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We show that for each permutation w containing no decreasing subsequence of
length &, the Kazhdan—Lusztig immanant Imm,(x) vanishes on all matrices
having k equal rows or columns. Also, we define two filtrations of the vector
space of immanants via products of matrix minors and pattern avoidance and use
the above result to show that these filtrations are equivalent. Finally, we construct
new and simple inequalities satisfied by the minors of totally
nonnegative matrices.
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1. Introduction and preliminaries

The Kazhdan-Lusztig basis {C(¢)lw € S,} of the Hecke algebra H,(q), originally
introduced in [14], has seen several applications in combinatorics and positivity. In [21],
the authors define the Kazhdan—Lusztig immanants via the Kazhdan—Lusztig basis and
obtain various positivity results concerning linear combinations of products of matrix
minors. These results illuminate inequalities [10, Theorem 4.6] satisfied by the minors
of certain matrices [2,20,23]. In addition, [21, Theorem 9] implies inequalities [15, Theorem
10] satisfied by certain symmetric functions. The inequalities in turn are used in [15] to
revolve several conjectures in Schur positivity. In this article, we further develop algebraic
properties of the Kazhdan—Lusztig immanants and apply these immanants to obtain
additional positivity results.

Fix n e N and let x=(x;);<; /<, be a matrix of n* variables. For a pair of subsets
L J C [n]=q4er{l, ..., n} with |I| = |J|, define the (/, J)-minor of x, denoted A; ,(x), to be the
determinant of the submatrix of x indexed by rows in / and columns in J. We adopt the
convention that the empty minor Ay »4(x) is equal to 1. An n x n matrix A4 is said to be
totally nonnegative (TNN) if every minor of A is a nonnegative real number. A polynomial
p(x) in n* variables is called totally nonnegative if whenever A=(a;j)1<ij<n 1s a totally
nonnegative matrix, p(A4) =4er p(ai1,...,an,) 15 @ nonnegative real number. When taken
together, results in [3,4,13,16,17,29] give a graph theoretic characterization of totally
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nonnegative matrices which is used in [20] to construct several examples of totally
nonnegative polynomials.

Let H denote the infinite array (h,_;); ;> 1, where /; denotes the complete homogeneous
symmetric function of degree i [25]. Here we use the convention that ;=0 whenever i < 0.
A polynomial p(x) in n? variables is called Schur nonnegative (SNN) if whenever K is an
n x n submatrix of H, the symmetric function p(K) is a nonnegative linear combination of
Schur functions. By the Jacobi identity, the determinant is a trivial example of an SNN
polynomial.

Let S, denote the symmetric group on n letters. For i€ [n— 1], let s; denote the
adjacent transposition in S, which is written (i, i 4 1) in cycle notation. For a fixed w € S),,

call an expression s;,, ..., s; representing w reduced if € is minimal. In this case, define the
length of w, denoted £(w), to be £. Let w, denote the long element of S, which has one line
notation n(n — 1),..., 1. Define (strong) Bruhat order to be the partial order < on S,, given

by u<v if and only if every reduced expression for v contains a subsequence (not
necessarily contiguous) which is equal to u. Bruhat order on S, has the identity
permutation e as a unique minimal element, w, as a unique maximal element, and is a
graded poset with rank function given by the length defined above.

For ¢ a formal indeterminate, define the Hecke algebra H,(q) to be the C[g'/?,¢~"/?] -
algebra with generators Ty,,..., T, , subject to the relations

T, =(q— DT, +q. fori=1,....n—1,
Ty T, Ty, = T,T,T,, ifl|i—jl=1,
Ty T, =TT, if |i—j] =2
For w € S,, define the Hecke algebra element 7', by
Tv=Ts,.... Ty,

where s;,,...,s;, is any reduced expression for w. The algebra elements T, where w ranges
over S,, form a basis for H,(q). Specializing at ¢=1, the map T,+>s; induces an
isomorphism between H,(1) and the symmetric group algebra C[S,].

For any i € [n — 1], it is easy to see that the element T, is invertible in H,(q) and that
T, "= (1/g)(Ts, — g + 1). Therefore, any basis element T, is also invertible in H,,(q) and we
can define an involution D of H,(g) by D(¢'/*)=¢ " and D(T,,) = Tl;_‘]. Under the g =1
specialization which identifies 7,(1) with C[S,], the involution D reduces to the identity
map.

