KAZHDAN-LUSZTIG IMMANANTS AND SCHUR FUNCTIONS

Brendon Rhoades and Mark Skandera

University of Michigan, Dartmouth College

Outline

ب

(1) The dual canonical basis and Kazhdan-Lusztig immanants

(2) Schur nonnegative symmetric functions

(3) Schur nonnegative polynomials

(4) Applications to products of Schur functions

The dual canonical basis

For a polynomial $p(x_{1,1}, \ldots, x_{n,n})$ and matrix $A = (a_{i,j})$, define

$$p(A) = p(a_{1,1}, \dots, a_{n,n}).$$

Dual to the *canonical basis* of the Hopf algebra $U(\mathfrak{sl}_n(\mathbb{C}))$, is the *dual canonical basis* of

$$\mathcal{O}(SL_n(\mathbb{C})) \cong \mathbb{C}[x_{1,1}, \dots, x_{n,n}]/(\det(x) - 1).$$

Nonnegativity properties of the CB and DCB have interpretations in representation theory, symmetric functions, other areas.

Kazhdan-Lusztig immanants

Let $P_{w,w'}(q)$ be the KL polynomial indexed by $w, w' \in S_n$. Let w_0 be the longest permutation in S_n .

For each
$$u \in S_n$$
, define $f_u : S_n \to \mathbb{Z}$ by
 $f_u(v) = (-1)^{\ell(uv)} P_{w_0 v, w_0 u}(1).$

Define the Kazhdan-Lusztig immanant $\operatorname{Imm}_{u}(x)$ by $\operatorname{Imm}_{u}(x) = \sum_{v \ge u} f_{u}(v) x_{1,v(1)} \cdots x_{n,v(n)}.$

Remark: $det(x) = Imm_1(x)$.

Minors and Schur functions

Given sets I, I', define the (I, I') minor of a matrix A by $\Delta_{I,I'}(A) = \det(a_{i,j})_{i \in I, j \in I'}.$

Example: Let
$$H_{5332} = \begin{bmatrix} h_5 & h_6 & h_7 & h_8 \\ h_2 & h_3 & h_4 & h_5 \\ h_1 & h_2 & h_3 & h_3 \\ 0 & 1 & h_1 & h_2 \end{bmatrix}$$
. Then we have

$$\Delta_{1234,1234}(H_{5332}) = \det(H_{5332}) = s_{5332},$$

$$\Delta_{13,14}(H_{5332}) = \det \begin{bmatrix} h_5 & h_8 \\ h_1 & h_3 \end{bmatrix} = s_{73/2}.$$

Schur nonnegative symmetric functions

Call a symmetric function *Schur nonnegative* (SNN) if its Schur expansion has nonnegative coefficients.

Examples:

$$s_{\kappa}s_{\lambda} = \sum_{\rho} c^{\rho}_{\kappa\lambda}s_{\rho}, \qquad s_{\kappa/\lambda} = \sum_{\rho} c^{\kappa}_{\lambda\rho}s_{\rho}.$$

Questions: (L-L-T, O, F-F-L-P, B-B-M, W) For which $\kappa, \lambda, \mu, \nu$ are the following functions SNN?

$$s_{\kappa}s_{\lambda} - s_{\mu}s_{\nu} \qquad (c_{\kappa\lambda}^{\rho} \ge c_{\mu\nu}^{\rho} \text{ for all } \rho)$$

$$s_{\kappa/\lambda} - s_{\mu/\nu} \qquad (c_{\lambda\rho}^{\kappa} \ge c_{\nu\rho}^{\mu} \text{ for all } \rho)$$

Littlewood-Richardson coefficients

LR coefficients appear in representations of S_n , $(S^{\kappa} \otimes S^{\lambda}) \uparrow^{S_n} = \bigoplus_{\rho} c^{\rho}_{\kappa\lambda} S^{\rho},$

in representations of
$$GL_n$$
,
 $V^{\kappa} \otimes V^{\lambda} = \bigoplus_{\rho} c^{\rho}_{\kappa\lambda} V^{\rho}$,

in $H^*(Gr(p, \mathbb{C}^n))$, $\sigma_{\kappa}\sigma_{\lambda} = \sum_{\rho} c^{\rho}_{\kappa\lambda}\sigma_{\rho}.$

Examples of SNN symmetric functions

$$s_{63/1}s_{42/1} - s_{53}s_{32} = s_{5431} + 4s_{643} + 6s_{841} + \cdots$$

$$s_{63/3}s_{73/2} - s_{55/2}s_{43/1} = 9s_{743} + 3s_{9221} + s_{8222} + \cdots$$

These are
(*)
$$\Delta_{13,13}(A)\Delta_{24,24}(A) - \Delta_{12,12}(A)\Delta_{34,34}(A),$$

for $A = H_{5332}$ and $A = H_{6643/311}$, respectively.

Fact: The symmetric function (*) is SNN for *every* Jacobi-Trudi matrix $A = H_{\kappa/\lambda}$.

Schur nonnegative polynomials

Definition: Call $p(x_{1,1}, \ldots, x_{n,n}) \in \mathbb{C}[x_{1,1}, \ldots, x_{n,n}]$ a *Schur nonnegative* (SNN) polynomial if for every JT matrix A, the symmetric function p(A) is SNN.

Theorem: (Hard parts of proof by H '91, D '92) Each element of the dual canonical basis is SNN.

Observation: If p, q are SNN, so is p + q.

Corollary: Each element of the dual canonical cone is SNN.

Examples of SNN polynomials

(Conj. JS 90; Pf. MH 91) For any S_n character χ , $\operatorname{Imm}_{\chi}(x) = \sum_{w \in S_n} \chi(w) x_{1,w(1)} \cdots x_{n,w(n)} \text{ is SNN.}$

(D-G-S 04)
$$\pi \leq \sigma$$
 in the Bruhat order iff
 $x_{1,\pi(1)} \cdots x_{n,\pi(n)} - x_{1,\sigma(1)} \cdots x_{n,\sigma(n)}$ is SNN.

(R-S 04) For combinatorially specified I, I', J, J', $\Delta_{J,J'}(x)\Delta_{\overline{J},\overline{J'}}(x) - \Delta_{I,I'}(x)\Delta_{\overline{I},\overline{I'}}(x) \quad \text{is SNN.}$

Pf: These polynomials belong to the dual canonical cone.