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Abstract. We show that each polynomial a(z) = 1 + a1z + · · · + adz
d in N[z]

having only real zeros is the f -polynomial of a multicomplex. It follows that a(z)
is also the h-polynomial of a Cohen-Macaulay ring and is the g-polynomial of a
simplicial polytope. We conjecture that a(z) is also the f -polynomial of a simplicial
complex and show that the multicomplex result implies this in the special case that
the zeros of a(z) belong to the real interval [−1, 0). We also show that for fixed d

the conjecture can fail for at most finitely many polynomials having the required
form.

1. Introduction

Several results in algebraic combinatorics concern simplicial complexes and poly-
nomials

(1.1) a(z) = 1 + a1z + · · ·+ adz
d ∈ N[z]

having only real zeros. For example, the following results state combinatorial prop-
erties of a simplicial complex which are sufficient to prove that all zeros of a related
polynomial of the form (1.1) are real.

(1) The f -polynomial of a matching complex has only real zeros [12].
(2) If a simplicial complex has a nonnegative h-vector, then the f -polynomial of

its first barycentric subdivision has only real zeros [4].
(3) The f -polynomial of a (3+ 1)-free poset has only real zeros [9], [19], [26].
(4) If P is a series-parallel poset, then the f -polynomial of the distributive lattice

J(P ) has only real zeros [28]. This is not true for an arbitrary poset P [27].
(See also [3].)

No analogous combinatorial result characterizes polynomials of the form (1.1) which
have only real zeros by supplying necessary and sufficient conditions. The some-
what cumbersome nature of the noncombinatorial characterization theorems (e.g., [1,
Thm. 1], [8, p. 203]) suggests studying problems converse to the above results.

Question 1.1. Let the polynomial (1.1) have only real zeros. Is a(z) necessarily the
f -polynomial of a simplicial complex?
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More generally, we have the following problem.

Problem 1.2. Given a sequence of d sets with cardinalities a1, . . . , ad, state conditions
on the sets which are necessary to imply that the polynomial (1.1) has only real zeros.

To provide an answer to Problem 1.2, we will employ multicomplexes, a class of
objects generalizing simplicial complexes. In Section 2 we define the f -polynomials
of multicomplexes and simplicial complexes, and we summarize the well-known char-
acterizations of these polynomials. In Section 3 we state inequalities satisfied by the
coefficients of polynomials with real zeros. These inequalities lead to a proof that
each polynomial (1.1) having only real zeros is the f -polynomial of a multicomplex.
In Section 4 we conjecture an affirmative answer to Question 1.1 and prove some
partial results.

2. Characterization of the f-vectors of multicomplexes and

simplicial complexes

A multicomplex on a set {x1, . . . , xn} of variables is a collection Σ of monomials in
x1, . . . , xn which satisfies

(1) The monomial xi belongs to Σ, for i = 1, . . . , n.
(2) If the monomial u belongs to Σ and w divides u, then w also belongs to Σ.

A multicomplex Σ is called a simplicial complex if each monomial in Σ is square-free.

Let Σ be a multicomplex on x1, . . . , xn. We define the f -vector of Σ to be the
sequence

(2.1) fΣ = (ai)i≥0,

where ai is the number of monomials of degree i in Σ. Note that we necessarily have
a0 = 1, unless n = 0. Also note that the f -vector of a simplicial complex has only
finitely many nonzero components.

Multicomplexes have an important interpretation in commutative algebra: if R
is a graded k-algebra generated by elements x1, . . . , xn, then R has a k-basis which
is a multicomplex on x1, . . . , xn. Furthermore, a(z) is the f -polynomial of a finite
nonempty multicomplex if and only if for any nonnegative integer c there exists a
c-dimensional Cohen-Macaulay ring whose Hilbert series is

a(z)

(1− z)c
.

(See [24, pp. 56-57].)

Two well-known theorems characterize the f -vectors of multicomplexes and simpli-
cial complexes in terms of functions based upon the following expression of a positive
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integer m as a sum of binomial coefficients. Given a positive integer i, we define the
ith Macaulay expansion of m to be the unique expression

(2.2) m =

(

ri
i

)

+

(

ri−1

i− 1

)

+ · · ·+
(

rj
j

)

,

satisfying

ri > ri−1 > · · · > rj ≥ j ≥ 1.

