which cover F, with π_i a path from source i to sink i. Call the tableau column-strict if

$$\left| \frac{\pi_j}{\pi_i} \right| \Rightarrow \pi_i \text{ lies entirely below } \pi_j.$$

Fact: (K-McG '59, L '72, L '50, M-W '85) $\operatorname{sgn}(X_{I_1} \cdots X_{I_r}) = \#\operatorname{column-strict} F\text{-tableaux of shape } 1^n;$ $\epsilon^{\lambda}(X_{I_1} \cdots X_{I_r}) = \#\operatorname{column-strict} F\text{-tableaux of shape } \lambda^{\top}.$

Ex: For $F = \frac{3}{2} \sum_{1}^{3}$, we have $\epsilon^{21}(\beta(F)) = 2$ column-strict F-tableaux of shape $21^{\mathsf{T}} = 21$:

3 - 3		3 —	— 3	
1 ^ 1	2 2	2	/ 2	1/1

Call an F-tableau row-semistrict if

$$\lim_{j \to \infty} \frac{1}{j} \Longrightarrow \pi_j \text{ intersecting or entirely above } \pi_i.$$

Fact: triv $(X_{I_1} \cdots X_{I_r}) = \#$ row-semistrict F-tableaux of shape n; $\eta^{\lambda}(X_{I_1} \cdots X_{I_r}) = \#$ row-semistrict F-tableaux of shape λ .

Ex: For $F = \frac{3}{2} + \frac{3}{2}$, we have $\eta^{21}(\beta(F)) = 9$ row-semistrict F-tableaux of shape 21:

Irreducible characters

Thm: (JS '91) $\chi^{\lambda}(X_{I_1}\cdots X_{I_r}) \geq 0$.

No combinatorial interpretation has been conjectured.

Call an F-tableau semistandard if it is column-strict and row-semistrict.

Thm: For λ a hook shape,

$$\chi^{\lambda}(X_{I_1}\cdots X_{I_r})=\#\text{semistandard }F\text{-tableaux of shape }\lambda.$$

Ex: For $F = \frac{1}{2} + \frac{1}{2}$, we have $\chi^{21}(\beta(F)) = 2$ semistandard F-tableaux of shape 21:

Monomial class functions

Conj: (JS '91) $\phi^{\lambda}(X_{I_1} \cdots X_{I_r}) \ge 0.$

No combinatorial interpretation has been conjectured.

Thm: (CSS '10) For λ having at most 2 columns, $\phi^{\lambda}(X_{I_1} \cdots X_{I_r})$ = # column-strict F-tableaux of shape λ , if no column-strict F-tableaux of shape μ exists for $\mu \prec \lambda$ (0 otherwise).

Ex: For $F = \frac{3}{2}$, we have $\phi^{21}(\beta(F)) = 2$ column-strict F-tableaux of shape 21 (and none of shape 3):

For $F = \frac{3}{2}$, we have $\epsilon^3(\beta(F)) = \phi^{111}(\beta(F)) = \chi^{111}(\beta(F)) = 1$ column-strict (semistandard) F-tableau of shape 111:

We have $\epsilon^{21}(\beta(F)) = 3$ column-strict F-tableaux of shape $21^{\top} = 21$:

 $\chi^{21}(\beta(F)) = 2$ of which are semistandard.

We have $\phi^{21}(\beta(F)) = 0$, since there is a column-strict F-tableau of shape $111 \prec 21$.

The quantum polynomial ring A(n;q)

Let
$$\mathcal{A}(n;q) \cong \mathbb{C}[q^{\frac{1}{2}},q^{\frac{1}{2}}]\langle x_{1,1},\ldots,x_{n,n}\rangle$$
, modulo $x_{i,\ell}x_{j,k} = x_{j,k}x_{i,\ell}$ if $i < j, k < \ell$, $x_{i,\ell}x_{i,k} = q^{\frac{1}{2}}x_{i,k}x_{i,\ell}$ if $k < \ell$, $x_{j,k}x_{i,k} = q^{\frac{1}{2}}x_{i,k}x_{j,k}$ if $i < j$, $x_{j,\ell}x_{i,k} = x_{i,k}x_{j,\ell} + (q^{\frac{1}{2}} - q^{\frac{1}{2}})x_{i,\ell}x_{j,k}$ if $i < j, k < \ell$.

We have
$$\mathcal{O}_q(SL(n,\mathbb{C})) \cong \mathcal{A}(n;q)/(\det_q(x)-1)$$
, where $\det_q(x) = \sum_{v \in \mathfrak{S}_n} (-q^{\frac{-1}{2}})^{\ell(v)} x_{1,v_1} \cdots x_{n,v_n} = \sum_{v \in \mathfrak{S}_n} (-q^{\frac{-1}{2}})^{\ell(v)} x^{e,v}$.

 $\operatorname{span}\{x^{e,v} \mid v \in \mathfrak{S}_n\} = (\operatorname{quantum}) \ immanant \ space.$

Multigrading of A(n;q) and immanants

$$\mathcal{A}(n;q) = \bigoplus_{r \ge 0} \bigoplus_{(L,M)} \mathcal{A}_{L,M}(n;q),$$

over r-element multisets L, M of [n].

