MULTICOMPLEXES AND POLYNOMIALS WITH REAL ZEROS

Mark Skandera (joint with Jason Bell)

U. Michigan

Outline

- (1) Multicomplexes
- (2) Hilbert Series
- (3) Macaulay functions
- (4) Polynomials with real zeros
- (5) Maclaurin inequalities
- (6) Results and open questions

Multicomplexes

A collection Γ of monomials closed under divisibility is called a *multicomplex*.

Example:

$$\begin{array}{c} x_1^3 x_2, \\ x_1^3, \quad x_1^2 x_2, \\ x_1^2, \quad x_1 x_2, \quad x_2 x_3, \\ x_1, \quad x_2, \quad x_3, \\ 1. \end{array}$$

Counting monomials by degree, we define the f-vector and f-polynomial.

Example:

$$f_{\Gamma} = (1, 3, 3, 2, 1),$$

$$f_{\Gamma}(z) = 1 + 3z + 3z^2 + 2z^3 + z^4.$$

Question 1: Which polynomials in $\mathbb{N}[z]$ are *f*-polynomials of multicomplexes?

Let I be a monomial ideal. Then the set of monomials in the ring $A = k[x_1, \ldots, x_n]/I$ is a multicomplex.

Example: In $A = k[x_1, x_2, x_3]/\langle x_2x_3 \rangle$, we have

1,

The *Hilbert function* and *Hilbert series* of the ring count monomials by degree.

Example:

$$F_A = (1, 3, 5, 7, \dots),$$

$$F_A(z) = 1 + 3z + 5z^2 + 7z^3 + \cdots.$$

The Hilbert series of such a ring may be expressed as a rational function

$$F_A(z) = \frac{h_A(z)}{(1-z)^d}$$

Example:

$$1 + 3z + 5z^{2} + 7z^{3} + \dots = \frac{1+z}{(1-z)^{2}}.$$

Question 1': Which polynomials in $\mathbb{N}[z]$ can appear in the numerator of a rational expression for the Hilbert series of a Cohen-Macaulay ring?

Answer: The f-polynomials of finite multicomplexes.

Macaulay functions

Theorem: (Macaulay, 1927) The vector $(1, a_1, \ldots, a_d)$ is the *f*-vector of a multicomplex if and only if

 $a_{i+1} \leq \mu_i(a_i), \quad i = 1, \dots, d-1,$ where μ_i is the *i*th Macaulay function.

Example:

0	1	2	3	4	5	6
1						
1	1					
1	2	1				
1	3	3	1			
1	4	6	4	1		
1	5	10	10	5	1	
1	6	15	20	15	6	1

The 3rd Macaulay expansion of 8 is

$$8 = 4 + 3 + 1$$
,

and we have

$$\mu_3(8) = 5 + 4 + 1 = 10.$$

Example:

1	6	9	7	2
	1	11	111	1111
	2	21	211	2111
	3	22	221	
	4	31	222	
	5	32	311	
	6	33	321	
		41	322	
		42		
		43		

To construct a multicomplex from an f-vector, write down the (lexicographically) first a_i weakly decreasing *i*-letter words using the letters \mathbb{N} .

Polynomials with real zeros

Question 2: How can we tell if the polynomial $a(z) = 1 + a_1 z + \cdots + a_d z^d$ in $\mathbb{N}[z]$ has only real zeros?

Answer: Use

(1) Maple.

- (2) Sturm's Algorithm.
- (3) Aissen, Schoenberg, Whitney's Theorem.
- (4) Gantmacher's Theorem.
- (5) Theorems about $(\mathbf{3} + \mathbf{1})$ -free posets.
- (6) Theorems about eigenvalues.

Question 2': How can we tell if every polynomial in an infinite subset of $\mathbb{N}[z]$ has only real zeros?

Facts, problems

The f-polynomials of the following combinatorial objects have only real zeros.

(1) (3 + 1)-free posets.
(2) Matching complexes.

Question: Do the *f*-polynomials of these combinatorial objects have only real zeros?

(1) Distributive Lattices.

(2) Modular Lattices.

Question: Is there some setting in which all polynomials in $\mathbb{N}[z]$ having real zeros arise?

