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Combinatorial interpretation of Kazhdan–Lusztig basis elements
indexed by 45312-avoiding permutations in S6
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Abstract. Deodhar [Geom. Dedicata 36, no. 1 (1990)] introduced the defect statistic on subexpressions of reduced
expressions in the symmetric group Sn to construct an algorithmic description of the Kazhdan–Lusztig basis of the
Hecke algebra Hn(q). This led Billey–Warrington [J. Algebraic Combin. 13, no. 2 (2001)] and the second author [J. Pure
Appl. Algebra 212 (2008)] to state very explicit combinatorial descriptions of the basis elements indexed by permutations
avoiding certain patterns. We extend the above work by producing an exhaustive list of graphical representations of
Kazhdan–Lusztig basis elements indexed by 45312-avoiding permutations w ∈ S5,S6.
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1 Introduction

Define the symmetric group algebra Z[Sn] and the (type A Iwahori-) Hecke algebra Hn(q) to be the

algebras with multiplicative identity elements e and Te, respectively, generated over Z and Z[q
1
2 , q¯

1
2 ]

by elements s1, . . . , sn−1 and Ts1 , . . . , Tsn−1 , subject to the relations

s2i = e T 2
si = (q − 1)Tsi + qTe for i = 1, . . . , n− 1,

sisjsi = sjsisj TsiTsjTsi = TsjTsiTsj for |i− j| = 1,

sisj = sjsi TsiTsj = TsjTsi for |i− j| ≥ 2.

(1)

Analogous to the natural basis {w |w ∈ Sn} of Z[Sn] is the natural basis {Tw |w ∈ Sn} of Hn(q),
where we define Tw = Tsi1

· · ·Tsiℓ
whenever si1 · · · siℓ is a reduced (short as possible) expression for w

in Sn. We call ℓ the length of w and write ℓ = ℓ(w). Specializing at q
1
2 = 1 we have Tw 7→ w and

Hn(1) ∼= Z[Sn].
To each element w = si1 · · · siℓ ∈ Sn, we associate a one-line notation by viewing the generator

si as a map on words that swaps the letters in positions i and i + 1, and by defining w1 · · ·wn =
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si1(si2(· · · siℓ(12 · · ·n) · · · )). For each subinterval [a, b] of [n] := {1, . . . , n}, we let s[a,b] denote the
element of Sn having one-line notation 1 · · · (a − 1)b · · · a(b + 1) · · ·n, and call such an element a
reversal. The reversal s[n] is usually denoted w0. Given a word a = a1 · · · ak in Sk, and a word
b = b1 · · · bk having k distinct letters, we say that b matches the pattern a if the letters of b appear in
the same relative order as those of a; that is, if we have ai < aj if and only if bi < bj for all i, j ∈ [k].
Given w ∈ Sn we say that w avoids the pattern a if no subword wi1 · · ·wik of w matches the pattern
a.

A second basis {C̃w(q) |w ∈ Sn} of Hn(q) due to Kazhdan and Lusztig [4] expands in the natural
basis as

C̃w(q) =
∑
v≤w

Pv,w(q)Tv, (2)

where ≤ is the Bruhat order, and where the coefficients Pv,w(q) belong to N[q] and are called Kazhdan–
Lusztig polynomials. While the Kazhdan–Lusztig basis is important in various areas of mathematics,
we don’t have a very simple description of it or of the polynomials which relate it to the natural basis
of Hn(q). On the other hand, when w ∈ Sn avoids certain patterns, we can factor C̃w(q) as a product
of simpler Kazhdan–Lusztig basis elements indexed by reversals. Such a product then produces a
directed graph called a planar network, which in turn provides combinatorial interpretations of the
coefficients in each polynomial Pv,w(q) for v ≤ w.

In Section 2 we review the planar networks used by Billey–Warrington and the second author to
represent certain Kazhdan–Lusztig basis elements. In Section 3 we present our main results which
suggest a common generalization of the results in Section 2.