To obtain this expression we choose ri to be the unique positive integer which satisfies

(2.3)

(

ri
i

)

≤ m <

(

ri + 1

i

)

,

and then we compute the (i − 1)st Macaulay expansion of m −
(

ri
i

)

. Using (2.2) we
then define the families (µi)i≥1, (κi)i≥1 of functions on N by

µi(m) =

{

(

ri+1
i+1

)

+
(

ri−1+1
i

)

+ · · ·+
(

rj+1
j+1

)

if m > 0,

0 otherwise.

κi(m) =

{

(

ri
i+1

)

+
(

ri−1

i

)

+ · · ·+
(

rj
j+1

)

if m > 0,

0 otherwise.

Recursive formulas for these functions follow immediately from their definitions:

µi(m) =
(

ri+1
i+1

)

+ µi−1(m−
(

ri
i

)

),(2.4)

κi(m) =
(

ri
i+1

)

+ κi−1(m−
(

ri
i

)

).(2.5)

The characterization of f -vectors of multicomplexes is due to Macaulay [15].

Theorem 2.1. An integer sequence (a0, a1, . . . ) is the f -vector of a nonempty multi-
complex on n variables if and only if we have a0 = 1, a1 = n and

0 ≤ ai+1 ≤ µi(ai)

for i ≥ 1.

The characterization of f -vectors of simplicial complexes is due (independently) to
Kruskal [14], Katona [13], and Schützenberger [17].

Theorem 2.2. An integer sequence (a0, . . . , ad) is the f -vector of a nonempty sim-
plicial complex on n variables if and only if we have a0 = 1, a1 = n and

0 < ai+1 ≤ κi(ai)

for i = 1, . . . , d− 1.
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(See [5], [10] for proofs of these theorems, and [24, pp. 55-56] for constructions.)

It is customary to define the f -vector of a finite multicomplex Σ to be only the
nonzero subsequence of the sequence (2.1),

fΣ = (a0, . . . , ad).

We then define the f -polynomial of Σ to be

fΣ(z) = a0 + a1z + · · ·+ adz
d.

We may also associate f -vectors and f -polynomials to posets. In particular, the set
of chains of a poset P forms a simplicial complex O(P ) called the order complex of
P . (See [25, Ch. 3].) We then define the f -vector fP and f -polynomial fP (z) of P to
be fO(P ) and fO(P )(z), respectively.

The functions µi and κi may be expressed in terms of one another very easily.

Proposition 2.3. For any positive integers m, i, we have

κi(m) +m = µi(m).

Proof. We use induction on i. Observe that for i = 1 we have

κ1(m) +m =

(

m

2

)

+m =

(

m+ 1

2

)

= µ1(m).

Now fix i > 1 and suppose that the claim is true for 1, . . . , i−1. Let ri be the positive
integer which satisfies

(

ri
i

)

≤ m <

(

ri + 1

i

)

and define q = m−
(

ri
i

)

. By the recursive formulas (2.4) and (2.5) we have

µi(m)− κi(m) =

(

ri + 1

i+ 1

)

−
(

ri
i+ 1

)

+ µi−1(q)− κi−1(q)

=

(

ri
i

)

+ q

= m,

as desired. �

3. main results

Let the polynomial a(z) = 1 + a1z + · · · + adz
d in R[z] have positive coefficients.

Conditions on the sequence (1, a1, . . . , ad) which are both necessary and sufficient for
a(z) to have only real zeros are known but somewhat cumbersome. (See e.g., [1,
Thm. 1], [8, p. 203].) On the other hand, several well-known conditions which are
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merely necessary are quite simple. In the event that a(z) has only real zeros, the
sequence (1 = a0, . . . , ad) is unimodal,

a0 ≤ · · · ≤ aj ≥ · · · ≥ ad for some j,

and log-concave,
a2i ≥ ai−1ai+1 for i = 1, . . . , d− 1.

It also has Newton’s log-concavity property,

(3.1)

(

ai
(

d
i

)

)2

≥ ai−1
(

d
i−1

)

ai+1
(

d
i+1

) for i = 1, . . . , d− 1,

from which one can derive Maclaurin’s inequalities,

(3.2)
a1
d

≥
√

a2
(

d
2

) ≥ 3

√

a3
(

d
3

) ≥ · · · ≥ d
√
ad.

(See e.g. [11, p. 52].)

Note that we may interpret (3.2) as a generalization of the Artithmetic Mean -
Geometric Mean Inequality by factoring a(z) as (1+β1z) · · · (1+βdz). From Maclau-
rin’s inequalities we obtain the following upper bound for each coefficient ai in terms
of a1.