Maclaurin's inequalities

Proposition: Let $1 + a_1 z + \dots + a_d z^d$ in $\mathbb{N}[z]$ have only real zeros. Then we have $\frac{a_1}{d} \ge \sqrt{\frac{a_2}{\binom{d}{2}}} \ge \sqrt[3]{\frac{a_3}{\binom{d}{3}}} \ge \dots \ge \sqrt[d]{a_d} \ge 1.$ **Corollary:** Factoring the polynomial as $a(z) = (1 + \beta_1 z) \cdots (1 + \beta_d z)$, we obtain the Arithmetic Mean - Geometric Mean Inequality,

$$\frac{\beta_1 + \dots + \beta_d}{d} \ge \sqrt[d]{\beta_1 \cdots \beta_d}.$$

Corollary: For all *i* we have $a_i \ge \begin{pmatrix} d \\ i \end{pmatrix}$.

Example: $1 + 4z + 5z^2 + 4z^3 + z^4$ has (at least) a pair of imaginary zeros.

Corollary: For all *i* we have
$$a_{i+1} \le \binom{d}{i+1} \left(\frac{a_i}{\binom{d}{i}}\right)^{(i+1)/i}.$$

Using Maclaurin's inequalities and a technical lemma, we have the following.

Proposition: (Bell-S 2002) Let the polynomial $a(z) = 1 + a_1 z + \cdots + a_d z^d$ in $\mathbb{N}[z]$ have only real zeros. Then we have

$$a_{i+1} \le \mu_i(a_i),$$

for i = 1, ..., d - 1.

Equivalently, a(z) is the *f*-polynomial of a multicomplex.

Equivalently, for every nonnegative integer c, there exists a Cohen-Macaulay ring with Hilbert series

$$\frac{a(z)}{(1-z)^c}.$$

Question: Which Cohen-Macaulay rings correspond to polynomials with real zeros?

Question: Which multicomplexes correspond to polynomials with real zeros? Can these be chosen to be simplicial complexes?

Kruskal-Katona functions

Theorem: (Schutzenberger, Kruskal, Katona) The vector $(1, a_1, \ldots, a_d)$ is the f-vector of a simplicial complex if and only if

 $a_{i+1} \leq \kappa_i(a_i), \quad i = 1, \dots, d-1,$ where κ_i is the *i*th Kruskal-Katona function.

Example:

0	1	2	3	4	5	6
1						
1	1					
1	2	1				
1	3	3	1			
1	4	6	4	1		
1	5	10	10	5	1	
1	6	15	20	15	6	1

The 3rd Macaulay expansion of 8 is

$$8 = 4 + 3 + 1,$$

and we have

$$\kappa_3(8) = 0 + 1 + 1 = 2.$$

Observation: As a_i gets large, the function $\kappa_i(a_i)$ approaches

$$\frac{(i!a_i)^{(i+1)/i}}{(i+1)!},$$

which is greater than the upper bound

$$\binom{d}{i+1} \left(\frac{a_i}{\binom{d}{i}}\right)^{(i+1)/i}$$

implied by the Maclaurin inequalities for polynomials with real zeros. **Corollary:** (of Maclaurin's inequalities) If $a(z) = 1 + a_1 z + \cdots + a_d z^d$ in $\mathbb{N}[z]$ has only real zeros, then

$$a_i \le \binom{d}{i} \left(\frac{a_1}{d}\right)^i$$

Setting i = d, we see that the degree d is no greater than a_1 .

Thus for fixed a_1 , there are only finitely many polynomials in $\mathbb{N}[z]$ of the above form which have only real zeros.

Example: For $a_1 = 5$ we have

$$\begin{array}{l} 1+5z\\ 1+5z+z^2\\ 1+5z+2z^2\\ 1+5z+3z^2\\ 1+5z+3z^2\\ 1+5z+4z^2\\ 1+5z+5z^2\\ 1+5z+5z^2+z^3\\ 1+5z+6z^2+z^3\\ 1+5z+6z^2+2z^3\\ 1+5z+7z^2+2z^3\\ 1+5z+7z^2+3z^3\\ 1+5z+8z^2+4z^3\\ 1+5z+8z^2+5z^3+z^4\\ 1+5z+9z^2+7z^3+2z^4\\ 1+5z+10z^2+10z^3+5z^4+z^5. \end{array}$$

Partial results

If $a(z) = 1 + a_1 z + \cdots + a_d z^d$ in $\mathbb{N}[z]$ has only real zeros, then it is the *f*-vector of a simplicial complex if

- (1) the coefficients are large.
- (2) the coefficients are small $(a_1 \leq 10)$.
- (3) the degree is small $(d \leq 4)$.
- (4) $a(z) = (1 + \beta_1 z) \cdots (1 + \beta_d z)$, and $\beta_i \ge 1$ for all i.

Furthermore, $a_{i+1} \leq \kappa_i(a_i)$ for $i = 1, \ldots, \frac{2d}{3}$.