2 Planar networks and graphical representation of elements of Hn(q)

Define a planar network of order n to be a directed, planar, acyclic graph which can be embedded in
a disc so that 2n boundary vertices can be labeled counterclockwise as source 1, . . . , source n, sink
n, . . . , sink 1. We will assume that all sources have indegree 0 and all sinks have outdegree 0. Let Gn

denote the set of such networks. For each subinterval [a, b] of [n] with a < b, we define a simple star
network G[a,b] ∈ Gn by

1. An interior vertex z lies between the sources and sinks.

2. For i ∈ [a, b] we have directed edges (source i, z) and (z, sink i).

3. For i ̸∈ [a, b] we have directed edges (source i, sink i).

For zero- and one-element subintervals we define the trivial network G∅ = G[1,1] = · · · = G[n,n] to
have no interior vertex, and n edges (source i, sink i) for i = 1, . . . , n. In figures, we will draw sources
on the left and sinks on the right, both numbered from bottom to top. To economize figures, we will
omit vertices and edge orientations (always left to right). The (infinite) set G4 contains seven simple
star networks: G[1,4], G[2,4], G[1,3], G[3,4], G[2,3], G[1,2], G∅ = G[1,1] = · · · = G[4,4], respectively,
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where we have drawn G[1,4] in full detail and other networks in economical form.
We write G ◦H for the concatenation of G and H, formed by identifying sink i of G with source

i of H, for i = 1, . . . , n. The sources of G ◦H are those of G, and the sinks of G ◦H are those of H.
Sometimes a concatenation G ◦H may be a multi-digraph, because for some vertices x ∈ G, y ∈ H,
a collection of m(x, y) > 1 edges are incident upon both. Define G • H to be the simple subgraph
of G ◦ H obtained by removing, for all such pairs (x, y), all but one of the m(x, y) edges incident
upon both, and by marking this edge with the multiplicity m(x, y). For example, in G4 we have the
nonisomorphic graphs

G[1,3] ◦G[2,4] ◦G[1,3] =

4

3

2

1

4

3

2

1

, G[1,3] •G[2,4] •G[1,3] =

4

3

2

1

(2)(2)

4

3

2

1

, (4)

in which two pairs of edges are replaced by two single edges marked with multiplicity 2. Define a star
network to be the concatenation of finitely many simple star networks, using any combination of the
◦ and • operations.

The graphical representation of Hn(q)-elements depends upon families of paths in star networks,
and upon a function called the defect statistic. Let π = (π1, . . . , πn) be a sequence of source-to-sink
paths in a star network G. We call π a path family if there exists a permutation w = w1 · · ·wn ∈ Sn

such that for all i, πi is a path from source i to sink wi. In this case, we say more specifically that π
has type w. We say that the path family covers G if it contains every edge with exactly the multiplicity
of that edge. For example, the stars in the star network G[1,2] ◦ G[2,4] ◦ G[1,2] imply that there are
2 · 6 · 2 = 24 path families that cover it. Four of these are

π4
π3
π2
π1

,

type(π) = 1234

ρ4
ρ3
ρ2
ρ1

,

type(ρ) = 1234

τ4
τ3
τ2
τ1

,

type(τ) = 1243

ω4

ω3

ω2

ω1

.

type(ω) = 3142

(5)

Suppose that path family π = (π1, . . . , πn) covers star network G = GJ1 ◦ · · · ◦GJm , and suppose that
two paths πi, πj intersect at the central vertex of GJp . Call the triple (πi, πj , p) defective or a defect
if the paths have previously crossed an odd number of times (i.e., in GJ1 , . . . , GJip−1

). Let dfct(π)
denote the number of defects of π,

dfct(π) = #{(πi, πj , p) | (πi, πj , p) defective}. (6)

For example, in (5) we have dfct(ρ) = dfct(τ) = 1, since ρ1, ρ2 cross and meet again later as do τ1, τ2,
and we have dfct(π) = dfct(ω) = 0.

To a planar network G we associate an Hn(q) element

βq(G) =
∑
π

qdfct(π)Ttype(π), (7)

where the sum is over all path families that cover G, and we say that G graphically represents βq(G),
i.e., G gives an explicit expansion of βq(G) in the natural basis of Hn(q). Deodhar [3] showed that
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for each expression si1 · · · sim , the wiring diagram G[i1,i1+1] ◦ · · · ◦ G[im,im+1] satisfies βq(G[i1,i1+1] ◦
· · · ◦ G[im,im+1]) = C̃si1

(q) · · · C̃sim(q). Billey–Warrington [1, Theorem 1] showed that each reduced
expression si1 · · · siℓ for certain w ∈ Sn satisfies C̃si1

(q) · · · C̃sim(q) = C̃w(q). This implies the following
graphical representation result.

Theorem 2.1 Let w ∈ Sn avoid the patterns 321, 56781234, 56718234, 46781235, 46718235, and let
G be the wiring diagram for any reduced expression for w. Then G graphically represents C̃w(q).

We also have the following generalization of Deodhar’s result [2, Corollary 5.3].

Theorem 2.2 For each sequence (s[a1,b1], . . . , s[at,bt]) of reversals, we have

βq(G[a1,b1] ◦ · · · ◦G[at,bt]) = C̃s[a1,b1]
(q) · · · C̃s[at,bt]

(q).