Observation 3.1. Let a(z) = 1 + a1z + · · · + adz
d ∈ R[z] have positive coefficients

and only real zeros. Then for i = 2, . . . , d we have

ai ≤
(

d

i

)

(a1
d

)i

.

Setting i = d in Observation 3.1 and assuming that all coefficients are integers, we
obtain an upper bound on the degree in terms of a1.

Observation 3.2. Let a(z) = 1 + a1z + · · ·+ adz
d ∈ N[z] have only real zeros. Then

d is no greater than a1.

The combination of these two facts yields a third.

Observation 3.3. For any fixed n there are only finitely many polynomials of the
form 1 + nz + a2z

2 + · · ·+ adz
d in N[z] which have only real zeros.

Maclaurin’s inequalities also give us a lower bound for each coefficient ai in terms
of ad. In particular we have the following.

Observation 3.4. Let a(z) = 1 + a1z + · · ·+ adz
d ∈ N[z] have only real zeros. Then

for i = 1, . . . , d− 1 we have

ai ≥ a
i/d
d

(

d

i

)

≥
(

d

i

)

.
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Thus it is easy to see that a polynomial such as 1 + 4z + 9z2 + 10z3 + 5z4 + z5 has
nonreal zeros.

To relate Maclaurin’s inequalities to the Macaulay functions, it will be convenient
to define numbers τ0, . . . , τd by τ0 = 1 and

a(z) = 1 + a1z + · · ·+ adz
d =

d
∑

i=0

(

d
i

)

τ ii z
i,

and to write Maclaurin’s inequalities as

(3.3) τ1 ≥ · · · ≥ τd.

Proposition 3.5. Let a(z) = 1 + a1z + · · · + adz
d =

∑d
i=0

(

d
i

)

τ ii z
i ∈ N[z] satisfy

Maclaurin’s inequalities and define the integer sequence (n1, . . . , nd) by
(

ni

i

)

≤ ai <

(

ni + 1

i

)

.

Then for i = 1, . . . , d we have

(3.4) τi <
ni − i+ 1

d− i
.

Proof. Suppose (3.4) is false for some i. Then we have ni− i+1 < τi(d− i), and since
τi > 1, we also have

ni − i+ 1 + j < τi(d− i+ j)

for all j ≥ 0. From this inequality we obtain
(

ni + 1

i

)

=
1

i!

i
∏

j=1

(ni − i+ 1 + j) <
1

i!

i
∏

j=1

[τi(d− i+ j)] =

(

d

i

)

τ ii = ai,

a contradiction. �

Theorem 3.6. Let a(z) = 1+ a1z+ · · ·+ adz
d =

∑d
i=0

(

d
i

)

τ ii zi ∈ N[z] satisfy Maclau-
rin’s inequalities (3.2). Then a(z) is the f -polynomial of a multicomplex.

Proof. Let i be any integer between 1 and d− 1. By Maclaurin’s inequalities we have

(3.5) ai+1 =

(

d

i+ 1

)

τ i+1
i+1 ≤

(

d

i+ 1

)

τ i+1
i =

(d− i)τi
i+ 1

(

d

i

)

τ ii .

Now define the integer ni by
(

ni

i

)

≤ ai <

(

ni + 1

i

)

.

Applying Proposition 3.5 to rightmost expression in (3.5) we have

ai+1 ≤
ni − i+ 1

i+ 1

(

d

i

)

τ ii =
ni − i+ 1

i+ 1
ai ≤

ni − i+ 1

i+ 1

(

ni + 1

i

)

=

(

ni + 1

i+ 1

)

.
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Since
(

ni+1
i+1

)

is no greater than µi(ai), we have the desired result. �

Corollary 3.7. Let a(z) = 1+a1z+ · · ·+adz
d ∈ N[z] satisfy Maclaurin’s inequalities.

Then for any c ∈ N there exists a Cohen-Macaulay ring whose Hilbert series has the
form

a(z)

(1− z)c
.

Equivalently, a(z) is the h-polynomial of a Cohen-Macaulay complex.

A second consequence of Theorem 3.6 concerns simplicial polytopes. (See [2] for
definitions.)

Corollary 3.8. Let a(z) = 1+a1z+ · · ·+adz
d ∈ N[z] satisfy Maclaurin’s inequalities.

Then for any c ∈ N greater than or equal to 2d, there exists a simplicial c-polytope
whose g-polynomial is a(z).