The Kazhdan—Lusztig polynomials P, (g) introduced in [14] can be defined in terms of
bases of H,(g) which are fixed pointwise by the involution D. More specifically, we have
the following result.

LemMma 1 There exists a unique family of polynomials {P,(q)} in Z[q] indexed by ordered
pairs of permutations (u,v) € S2 satisfying the following conditions.

(1) P,(q)=0 unless u<vy in Bruhat order.

(2) The degree of P, ,(q) is at most equal to (£(v) — €(u) — 1)/2.

(3) Pulq)=1 for any u € S,.

4) For any veS,, the  element  ClJq) of H,q)  defined by
Cl(q) = q~"V/% x Pleasecheckbreaky", ., P,.(q)T, is fixed by D.

u<v
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The algebra elements

Clq) = Purlg)g " T, (1)

u=<vy
which appear in the above lemma form a basis of H,,(¢q) called the Kazhdan—Lusztig basis. In
our present case (type A), we also have that the polynomials P, ,(¢) have nonnegative
coefficients. With property 2 of the above Lemma in mind, we define a function
w: Sy x S, — C by p(w,v) = [@“OI"D1p (). That is, p(w, v) is the coefficient of the
maximum possible power of ¢ in P, ,(¢). Notice that p(w, v) = 0 whenever £(w) — £(v) is even.

Recall that a preorder < on a set X is a binary relation on X which is transitive and
reflexive, but need not be antisymmetric. That is, there may be distinct elements x and y in
X satisfying x <y <x. Given X and <, we have an equivalence relation defined on X via
x~y if and only if x<y<x. Now < induces a partial order <, on the set X/~ of
equivalence classes given by [x] <, [y] if any, only if for any, elements x" € [x] and )’ € [y]
we have that x' <y’

Specializing again to ¢ =1, the elements {C[(1)|v € S,,} form a basis for the symmetric
group algebra C[S,], which is also called the Kazhdan—Lusztig basis. In [14] this basis is
used to define a preorder <; r on S,, whose definition we recall here. First define a binary
relation <}, on S, by u <}, v if and only if there exists an i € [n — 1] such that C/(1)
appears with nonzero coefficient in the expansion of either s;C/(1) or U,x(x) in the
Kazhdan—Lusztig basis of C[S,]. Let <, be the transitive closure of the relation </, 4.
That is, u <, g v if and only if we have a chain u = w; <5 ... <} wx = v. The preorder
<rr is called the two-sided Kazhdan—Lusztig preorder and it, along with its one-sided
analogs, are of great interest in the representation theory of S,,. The equivalence classes on
S, induced by the preorder <;z are called two-sided Kazhdan—Lusztig cells.

A polynomial p(x) in n* variables is called an immanant if it belongs to the C—linear
span of {xy,1) - Xuuww|w € Sy}. Denote the vector space of immanants by Z,(x).
Following [21], for w € S, define the v-Kazhdan—Lusztig immanant by

Immv(x) = Z (—1)Z(”‘)*@(V)Pwow,wov(l)xl,w(l) s Xpw(n)- (2)

def weS,

In the special case that v is the identity element e of S, we have that Imm,(x) = det(x).
Following [26], define the more general f-immanant for any function f: S, — C by

Imm/(x) = ZJ‘(W)XI,W(I) © Xnw(n).

weS,

Typical choices for finclude an irreducible character of, or more generally any class
function on, the symmetric group S,,.

There exists a certain duality between the Kazhdan—Lusztig basis and the
Kazhdan—-Lusztig immanants. To state this precisely, for any permutation v € S, let
fv: S, — C be the function which defines the v-Kazhdan-Lusztig immanant. That is,
f‘,(w)=(—1)‘7(”’)*l(")waov(1). We extend f, to a function C[S,] - C by linearity.
With this definition, we have that

fv(C)i(l)) = ‘Sv,w, (3)
where C|(1) is the Kazhdan—Lusztig basis element corresponding to w [21].

