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Multicomplexes

A collection Γ of monomials closed under
divisibility is called a multicomplex.

Example:

x31x2,

x31, x21x2,

x21, x1x2, x2x3,

x1, x2, x3,

1.

Counting monomials by degree, we define
the f -vector and f -polynomial.

Example:

fΓ = (1, 3, 3, 2, 1),

fΓ(z) = 1 + 3z + 3z2 + 2z3 + z4.
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Question 1: Which polynomials in N[z]
are f -polynomials of multicomplexes?
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Let I be a monomial ideal. Then the set of
monomials in the ring A = k[x1, . . . , xn]/I
is a multicomplex.

Example: In A = k[x1, x2, x3]/〈x2x3〉,
we have

1,

x1, x2, x3,

x21, x22, x23, x1x2, x1x3,

x31, x32, x33, x21x2, x1x
2
2, x21x3, x1x

2
3,

. . .

The Hilbert function and Hilbert series of
the ring count monomials by degree.

Example:

FA = (1, 3, 5, 7, . . . ),

FA(z) = 1 + 3z + 5z2 + 7z3 + · · · .
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The Hilbert series of such a ring may be ex-
pressed as a rational function

FA(z) =
hA(z)

(1− z)d
.

Example:

1 + 3z + 5z2 + 7z3 + · · · = 1 + z

(1− z)2
.

Question 1’: Which polynomials in N[z]
can appear in the numerator of a rational
expression for the Hilbert series of a Cohen-
Macaulay ring?

Answer: The f -polynomials of finite mul-
ticomplexes.
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Macaulay functions

Theorem: (Macaulay, 1927) The vector
(1, a1, . . . , ad) is the f -vector of a multicom-
plex if and only if

ai+1 ≤ µi(ai), i = 1, . . . , d− 1,

where µi is the ith Macaulay function.
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Example:

0 1 2 3 4 5 6
1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
1 6 15 20 15 6 1

The 3rd Macaulay expansion of 8 is

8 = 4 + 3 + 1,

and we have

µ3(8) = 5 + 4 + 1 = 10.
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Example:

1 6 9 7 2
1 11 111 1111
2 21 211 2111
3 22 221
4 31 222
5 32 311
6 33 321

41 322
42
43

To construct a multicomplex from an f -vector,
write down the (lexicographically) first ai
weakly decreasing i-letter words using the
letters N.
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Polynomials with real zeros

Question 2: How can we tell if the poly-
nomial a(z) = 1 + a1z + · · ·+ adz

d in N[z]
has only real zeros?

Answer: Use

(1) Maple.
(2) Sturm’s Algorithm.
(3) Aissen, Schoenberg, Whitney’s Theorem.
(4) Gantmacher’s Theorem.
(5) Theorems about (3 + 1)-free posets.
(6) Theorems about eigenvalues.

Question 2’: How can we tell if every
polynomial in an infinite subset of N[z] has
only real zeros?
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Facts, problems

The f -polynomials of the following combi-
natorial objects have only real zeros.

(1) (3 + 1)-free posets.
(2) Matching complexes.

Question: Do the f -polynomials of these
combinatorial objects have only real zeros?

(1) Distributive Lattices.
(2) Modular Lattices.

Question: Is there some setting in which
all polynomials inN[z] having real zeros arise?
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Maclaurin’s inequalities

Proposition: Let 1 + a1z + · · · + adz
d

in N[z] have only real zeros. Then we have

a1
d

≥
√

a2
(d
2

)

≥ 3

√

a3
(d
3

)

≥ · · · ≥ d
√
ad ≥ 1.
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Corollary: Factoring the polynomial as
a(z) = (1 + β1z) · · · (1 + βdz), we obtain
the Arithmetic Mean - Geometric Mean In-
equality,

β1 + · · · + βd
d

≥ d
√

β1 · · · βd.
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Corollary: For all i we have

ai ≥
(

d

i

)

.

Example: 1 + 4z + 5z2 + 4z3 + z4 has
(at least) a pair of imaginary zeros.
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Corollary: For all i we have

ai+1 ≤
(

d

i + 1

)

(

ai
(d
i

)

)(i+1)/i

.
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Using Maclaurin’s inequalities and a techni-
cal lemma, we have the following.

Proposition: (Bell-S 2002) Let the poly-
nomial a(z) = 1 + a1z + · · ·+ adz

d in N[z]
have only real zeros. Then we have

ai+1 ≤ µi(ai),

for i = 1, . . . , d− 1.

Equivalently, a(z) is the f -polynomial of a
multicomplex.

Equivalently, for every nonnegative integer
c, there exists a Cohen-Macaulay ring with
Hilbert series

a(z)

(1− z)c
.



16

Question: Which Cohen-Macaulay rings
correspond to polynomials with real zeros?

Question: Which multicomplexes corre-
spond to polynomials with real zeros? Can
these be chosen to be simplicial complexes?
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Kruskal-Katona functions

Theorem: (Schutzenberger, Kruskal, Ka-
tona) The vector (1, a1, . . . , ad) is the f -
vector of a simplicial complex if and only
if

ai+1 ≤ κi(ai), i = 1, . . . , d− 1,

where κi is the ith Kruskal-Katona func-

tion.
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Example:

0 1 2 3 4 5 6
1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
1 6 15 20 15 6 1

The 3rd Macaulay expansion of 8 is

8 = 4 + 3 + 1,

and we have

κ3(8) = 0 + 1 + 1 = 2.
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Observation: As ai gets large, the func-
tion κi(ai) approaches

(i!ai)
(i+1)/i

(i + 1)!
,

which is greater than the upper bound
(

d

i + 1

)

(

ai
(d
i

)

)(i+1)/i

implied by the Maclaurin inequalities for poly-
nomials with real zeros.
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Corollary: (of Maclaurin’s inequalities)
If a(z) = 1 + a1z + · · · + adz

d in N[z] has
only real zeros, then

ai ≤
(

d

i

)

(a1
d

)i
.

Setting i = d, we see that the degree d is no
greater than a1.

Thus for fixed a1, there are only finitely
many polynomials in N[z] of the above form
which have only real zeros.
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Example: For a1 = 5 we have

1 + 5z

1 + 5z + z2

1 + 5z + 2z2

1 + 5z + 3z2

1 + 5z + 4z2

1 + 5z + 5z2

1 + 5z + 6z2

1 + 5z + 5z2 + z3

1 + 5z + 6z2 + z3

1 + 5z + 6z2 + 2z3

1 + 5z + 7z2 + 2z3

1 + 5z + 7z2 + 3z3

1 + 5z + 8z2 + 4z3

1 + 5z + 8z2 + 5z3 + z4

1 + 5z + 9z2 + 7z3 + 2z4

1 + 5z + 10z2 + 10z3 + 5z4 + z5.
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Partial results

If a(z) = 1 + a1z + · · · + adz
d in N[z] has

only real zeros, then it is the f -vector of a
simplicial complex if

(1) the coefficients are large.
(2) the coefficients are small (a1 ≤ 10).
(3) the degree is small (d ≤ 4).
(4) a(z) = (1+β1z) · · · (1+βdz), and βi ≥

1 for all i.

Furthermore, ai+1 ≤ κi(ai) for i = 1, . . . , 2d3 .