A third consequence of Maclaurin’s inequalties relates polynomials with real zeros
to the Upper Bound Conjecture for f -vectors of simplicial convex polytopes. (See [24,
p. 59] for definitions.)

Corollary 3.9. Let a(z) = 1+a1z+ · · ·+adz
d ∈ N[z] satisfy Maclaurin’s inequalities

and let f = (1, f0, . . . , fd−1) be the f -vector of the cyclic polytope C(a1, d). Then for
i = 1, . . . , d we have

ai ≤ fi−1.

Proof. Define the polynomial

b(z) = (1 + a1
d
z)d = 1 + b1z + · · ·+ bdz

d.

By (3.2) ai is no greater than bi for i = 1, . . . , d. Therefore it suffices to show that bi
is no greater than fi−1 for i = 1, . . . , d.

By a result of McMullen (see [24, p. 59]), the coefficients of b(z) satisfy the condi-
tions of the Upper Bound Conjecture if the coefficients of the polynomial

h(z) = (1 + a1−d
d

z)d = 1 + h1z + · · ·+ hdz
d

satisfy

hi ≤
(

a1 − d+ i− 1

i

)

.

Computing an upper bound for hi we have

hi =

(

d

i

)(

a1 − d

d

)i

=
d(d− 1) · · · (d− i+ 1)(a1 − d)i

i! di
≤ (a1 − d)i

i!
,
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which is clearly less than or equal to

1

i!

i−1
∏

j=0

(a1 − d+ j) =

(

a1 − d+ i− 1

i

)

.

�

Yet another consequence of Maclaurin’s inequalities is a family of inequalities sat-
isfied by the minors of totally nonnegative matrices. Denote by

(

[n]
k

)

the collection of
k-element subsets of [n] = {1, . . . , n}. For any matrix A of size at least n × n and

any elements S, T of
(

[n]
k

)

define ∆S,T to be the (S, T ) minor of A, the determinant
of the submatrix of A corresponding to rows S and columns T . A matrix is called
totally nonnegative if all of its minors are nonnegative.

Corollary 3.10. Let A be an n× n totally nonnegative matrix and let k < ℓ be two
integers in [n]. Then we have

(3.6)

(

n

ℓ

)k(
∑

S∈([n]
k )

∆S,S

)ℓ

−
(

n

k

)ℓ(
∑

S∈([n]
ℓ )

∆S,S

)k

≥ 0.

Proof. Suppose A is totally nonnegative. A well-known result states that A has only
nonnegative real eigenvalues and therefore that the polynomial

det(Az + I) = 1 + a1z + · · ·+ anz
n

has only negative real zeros. Since these coefficients are given by

ai =
∑

S∈([n]
i )

∆S,S,

we may apply (3.2) to obtain the desired result. �

Corollary 3.10 gives an example of a multivariate polynomial in matrix entries
which is nonnegative for all totally nonnegative matrices. Such a polynomial is itself
called totally nonnegative. (See e.g. [20, Cor. 3.3], [29, Sec. 3.1].)

4. Results concerning simplicial complexes

Theorem 3.6 implies that each polynomial 1+a1z+· · ·+adz
d ∈ N[z] having only real

zeros is the f -polynomial of a multicomplex. We conjecture that this multicomplex
may be chosen to be a simplicial complex.

Conjecture 4.1. Let a(z) = 1 + a1z + · · · + adz
d ∈ N[z] have only real zeros. Then

a(z) is the f -polynomial of a simplicial complex.



MULTICOMPLEXES AND POLYNOMIALS WITH REAL ZEROS. 9

One special case of the conjecture, which depends upon the locations of the real
zeros of the polynomial, follows from Theorem 3.6. The hypothesis in the following
proposition is equivalent to the condition that the zeros of a monic polynomial in N[z]
be real and less than or equal to −1.

Proposition 4.2. Let a(z) = 1 + a1z + · · ·+ adz
d ∈ N[z] have only real zeros, all of

which lie between −1 and 0. Then a(z) is the f -polynomial of a simplicial complex.

Proof. Factoring a(z) as

a(z) =
d
∏

i=1

(1 + βiz),

we have that β1, . . . , βd are real and greater than or equal to one. Now define the
polynomial h(z) by

h(z) =
d
∏

i=1

[1 + (βi − 1)z].