It follows from Lemma 1 and the fact that the Kazhdan-Lusztig polynomials
have nonnegative coefficients in type A that the expression (—1)Z(”’)%(”)Pwow,wov(1) is
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nonzero if and only if v<w in the Bruhat order and that P, ., .(1)=1. Thus,
the transition matrix between the set {Imm,,(x)|w € S,} and the natural basis of immanants
{XUwty - XnwyIw € Sy} is upper triangular with 1’s on the diagonal and the Kazhdan-
Lusztig immanants form a basis for the vector space of immanants. The Kazhdan—Lusztig
immanants are both TNN and SNN and various examples of TNN and SNN polynomials
can be constructed by studying the cone generated by the Kazhdan—Lusztig immanants
[21]. Moreover, when w is 321-avoiding, the Kazhdan—Lusztig immanant Imm,,(x) satisfies
a natural generalization of Lindstrom’s Lemma [20].

2. Filtration equality

To begin, we define two filtrations of the vector space 7 ,(x). The first of these is defined
using complementary products of matrix minors in the spirit of Désarménien et al. [6] and
the second is defined via Kazhdan—Lusztig immanants.

Given a tableau 7, write sh(7') for the shape of the partition corresponding
to T. Define the size of T to be the integer of which sh(7') is a partition. 7 is injective if
the numbers 1,2,...,n each appear exactly once in 7, where T has size n. T is called
semistandard if the numbers in 7" weakly increase across rows and strictly increase down
columns, and 7' is called standard if it is both injective and semistandard.

Following Désarménien et al. we define a bitableau (U:T) to be an ordered pair
of tableaux (U, T') such that U and T have the same shape. A bitableau is called injective,
semistandard, or standard if both of its entries have the corresponding property. Define
the shape of a bitableau (U:T'), written sh(U:T'), to be either sh(U) or sh(7"). Define the
size of (U:T) similarly.

Given any bitableau (U:T) of size n such that the entries of U and T are drawn from
the set [n], we may define an element of the polynomial ring C[xy,...,X,,] as follows.
Suppose that the columns of U and T, viewed as subsets of [#] are [, ..., [ and Jy,. .., J,
respectively. Then, the product of minors

A[l’Jl(X) e A[k’_]k(x)

is an element of C[x, ..., X;]. We denote this polynomial by (U:T)(x), and think of it as
the bitableau (U:T) evaluated on the set of variables x. We may also refer to the
polynomial (U:T)(x) as a bitableau. While it is not in general true that an arbitrary
bitableau (U:T)(x) with entries drawn from [r] is an immanant on the variable set x, it is
easy to see that (U:T')(x) is contained in Z,(x) if and only if (U:T) is injective. In this case,
the above minor product is a complementary product of minors, i.e., we have that
11 Lﬂ--~LﬂIk=J1 L*JH-H'JJ](:[I’I].

Désarménien et al. [6, Theorem p. 68] showed that semistandard bitableaux
form a basis of C[xyy,...,Xx,]. Restricting to standard bitableaux and the subspace
Z,(x), this naturally leads to our first filtration of Z,(x). Given k € N, define U, x(x) to be
the C -linear span of all injective bitableau (U:T)(x), where |(U:T)| =n and the first part
of sh(U:T) is < k. That is, U, x(x) is the span of all complementary products of k (or fewer)
minors. By our definition of the empty minor Ay »4(x), it is clear that

un,l(X) - un,Z(x) c...C un,n(x) = In(x)- (4)

Thus, the sequence of spaces in (4) is a filtration of Z,(x), which we shall call the
U-filtration.
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In [20], Kazhdan—-Lusztig immanants are used to show that the dimension of U, »(x) is
equal to the nth Catalan number C,. In this article, we shall relate the dimension of U, x(x)
for arbitrary k to pattern avoidance in S,,.

For k € N, let S, x denote the set of permutations in .S, which do not have a decreasing
subsequence of length k + 1. For example, in one-line notation, S;, = {123, 213,132, 312,
231}. Notice that S, =S, for all k>n. Define V,(x) to be the linear span of all
Kazhdan—Lusztig immanants Imm,(x) corresponding to permutations w € S,;. The
obvious chain of inclusions S, | € S,2 € --- € S, gives rise to another filtration of Z,,(x)
given by V, 1(x) € V,2(x) € -+ C V,,(x) € Z,(x). Call this filtration the V filtration.