Ex:
$$x_{1,2}^2 x_{3,1} x_{3,2} - q^{\frac{1}{2}} x_{1,1} x_{1,2} x_{3,2}^2 \in \mathcal{A}_{1133,1222}(3;q)$$
.

By relations, immanant space is

$$\mathcal{A}_{[n],[n]}(n;q) = \text{span}\{x_{u_1,v_1} \cdots x_{u_n,v_n} \mid u, v \in \mathfrak{S}_n\}$$

= span\{x_{1,v_1} \cdots x_{n,v_n} \cdot v \in \mathfrak{S}_n\}.

Natural basis of $A_{L,M}(n;q)$

Let $x_{L,M}$ be the L, M generalized submatrix of x. Let generators I, J of \mathfrak{S}_r stabilize $x_{L,M}$.

Ex:
$$x_{1133,1222} = \begin{bmatrix} x_{1,1} & x_{1,2} & x_{1,2} & x_{1,2} \\ x_{1,1} & x_{1,2} & x_{1,2} & x_{1,2} \\ x_{3,1} & x_{3,2} & x_{3,2} & x_{3,2} \\ x_{3,1} & x_{3,2} & x_{3,2} & x_{3,2} \end{bmatrix}, \qquad \begin{matrix} I = \{s_1, s_3\}, \\ J = \{s_2, s_3\}, \\ \mathfrak{S}_r = \mathfrak{S}_4. \end{matrix}$$

Natural basis of $\mathcal{A}_{L,M}(n;q)$ is $\{(x_{L,M})^{e,v} | v \in W_+^{I,J}\}$, where $W_+^{I,J} = \{v \in \mathfrak{S}_r | v \text{ maximal in } W_I v W_J\}$.

$$W_{+}^{I,J} = \{4132, 4321\},$$
Ex:
$$(x_{1133,1222})^{1234,4132} = x_{1,2}x_{1,1}x_{3,2}x_{3,2} = q^{\frac{1}{2}}x_{1,1}x_{1,2}x_{3,2}^{2},$$

$$(x_{1133,1222})^{1234,4321} = x_{1,2}x_{1,2}x_{3,2}x_{3,1} = q^{\frac{1}{2}}x_{1,2}^{2}x_{3,1}x_{3,2}.$$

Canonical bases

Modification \dot{U} of $U_q(\mathfrak{sl}(n,\mathbb{C}))$ has canonical basis. This aids in construction of $U_q(\mathfrak{sl}(n,\mathbb{C}))$ -modules [L 90].

Modification $\mathcal{A}(n;q)$ of $\mathcal{O}_q(SL(n,\mathbb{C}))$ has dual canonical basis. This aids in construction of $U_q(\mathfrak{sl}(n,\mathbb{C}))$ -modules [T 91, D 92].

 $U_q(\mathfrak{sl}(n,\mathbb{C}))$, $\mathcal{O}_q(SL(n,\mathbb{C}))$ are dual Hopf algebras. \dot{U} , $\mathcal{A}(n;q)$ are not Hopf algebras. Explicit duality of bases not published [D, G-L]. Some choices are involved.

Dual canonical basis of $A_{L,M}(n;q)$

Define the bar involution on $\mathcal{A}(n;q)$ by $\overline{q} = q^{-1}$ and

$$\overline{x_{a_1,b_1}\cdots x_{a_r,b_r}} = (q^{\frac{1}{2}})^{\alpha(a)-\alpha(b)} x_{a_r,b_r}\cdots x_{a_1,b_1},$$
 where $\alpha(a) = \#\{(i,j) \mid i < j, a_i = a_j\}.$

Theorem: (L) $\mathcal{A}_{L,M}(n;q)$ has a unique bar-invariant basis $\{B_w^{L,M}(x;q) \mid w \in W_+^{I,J}\}$ satisfying

$$B_v^{L,M}(x;q) \in (x_{L,M})^{e,v} + \sum_{w>v} q^{-\frac{1}{2}} \mathbb{Z}[q^{-\frac{1}{2}}](x_{L,M})^{e,w}.$$

Call this the dual canonical basis.

Specializations at q=1 have important nonnegativity properties [L, H, R-S, S] and applications [L-P-P].

Dual canonical basis of $A_{[n],[n]}(n;q)$

Immanants in DCB are $\{\operatorname{Imm}_{v}(x;q) \mid v \in \mathfrak{S}_{n}\}$, where $\operatorname{Imm}_{v}(x;q) = \sum_{w \geq v} \epsilon_{v,w} q_{v,w}^{-1} Q_{v,w}(q) x_{1,w_{1}} \cdots x_{n,w_{n}},$ $\epsilon_{v,w} = (-1)^{\ell(w)-\ell(v)},$ $q_{v,w} = (q^{\frac{1}{2}})^{\ell(w)-\ell(v)},$ $Q_{v,w}(q) = P_{w_{0}w,w_{0}v}(q).$

Nonquantum
$$(q = 1)$$
 analogs in $\mathbb{C}[x_{1,1}, \dots, x_{n,n}]$ are
$$\operatorname{Imm}_{v}(x) = \sum_{w \geq v} \epsilon_{v,w} Q_{v,w}(1) x_{1,w_{1}} \cdots x_{n,w_{n}}.$$