Clearly h(z) belongs to N[z] and has only real zeros. By Theorem 3.6 h(z) is the f -
polynomial of a multicomplex, and by [24, Thm. 3] it is therefore the h-polynomial of
a (d− 1)-dimensional Cohen-Macaulay simplicial complex ∆. (See [24, pp. 33-35, 53-
58] for infomation about h-polynomials and Cohen-Macaulay complexes.) It follows
that a(z) is the f -polynomial of ∆. �

For the remainder of this section, we shall use the notation

m(i) = m(m− 1) · · · (m− i+ 1).

On the other hand, we will also use parentheses as necessary in fractional exponents
and the expression m(i+1)/i should be interpreted as m raised to the power i+1

i
. In

order to prove the main result (Theorem 4.8) of this section, we state and prove
several technical lemmas. In these lemmas, e is the natural constant 2.71828 · · · .

Lemma 4.3. Fix an integer d ≥ 3. Then for i = 1, . . . , d− 1 and for all t ≥ d2, we
have

(4.1)
t(i+1)

((t+ 1)(i))(i+1)/i
≥ d(i+1)

((d)(i))(i+1)/i
.

Proof. Verifying (4.1) for d = 3, 4 reduces to straightforward computations. Assume
therefore that d is at least 5, and let G(t) be the function on the left-hand side of
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(4.1). Note that we have

G′(t) = G(t)

(

i
∑

j=0

1

t− j
− i+ 1

i

i−1
∑

j=0

1

t+ 1− j

)

= G(t)

(

1

t− i
− 1

t+ 1
+

1

t− i+ 1
− 1

i

i−1
∑

j=0

1

t+ 1− j

)

,

≥ G(t)

(

1

t− i
− 1

t+ 1
+

1

t− i+ 1
− 1

t− i+ 2

)

,

which is nonnegative. Thus it is sufficient to prove the claim for t = d2. We have

G(d2) =
(d2 − i+ 1)(d2 − i)

(d2 + 1) i
√

(d2 + 1)d2 · · · (d2 − i+ 2)

≥ (d2 − i)2

(d2 + 1)(d2 − i−3
2
)

= 1− (3i+ 5)d2 − (2i2 + i− 3)

(d2 + 1)(2d2 − i+ 3)

≥ 1− (3i+ 5)d2

(d2 + 1)(2d2 − i)

≥ 1− (3i+ 5)

2d2 − d
.

Now we claim that
3i+ 5

2d2 − d
≤ 1

d− i+ 1
.

To see this, consider the parabola

H(t) = (3t+ 5)(d− t+ 1)− (2d2 − d)

which opens downward and has a maximum at t = d
2
− 1

3
. Since

H(d
2
− 1

3
) = −5

4
d2 + 5d+ 16

3

is negative when d ≥ 5, we have

G(d2) ≥ 1− 1

d− i+ 1

=
d− i

d− i+ 1

≥ d(i+1)

(d(i))(i+1)/i
,

as desired. �
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Lemma 4.4. The sequence ( n−1
√
n!/n)n≥2 monotonically decreases with n.

Proof. It is straightforward to verify that the sequence decreases for n = 2, . . . , 13.
Assume therefore that n ≥ 13, and let F (n) be the ratio of the nth and (n + 1)st
terms. We will show that F (n) is at least 1, or equivalently that

logF (n) = log(1 + 1
n
) +

log n!

n(n− 1)
− log(n+ 1)

n

is positive.

Noting that the Taylor expansion of log(1+x) is an alternating series and evaluating
at x = 1

n
, we have

(4.2)
1

n
− 1

2n2
≤ log(1 + 1

n
) ≤ 1

n
.

Evaluating the Taylor expansion of ex at x = n, we have en > nn/n! or equivalently

log(n!) > n log n− n.

Thus logF (n) is at least

1
n
− 1

2n2 +
1

n(n−1)
(n log n−n)− 1

n
log(n+1) = 1

n
− 1

2n2 − 1
n
log(1+ 1

n
)+ 1

n(n−1)
log n− 1

n−1
.

Using the right inequality in (4.2), we then have

F (n) ≥ − 1
n(n−1)

− 1
2n2 − 1

n2 +
1

n(n−1)
log n,

which is at least

− 1
n(n−1)

− 1
2n(n−1)

− 1
n(n−1)

+ 1
n(n−1)

log n =
log n− 2.5

n(n− 1)
,

which is nonnegative since n ≥ 13 and e2.5 ≈ 12.18. �

Lemma 4.5. Fix positive integers i < d. Then we have

i
√
d(i) ≥ d

e
,

Proof. Note that

i
√
d(i) =

i−1
√
d(i−1)

i
√
d− i+ 1

i(i−1)
√
d(i−1)

≤ i−1
√
d(i−1).