Some Kazhdan-Lusztig basis elements not included in Theorem 2.1 have simple graphical repre-
sentations which are generalizations of wiring diagrams. Call a star network of the form

G = G[c1,d1] • · · · •G[ct,dt] (8)

a zig-zag network if

1. the sequence ([c1, d1], . . . , [ct, dt]) consists of t distinct, pairwise nonnesting intervals,

2. for i < j < k, if [ci, di] ∩ [cj , dj ] ̸= ∅ and [cj , dj ] ∩ [ck, dk] ̸= ∅, then we have ci < cj < ck (and
di < dj < dk) or ci > cj > ck (and di > dj > dk).

The zig-zag networks of order 4 are

,(2) (9)

.(2) (10)

It was shown in [5, Theorm 3.5, Lemma 5.3] that zig-zag networks of order n correspond bijec-
tively to 3412-avoiding, 4231-avoiding permutations in Sn. Letting G(w) be the zig-zag network
corresponding to w, we have the following by [5, Theorem 4.3] and Theorem 2.2.

Theorem 2.3 Let w ∈ Sn avoid the patterns 3412 and 4231. Then the zig-zag network G(w) graphi-
cally represents C̃w(q).

For example, the second zig-zag network in (9) is a graphical representation of C̃3421(q). Applying
Theorem 2.3 and Theorem 2.2 to the third zig-zag network in (9), we have that it is a graphical
representation of C̃s[2,4](q)C̃s[1,2](q) = C̃2431(q). Applying Theorem 2.2 to the star network in (5),
we find that it is a graphical representation of C̃s[1,2](q)C̃s[2,4](q)C̃s[1,2](q). This product is precisely
C̃4231(q), although equality is not implied by Theorem 2.1 or 2.3. This raises the following question.

Question 2.1 For which w ∈ Sn is there a star network G satisfying βq(G) = C̃w(q)?
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3 New results

A star network G satisfying βq(G) = C̃w(q) can provide graphical representations for Kazhdan–Lusztig

basis elements C̃v(q) for v related to w. Let GR and GU be the star networks obtained by reflecting
G in a vertical line, and horizontal line, respectively, and let GRU = GUR be the result of performing
both reflections.

Lemma 3.1 Fix w ∈ Sn and let star network G satisfy βq(G) = C̃w(q). Then we have βq(G
R) =

C̃w−1(q), βq(G
U ) = C̃w0ww0(q), and βq(G

UR) = C̃w0w−1w0
(q).

Thus, a graphical representation of the Kazhdan–Lusztig basis element indexed by any permutation
in an equivalence class

w ∼ w−1 ∼ w0ww0 ∼ w0w
−1w0 (11)

gives graphical representations for the Kazhdan-Lusztig basis elements indexed by the others. For
example, let G be the third network in (9), which graphically represents C̃2431(q), and define w = 2431.
Related to w are w0ww0 = 4213, w−1 = 4132, w0w

−1w0 = 3241. The corresponding Kazhdan–Lusztig
basis elements C̃4213(q), C̃4132(q), C̃3241(q) are graphically represented by GU , GR, GUR, which appear
second and third in (10), and fourth in (9).

We now answer the special case n = 5 of Question 2.1.

Theorem 3.2 For all w ∈ S5 ∖ {45312}, there is a star network G satisfying βq(G) = C̃w(q).

Proof. (Idea) By Theorems 2.1 and 2.3, we have a network G for all permutation avoiding the patterns
listed in those theorems. Partitioning the remaining elements of S5 into equivalence classes of the
form (11) we find a zig-zag network G(w) for one representative of each class except for the singleton
class {45312}. Lemma 3.1 gives zig-zag networks for the other elements of each class. □

For example, graphical representations of C̃42351(q), C̃53412(q), and C̃35142(q) are
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In Theorem 3.8 we state an analog of Theorem 3.2 which applies to w ∈ S6 avoiding the pattern
45312. An important tool for proving this is the following product formula for Kazhdan-Lusztig basis
elements.

If sw > w in the Bruhat order then we have

C̃s(q)C̃w(q) = C̃sw(q) +
∑
v<w
sv<v

µ(v, w)C̃v(q), (12)

where µ(v, w) is the coefficient of q
ℓ(w)−ℓ(v)−1

2 in the Kazhdan–Lusztig polynomial Pv,w(q). An anal-
ogous formula holds for products of the form C̃w(q)C̃s(q). It is easy to see that µ(v, w) = 0 unless
ℓ(w)− ℓ(v) is odd. Furthermore we have the following.
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Lemma 3.3 We have C̃s(q)C̃w(q) = C̃sw(q) (C̃w(q)C̃s(q) = C̃ws(q)) if there is no v < w which satisfies
sv < v (vs < v) and µ(v, w) > 0.

