MULTICOMPLEXES AND POLYNOMIALS WITH REAL ZEROS

Mark Skandera
(joint with Jason Bell)

U. Michigan

Outline

(1) Multicomplexes
(2) Hilbert Series
(3) Macaulay functions
(4) Polynomials with real zeros
(5) Maclaurin inequalities
(6) Results and open questions
Multicomplexes

A collection Γ of monomials closed under divisibility is called a \textit{multicomplex}.

\textbf{Example:}

\begin{align*}
x_1^3 x_2, \\
x_1^3, \quad x_1^2 x_2, \\
x_1^2, \quad x_1 x_2, \quad x_2 x_3, \\
x_1, \quad x_2, \quad x_3, \\
1.
\end{align*}

Counting monomials by degree, we define the \textit{f-vector} and \textit{f-polynomial}.

\textbf{Example:}

\begin{align*}
f_\Gamma &= (1, 3, 3, 2, 1), \\
f_\Gamma(z) &= 1 + 3z + 3z^2 + 2z^3 + z^4.
\end{align*}
Question 1: Which polynomials in $\mathbb{N}[z]$ are f-polynomials of multicomplexes?
Let I be a monomial ideal. Then the set of monomials in the ring $A = k[x_1, \ldots, x_n]/I$ is a multicomplex.

Example: In $A = k[x_1, x_2, x_3]/\langle x_2x_3 \rangle$, we have

1,
$x_1, \ x_2, \ x_3,$
$x_1^2, \ x_2^2, \ x_3^2, \ x_1x_2, \ x_1x_3,$
$x_1^3, \ x_2^3, \ x_3^3, \ x_1^2x_2, \ x_1x_2^2, \ x_1^2x_3, \ x_1x_3^2,$
\ldots

The *Hilbert function* and *Hilbert series* of the ring count monomials by degree.

Example:

$F_A = (1, 3, 5, 7, \ldots),$
$F_A(z) = 1 + 3z + 5z^2 + 7z^3 + \cdots.$
The Hilbert series of such a ring may be expressed as a rational function

\[F_A(z) = \frac{h_A(z)}{(1 - z)^d}. \]

Example:

\[1 + 3z + 5z^2 + 7z^3 + \cdots = \frac{1 + z}{(1 - z)^2}. \]

Question 1’: Which polynomials in \(\mathbb{N}[z] \) can appear in the numerator of a rational expression for the Hilbert series of a Cohen-Macaulay ring?

Answer: The \(f \)-polynomials of finite multicomplexes.
Macaulay functions

Theorem: (Macaulay, 1927) The vector \((1, a_1, \ldots, a_d)\) is the \(f\)-vector of a multicomplex if and only if
\[a_{i+1} \leq \mu_i(a_i), \quad i = 1, \ldots, d - 1, \]
where \(\mu_i\) is the \(i\)th Macaulay function.
Example:

The 3rd Macaulay expansion of 8 is
\[8 = 4 + 3 + 1, \]
and we have
\[\mu_3(8) = 5 + 4 + 1 = 10. \]
Example:

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>6</th>
<th>9</th>
<th>7</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>11</td>
<td>111</td>
<td>1111</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>21</td>
<td>211</td>
<td>2111</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>22</td>
<td>221</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>31</td>
<td>222</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>32</td>
<td>311</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>6</td>
<td>33</td>
<td>321</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>41</td>
<td>322</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>42</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>43</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

To construct a multicomplex from an f-vector, write down the (lexicographically) first a_i weakly decreasing i-letter words using the letters \mathbb{N}.
Polynomials with real zeros

Question 2: How can we tell if the polynomial \(a(z) = 1 + a_1 z + \cdots + a_d z^d \) in \(\mathbb{N}[z] \) has only real zeros?

Answer: Use

(1) Maple.
(2) Sturm’s Algorithm.
(3) Aissen, Schoenberg, Whitney’s Theorem.
(4) Gantmacher’s Theorem.
(5) Theorems about \((3 + 1)\)-free posets.
(6) Theorems about eigenvalues.

Question 2’: How can we tell if every polynomial in an infinite subset of \(\mathbb{N}[z] \) has only real zeros?
Facts, problems

The \(f \)-polynomials of the following combinatorial objects have only real zeros.

(1) \((3 + 1)\)-free posets.
(2) Matching complexes.

Question: Do the \(f \)-polynomials of these combinatorial objects have only real zeros?

(1) Distributive Lattices.
(2) Modular Lattices.