Thus
i
√
d(i) decreases as i increases from 1 to d− 1. In particular we have

i
√
d(i) ≥ d−1

√
d(d−1) =

d−1
√
d!.

Dividing by d and applying Stirling’s formula, we have

lim
d→∞

d−1
√
d!

d
=

1

e
.
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Combining this fact with Lemma 4.4, we have

d−1
√
d! ≥ d

e
,

which gives us the desired inequality. �

Using Lemmas 4.3-4.5 we may now prove that if the coefficients of a(z) are large
enough, then it is the f -polynomial of a simplicial complex.

Proposition 4.6. Let a(z) = 1 + a1z + · · · + adz
d =

∑d
i=0

(

d
i

)

τ ii z
i ∈ N[z] have only

real zeros. For i = 1, . . . , d− 1, the inequality

(4.3) ai ≥
(

d

i

)

(ed)i

implies that ai+1 ≤ κi(ai).

Proof. If d = 2, then without appealing to (4.3) we may use the quadratic formula and
Observation 3.4 to see that a2 ≤ κ1(a1) and therefore that a(z) is the f -polynomial
of a simplicial complex.

Suppose therefore that d ≥ 3 and choose an index 1 ≤ i ≤ d − 1 which satisfies
(4.3). Let r be the unique integer which satisfies

(4.4)

(

r

i

)

≤ ai <

(

r + 1

i

)

so that we have

κi(ai) ≥
(

r

i+ 1

)

.

By Lemma 4.5 and our choice of i we have
(

d2

i

)

≤ d2i

i!
=

(

d

i

)(

d2

i
√
d(i)

)i

≤
(

d

i

)

(ed)i ≤ ai,

which implies that r ≥ d2. Thus by Lemma 4.3, we have

κi(ai) ≥
(

r

i+ 1

)

d(i+1)

(d(i))(i+1)/i

((r + 1)(i))(i+1)/i

r(i+1)
=

(

d

i+ 1

)

(

(r + 1)(i)
(

d
i

)

i!

)(i+1)/i

.

By Maclaurin’s inequalities (3.3), we may multiply the expression on the right by
(τi+1/τi)

i+1 to obtain

κi(ai) ≥ ai+1

(

(

r+1
i

)

ai

)(i+1)/i

,

which by (4.4) is at least ai+1. �
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While the inequality ad+1 ≤ κd(ad) is meaningless for a degree-d polynomial, the
following corollary of Proposition 4.6 shows that it is enough to check the inequality
(4.3) for i = d in order to assert that a(z) is the f -polynomial of a simplicial complex.

Corollary 4.7. Let a(z) = 1 + a1z + · · ·+ adz
d =

∑d
i=0

(

d
i

)

τ ii z
i ∈ N[z] have only real

zeros. If

(4.5) ad ≥ (ed)d

then a(z) is the f -vector of a simplicial complex.

Proof. Rewriting Equation (4.5) as τd ≥ ed and applying Maclaurin’s inequalities we
have

τi ≥ ed, i = 1, . . . , d− 1,

or equivalently,

ai ≥
(

d

i

)

(ed)i, i = 1, . . . , d− 1.

By Proposition 4.6, this gives the desired result. �

Using Proposition 4.6 we can now show that for fixed d, Conjecture 4.1 fails for at
most finitely many polynomials.

Theorem 4.8. For any fixed d, there are at most finitely many polynomials of the
form 1+a1z+ · · ·+adz

d ∈ N[z] which have only real zeros and are not f -polynomials
of simplicial complexes.

Proof. Suppose first that we have ad−1 ≥ d(ed)d−1, or equivalently, τd−1 ≥ ed. Then
by Maclaurin’s inequalities we have τi ≥ ed for i = 1, . . . , d−2, and by Proposition 4.6
a(z) is the f -polynomial of a simplicial complex.

Now suppose that we have ad−1 < d(ed)d−1. Maclaurin’s inequalities then bound
ad by

ad ≤ (ed)d.

Log-concavity and Observation 3.4 then bound the coefficients a1, . . . , ad−2 by

ai ≤
a2i+1

ai+2

≤ a2i+1
(

d
i+2

) .