We may simplify Lemma 3.3 when w avoids the patterns 3412 and 4231: in this case we have
Pv,w(q) = 1 for all v ≤ w and we may therefore restrict our attention to v satisfying ℓ(w)− ℓ(v) = 1.
This simplification then allows us to find 23 45312-avoiding elements of S6 of the forms sw and ws,
with w avoiding the patterns 3412 and 4231, such that we have

C̃s(q)C̃w(q) = C̃sw(q) or C̃w(q)C̃s(q) = C̃ws(q). (13)

Let Z1 denote this subset of S6.

Proposition 3.4 For all u ∈ Z1, there is a planar network G(u) with βq(G(u)) = C̃u(q).

Proof. By Theorem 2.2 and the definition of Z1, G(u) is G(s) ◦G(w) or G(w) ◦G(s). □

For example, consider several star networks formed by extending zig-zag networks,
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The first of these is G(341652), which is G(s2) concatenated with the zig-zag network G(314652).
When w in (12) belongs to Z1, we have deg(Pv,w(q)) ≤ 1 for all v ≤ w. This allows us to simplify

Lemma 3.3 by restricting our attention to v satisfying ℓ(w) − ℓ(v) ∈ {1, 3}. This simplification then
allows us to find 20 45312-avoiding elements of S6 of the forms sw and ws, with w ∈ Z1, such that
we have (13). Let Z2 denote this subset of S6.

Proposition 3.5 For all u ∈ Z2, there is a planar network G(u) with βq(G(u)) = C̃u(q).

Proof. By Theorem 2.2 and the definition of Z2, G(u) is G(s) ◦G(w) or G(w) ◦G(s). □

For example, the second network in (14) is G(452631) = G(342651)◦G(s4)◦G(s3), and G(342651)
is a zig-zag network. Continuing in this way, we define subsets Zk, k = 3, 4, of S6 to consist of those
permutations sw or ws for which we have w ∈ Zk−1 and (13).

Proposition 3.6 For all u ∈ Z3 ∪ Z4, there is a planar network G(u) with βq(G(u)) = C̃u(q).

For example, the third and fourth networks in (14) are G(645231) and G(562341). This now yields
planar networks G(u) for all 45312-avoiding permutations u ∈ S6 except for 365241, 436512, 465132,
632541, and 653421. But each of these remaining permutations factors as s[a,a+2]w or ws[a,a+2] for
some a ≤ n− 2 and with w avoiding the patterns 3412 and 4231, such that we have

C̃ws[a,a+2]
(q) = C̃w(q)C̃s[a,a+2]

(q) or C̃s[a,a+2]w(q) = C̃w(q)C̃s[a,a+2]
(q). (15)

Call this set of permutations Z5.

Proposition 3.7 For all u ∈ Z5, there is a planar network G(u) with βq(G(u)) = C̃u(q).
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Proof. (Idea) By Theorem 2.2, the definition of Z5, and a short argument comparing the ◦ and •
operations, G(u) is G(s[a,a+2]) •G(w) or G(w) •G(s[a,a+2]) for some a. □

For example, the fifth star network in (14) is G(653421) = G(s[1,3]) • G(365421). We now have

graphical representations (omitted) for {C̃w(q) |w ∈ S6 avoids the pattern 45312}.

Theorem 3.8 For all w ∈ S6 avoiding the pattern 45312, there is a star network G satisfying βq(G) =
C̃w(q).

Proof. By Theorems 2.1 and 2.3, we have a network G for all permutations avoiding the patterns
listed in those theorems. By Theorem 3.2 we have a network G for all 45312-avoiding permutations
w ∈ S6 satisfying w1 = 1 or w6 = 6. Now from the remaining elements of S6, restrict attention to
those avoiding the pattern 45312 and partition them into equivalence classes of the form (11). Using
(12) and Lemma 3.3 we find that each equivalence class has a representative belonging to the sets
Z1, . . . , Z5. Now Propositions 3.4 – 3.7 give the desired result. □

It would be interesting to find an efficient procedure which gives the star networks in Theorem 3.8,
and to generalize this procedure to n > 6.

Problem 3.9 Given w ∈ Sn such that C̃w(q) can be graphically represented by a star network,
explain algorithmically how to produce one such network.
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