Recall that the Robinson—Schensted correspondence gives an algorithmic bijection
between S, and the set of ordered pairs of standard Young tableaux with n boxes having
the same shape. The details of this algorithm can be found, for example, in [22]. In this
paper we will be using column insertion only, so that the long element wy € S, will
correspond to (12---n, 12- - - n). In order to prove the equality of the ¢/ and V filtrations, let
us first examine the image of S, ; under the Robinson-Schensted correspondence. Let s i
be the longest element in the subgroup of S, generated by sy,..., 5.

LemmA 2 Suppose v¢ Sy k—1. Then we have v <, g S[1.x-

Proof Given any permutation w, define the pair of tableaux (P'(w), Q'(w)) to be the image
of w under the Robinson—Schensted column insertion correspondence. Let A'(w) be the
shape of these tableaux.

A well-known property of the Robinson—Schensted correspondence implies that
X (v) = A(sp1 g in the dominance order. This dominance relation in turn is known to be
equivalent, to the partial order on Kazhdan—Lusztig cells induced by the preorder <; .
Thus in the preorder <, r, every permutation in the cell of v precedes every permutation in
the cell of sp; 4. (See [1], [9, Section 1], [12, Appendix].) |

Our first main result is a generalization of the fact that the determinant vanishes on
matrices having two equal rows. This also generalizes [20, Prop. 3.14], which together with
[21] implies that Proposition 1 holds when k=2.

ProposiTION 1 Suppose A € Mat,(C) has k equal rows and let v € Sy 1. Then, Imm,(4) =0.

Proof As in [27], define the element [A4] of C[S,] by
[A] = Z Atw(l) © - Apwm)W-
weS,

Let ij <--- < i, be the indices of k rows in 4 which are equal and let U be the
subgroup of S, which fixes all indices not contained in the set {7, ..., #}. Then

> u

uelU
factors as wzp ' for some elements w, w' of S,,. Since every element w € S, factors as
w=uv for some u € U and v in an appropriate set of coset representatives, it follows that

[A4] factors as
[4] = (Z u)g(A)

uelU
= (wzp gw')g(A4)

for some group algebra element g(A4).
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Let 7 be the linear span of {C,(1)|u <pr sqi4} in C[S,]. It follows from properties of the
preorder <, that 7'is in fact a two-sided ideal in C[S,] and the set {C, (1)l <rr s; 1} Is a
basis for this ideal. Let 0:C[S,] — C[S,]/I be the canonical homomorphism. Since
zn = Cyp (1) belongs to 1, we have 6([A4]) =0.

On the other hand, by the duality of Kazhdan—Lusztig immanants and the
Kazhdan-Lusztig basis [21, Eq. 4] we have that

0([4]) = 9(2 Immw<A)C,i,<1))

weS),

- Z Imm,,(4)9(C/ (1)).

wesS),

Since 6(C;,(1)) = 0 for all permutations w <; g Sy 4, We have

0= Z Immw(A)G(Cx/t(l))’

where the sum is over all permutations w £z s, 1.6., those permutations having no
decreasing subsequence of length k. Since the elements 6(C; (1)) in this sum are linearly
independent, we must have Imm,,(A4) =0 for each permutation w having no decreasing
subsequence of length k. |

It should be noted that the obvious basis-free analog of the previous proposition fails
in general. That is, if a complex n x n complex matrix 4 has a set of m rows with rank <m-—
k and w € S, , it is not necessarily the case that Imm,(4)=0. This is because, unlike the
determinant, Kazhdan—Lusztig immanants corresponding to permutations other than 1
are not in general independent of basis, as can be readily checked.

On the other hand, by [21] we have that Imm,,-1(4) = Imm,(47) for any permutation
w and matrix 4. Here A7 denotes the transpose of the matrix 4. Since S,k 1s closed under
taking inverses of permutations, it follows that the previous proposition remains true when
the word ‘rows’ is replaced by the word ‘columns’.

Using Proposition 1 we now seek to establish a relation between the ¢/ filtration and
the V filtration.

ProposITION 2 Suppose (U:T)(x) is a generator of U,i(x). Then, there exist numbers
dy € C such that (U:T)(x) =, .5 . dyImm,,(x).

weS, k

Proof Let I,..., I and Jy,...,J; be the column sets of U and T, respectively.
The Kazhdan—Lusztig immanants form a basis for the vector space of immanants, so
we may write

A (x) -+ Ay () = Y dyImmy (x), )
wesS),
for some numbers d,, € C. We show that d,, =0 whenever w¢ S, ;.