�

As we have already mentioned, Conjecture 4.1 holds if we fix d = 2. It would be
interesting therefore to obtain tighter bounds in Proposition 4.6 and Corollary 4.7 to
perhaps prove special cases of the conjecture corresponding to a few more values of d.
On the other hand, the following fact [6] shows that analytic results like Maclaurin’s
inequalities will not suffice to prove Conjecture 4.1.
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Proposition 4.9. A polynomial a(z) = 1 + a1z + · · · + adz
d having positive real

coefficients and only real zeros need not satisfy ai+1 ≤ κi(ai), even for the coefficients
ai which are integers.

Proof. Choose an integer i > 2, define the positive real number β by

β = i

√

(

d
i

)

+ i− 1
(

d
i

) ,

and consider the polynomial

b(z) = (1 + βz)d = 1 + b1z + · · ·+ bdz
d.

Note that we have

bi =

(

d

i

)

+ i− 1,

bi+1 =

(

d

i+ 1

)

βi+1.

Since the ith Macaulay expansion of bi is
(

d

i

)

+

(

i− 1

i− 1

)

+ · · ·+
(

1

1

)

,

we have

κi(bi) =

(

d

i+ 1

)

,

which is less than bi+1, since β is greater than 1. �

Thus if Conjecture 4.1 is true, it cannot be true for purely analytic reasons. It
is equally clear, however, that the conjecture can not be true for purely algebraic
reasons, because it involves establishing an inequality.

Facts concerning conjugate algebraic integers (that is, irreducible polynomials of the
required form) may provide the tools necessary to make progress on Connjecture 4.1.
It is easy to see that the conjecture is equivalent to the assertion that each irreducible
polynomial a(z) = 1+a1z+· · ·+adz

d in N[z] having only real zeros is the f -polynomial
of a simplicial complex, because for any pair of simplicial complexes (∆,Σ) there
exists a third simplicial complex Γ whose f -polynomial is equal to f∆(z)fΣ(z). By
restricting attention to irreducible polynomials, one can obtain coefficient bounds
which strengthen Observation 3.2. For example, Schur [16, Thm.XI] showed that
for any number 0 ≤ γ <

√
e ≈ 1.6487, all but finitely many irreducible polynomials

a(z) = 1 + a1z + · · ·+ adz
d ∈ N[z] having only real zeros satisfy a1 > γd. Improving

upon Schur’s result, Siegel [18, p. 303] replaced
√
e with a slightly greater number and

observed that the assertion becomes false if we replace
√
e by any number greater
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than 2. He essentially posed the following question which is of interest in light of
Conjecture 4.1.

Question 4.1. What is the greatest number γ such that we have a1 > γd for all but
finitely many of the irreducible polynomials a(z) = 1+ a1z + · · ·+ adz

d ∈ N[z] which
have only real zeros?

Smyth [22, p. 2] made the following progress on Question 4.1.

Theorem 4.10. Let a(z) = 1 + a1z + · · ·+ adz
d be an irreducible polynomial in N[z]

which has only real zeros. Then we have

a1 > 1.7719 d

unless a(z) is equal to one of the five exceptions

1 + z,

1 + 3z + z2,

1 + 6z + 5z2 + z3,

1 + 7z + 13z2 + 7z3 + z4,

1 + 8z + 14z2 + 7z3 + z4.

Further results [23] suggest that the answer to Question 4.1 is strictly less than
2. By Proposition 4.6, we have ai+1 ≤ κi(ai) whenever ai is large enough. It is
possible to use Theorem 4.10 to tighten the bound given by Proposition 4.6, but
the details are somewhat tedious and will not be given here. It would be interesting
to see if Proposition 4.6 could be improved in a less tedious fashion by employing
an appropriate generalization of Theorem 4.10. For instance, we have the following
question.

Question 4.2. What is the greatest number γi such that we have ai > γid for all but
finitely many of the irreducible polynomials a(z) = 1+ a1z + · · ·+ adz

d ∈ N[z] which
have only real zeros?

5. Containments of classes of f-polynomials

To finish, we will consider the cardinalities of various sets of f -polynomials and the
containment relations satisfied by these sets.

We define a simplicial complex with f -polynomial a(z) = 1 + a1z + · · · + adz
d

to be balanced if there exists a coloring of the vertex set such that no face contains
two vertices of the same color. A characterization of the f -polynomials of balanced
complexes due to Frankl, Furedi and Kalai [7] is analogous to Theorems 2.2 and 2.1.
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Question 5.1. Let a(z) = 1 + a1z + · · · + adz
d ∈ N[z] have only real zeros. Is a(z)

the f -polynomial of a balanced complex?