Question: Is there some setting in which \textit{all} polynomials in \(\mathbb{N}[z] \) having real zeros arise?
Maclaurin’s inequalities

Proposition: Let $1 + a_1 z + \cdots + a_d z^d$ in $\mathbb{N}[z]$ have only real zeros. Then we have

$$\frac{a_1}{d} \geq \sqrt[2]{\frac{a_2}{d(2)}} \geq \sqrt[3]{\frac{a_3}{d(3)}} \geq \cdots \geq \sqrt[d]{a_d} \geq 1.$$
Corollary: Factoring the polynomial as
\[a(z) = (1 + \beta_1 z) \cdots (1 + \beta_d z), \]
we obtain the Arithmetic Mean - Geometric Mean Inequality,
\[\frac{\beta_1 + \cdots + \beta_d}{d} \geq \sqrt[d]{\beta_1 \cdots \beta_d}. \]
Corollary: For all i we have

$$a_i \geq \binom{d}{i}.$$

Example: $1 + 4z + 5z^2 + 4z^3 + z^4$ has (at least) a pair of imaginary zeros.
Corollary: For all i we have

$$a_{i+1} \leq \binom{d}{i+1} \left(\frac{a_i}{\binom{d}{i}} \right)^{(i+1)/i}.$$

Using Maclaurin’s inequalities and a technical lemma, we have the following.

Proposition: (Bell-S 2002) Let the polynomial $a(z) = 1 + a_1z + \cdots + a_dz^d$ in $\mathbb{N}[z]$ have only real zeros. Then we have

$$a_{i+1} \leq \mu_i(a_i),$$

for $i = 1, \ldots, d - 1$.

Equivalently, $a(z)$ is the f-polynomial of a multicomplex.

Equivalently, for every nonnegative integer c, there exists a Cohen-Macaulay ring with Hilbert series

$$\frac{a(z)}{(1 - z)^c}.$$
Question: Which Cohen-Macaulay rings correspond to polynomials with real zeros?

Question: Which multicomplexes correspond to polynomials with real zeros? Can these be chosen to be simplicial complexes?
Kruskal-Katona functions

Theorem: (Schutzenberger, Kruskal, Katona) The vector $(1, a_1, \ldots, a_d)$ is the f-vector of a simplicial complex if and only if

$$a_{i+1} \leq \kappa_i(a_i), \quad i = 1, \ldots, d - 1,$$

where κ_i is the ith Kruskal-Katona function.
Example:

\[
\begin{array}{ccccccc}
0 & 1 & 2 & 3 & 4 & 5 & 6 \\
1 \\
1 & 1 \\
1 & 2 & 1 \\
1 & 3 & 3 & 1 \\
1 & 4 & 6 & 4 & 1 \\
1 & 5 & 10 & 10 & 5 & 1 \\
1 & 6 & 15 & 20 & 15 & 6 & 1 \\
\end{array}
\]

The 3rd Macaulay expansion of 8 is

\[8 = 4 + 3 + 1,\]

and we have

\[\kappa_3(8) = 0 + 1 + 1 = 2.\]
Observation: As a_i gets large, the function $\kappa_i(a_i)$ approaches
\[
\frac{(i!a_i)^{(i+1)/i}}{(i + 1)!},
\]
which is greater than the upper bound
\[
\binom{d}{i + 1} \left(\frac{a_i}{\binom{d}{i}} \right)^{(i+1)/i}
\]
implied by the Maclaurin inequalities for polynomials with real zeros.
Corollary: (of Maclaurin’s inequalities)
If $a(z) = 1 + a_1 z + \cdots + a_d z^d$ in $\mathbb{N}[z]$ has only real zeros, then
$$a_i \leq \binom{d}{i} \left(\frac{a_1}{d} \right)^i.$$

Setting $i = d$, we see that the degree d is no greater than a_1.

Thus for fixed a_1, there are only finitely many polynomials in $\mathbb{N}[z]$ of the above form which have only real zeros.
Example: For $a_1 = 5$ we have

\[
\begin{align*}
1 + 5z \\
1 + 5z + z^2 \\
1 + 5z + 2z^2 \\
1 + 5z + 3z^2 \\
1 + 5z + 4z^2 \\
1 + 5z + 5z^2 \\
1 + 5z + 6z^2 \\
1 + 5z + 5z^2 + z^3 \\
1 + 5z + 6z^2 + z^3 \\
1 + 5z + 6z^2 + 2z^3 \\
1 + 5z + 7z^2 + 2z^3 \\
1 + 5z + 7z^2 + 3z^3 \\
1 + 5z + 8z^2 + 4z^3 \\
1 + 5z + 8z^2 + 5z^3 + z^4 \\
1 + 5z + 9z^2 + 7z^3 + 2z^4 \\
1 + 5z + 10z^2 + 10z^3 + 5z^4 + z^5.
\end{align*}
\]
Partial results

If \(a(z) = 1 + a_1 z + \cdots + a_d z^d \) in \(\mathbb{N}[z] \) has only real zeros, then it is the \(f \)-vector of a simplicial complex if

1. the coefficients are large.
2. the coefficients are small \((a_1 \leq 10) \).
3. the degree is small \((d \leq 4) \).
4. \(a(z) = (1 + \beta_1 z) \cdots (1 + \beta_d z) \), and \(\beta_i \geq 1 \) for all \(i \).

Furthermore, \(a_{i+1} \leq \kappa_i(a_i) \) for \(i = 1, \ldots, \frac{2d}{3} \).