We define the f -polynomial of a poset P by letting ai count the number of i-element
chains in P . This is a special case of our definition of the f -vector of a simplicial
complex, since the chains of a poset form a simplicial complex. We define a poset
to be a unit interval order if it has no induced subposet which is isomorphic to the
four-element posets 2 + 2 or 3 + 1. (See [19] for definitions.) More generally, we
define a poset to be (3+ 1)-free if it contains no subposet isomorphic to 3+ 1. It is
known that the f -polynomial of a (3+ 1)-free poset, and therefore of a unit interval
order, has only real zeros.

For fixed n, let us define five sets of polynomials as follows,

Un = {fP (z) |P a unit interval order on n elements},
Rn = {a(z) = 1 + nz + a2z

2 + · · ·+ adz
d ∈ N[z] | a(z) has only real zeros},

Bn = {f∆(z) |∆ a balanced simplicial complex on n variables},
Cn = {f∆(z) |∆ a simplicial complex on n variables},
Mn = {f∆(z) |∆ a multicomplex on n variables with no monomial of degree n+ 1}.

It is unnecessary for us to consider the set of f -polynomials of (3+ 1)-free posets on
n elements, because by [21] this is equal to Un.

The containments Bn ⊂ Cn ⊂ Mn are immediate and one can show (using Maple
and C programs) that we have the containments

Un ⊂ Rn ⊂ Bn ⊂ Cn ⊂ Mn,

for n ≤ 10. The following table shows the cardinalities of some of these sets and the
ratios of these to |Rn|.

n |Un| |Rn| |Bn| |Cn| |Mn| |Un|
|Rn|

|Bn|
|Rn|

|Cn|
|Rn|

|Mn|
|Rn|

1 1 1 1 1 1 1.00 1.00 1.00 1.00
2 2 2 2 2 4 1.00 1.00 1.00 2.00
3 4 4 4 5 36 1.00 1.00 1.25 9.00
4 8 8 10 16 941 1.00 1.25 2.00 117.62
5 16 16 30 70 91308 1.00 1.88 4.38 5706.75
6 34 36 124 457 37780101 .94 3.65 13.44 1049447.30
7 75 78 712 4908 ? .96 9.49 65.44 ?
8 170 185 6600 95248 ? .92 35.68 514.85 ?
9 407 452 105336 3617645 ? .90 233.04 8003.64 ?
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Given the values in the table, it is clear that even an affirmative answer to Ques-
tion 5.1 would be far from a characterization of Rn. It also seems that Un approxi-
mates Rn less closely as n increases. This leaves us with the following problem.

Problem 5.2. Combinatorially describe a class of simplicial complexes whose f -
polynomials approximate Rn as closely as possible.
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[16] I. Schur. Über die Verteilung der Wurzeln bei gewissen algebraischen Gleichungen mit ganz-
zahligen Koeffizienten. Math. Z., 1 (1918) pp. 377–402.

[17] M. P. Schützenberger. A characteristic property of certain polynomials of E. F. Moore and
C. E. Shannon. In RLE Quarterly Progress Report , 55. MIT Research Laboratory of Electronics
(1959), pp. 117–118.

[18] C. L. Siegel. The trace of totally positive and real algebraic integers. Ann. of Math., 46, 2
(1945) pp. 302–312.

[19] M. Skandera. A characterization of (3+ 1)-free posets. J. Combin. Theory Ser. A, 93 (2001)
pp. 231–241.

[20] M. Skandera. Inequalities in products of minors of totally nonnegative matrices. J. Algebraic
Combin., 20 (2004).

[21] M. Skandera and B. Reed. Total nonnegativity and (3+ 1)-free posets. J. Combin. Theory
Ser. A, 103 (2003) pp. 237–256.

[22] C. J. Smyth. Totally positive algebraic integers of small trace. Ann. Inst. Fourier (Grenoble),
33, 3 (1984) pp. 1–28.

[23] C. J. Smyth. An inequality for polynomials. In Number theory (Ottawa, ON, 1996), vol. 19 of
CRM Proc. Lecture Notes . Amer. Math. Soc., Providence, RI (1999), pp. 315–321.

[24] R. Stanley. Combinatorics and Commutative Algebra. Birkhäuser, Boston, MA (1996).
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