Suppose that in Equation (5) we have d,,#0 for some permutation w¢ S, .. Let m
be the greatest index for which such a permutation belongs to S,,, and among
such elements of S, ,,\S,.u—1, let y be a Bruhat minimal element. Then, we may rewrite
Equation (5) as

A (). A ()= Y dydmmy(x) + Y dyImm,,(x) + d,Imm,(x). (6)
WES)m—1 wesS),

Wy
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By the definition of §,,, we may choose indices i < --- <1i, such that
y(iy) > -+ > Pleasecheckbreaky(i,,). Let D € Mat,(C) be the matrix obtained by replacing
all entries in the rows iy,..., I, of the permutation matrix of y with ones. Since D has
m>k+ 1 equal rows, the pigeonhole principle implies that some pair of these rows have
indices contained in one of the sets /y,...,I;. Hence, Ay, 5, (D)--- Ay, (D) =0

By Proposition 1, we have Imm,,(D) =0 for every w € S,,,,,, and by Equation (2), we have
Imm,,(D)=0 for every w £ y in the Bruhat order. Furthermore, it is easy to see that
Imm,(D) = 1. Thus, applying both sides of Equation (6) to D, we obtain 0 = d,,, a contradiction.
We conclude that d,,=0 for all w € S,,,,\S,m—1 Whenever m > k, as desired. [ |

Properties of the dual canonical basis of O(SL,(C)) imply that the coefficients d,, in
Proposition 2 are in fact nonnegative integers. In the special case k=2, results in [20,21]
give a combinatorial proof of this nonnegativity. For k arbitrary and in the special case
that w avoids the patterns 3412 and 4231 (i.e., when the Schubert variety I',, corresponding
to w is smooth), results in [24] give another proof.

The equality of the ¢/ and V filtrations now follows rather easily from Proposition 2.

THEOREM 1 The U and V filtrations of T,(x) are equal. That is, U, 1 (x) = V,x(x) for all n
and k.

Proof Proposition 2 implies that U, x(x) € V,x(x) and the linear independence of the
Kazhdan-Lusztig immanants implies that dim V,(x) = |S,x|. Recall that the RSK
correspondence implies that |.S,, 4| is also equal to the number of pairs (U, T') of tableaux of
shape A with A - n and A <k, and that the corresponding bitableaux span U, x(x). Thus
we have the desired equality. [ |

With this result in hand, we henceforth denote either of the spaces U, x(x) or V, x(x) by
Z,k(x). It may be interesting to note that the irreducible character immanants, usually
denoted Imm,(x) in the literature [27], fit very nicely into our filtration. Using [19, p. 238],
one sees that Imm, (x) belongs to the set difference Z,, 5, (X)\Z .5, —1(x).

The numbers |S, | were studied by Gessel [11] who found an expression
involving Bessel functions for the generating function »_,_, |S,|¢". The authors do not
know of a simple form of the polynomial ) ;_, |S,.4|5. Désarménien [5] has given
combinatorial interpretations for the transition matrix relating the basis of
standard bitableaux to the natural basis {x ) Xl € Su}. (See Stokke [28] for a
quantum version of this result.) It would also be interesting to investigate the transition
matrix between the bases of standard bitableaux and Kazhdan—Lusztig immanants.

Combining Theorem 1 with the characterization of the dual canonical basis in [24], we
may easily extend our results to obtain information about the full polynomial ring
Clx11, ..., xu]. Specifically, given any m € N, define an m x m generalized submatrix of the
n X n matrix x to be any matrix of the form

(Xati. 5)1<i,j<m>

where 1 <a(l) <--- <a(m) <nand 1 < b(1) <--- < b(m) < n. Define the set I',, ,, x(x) by
Ly k(x) = {Immw(y)|m eN,w e S, r}, where y ranges over all m x m generalized
submatrices of x. It has been shown in [9] and [24] that the nonzero elements of the union
U ic=0T nmi(x) (modulo det(x) — 1) are precisely the dual canonical basis elements of the
coordinate ring O(SL,(C)). In analogy with our definition of V,;(x), define
V() = spang(Tpm 1(x)) In analogy with the U filtration, define U, ,,,(x) to be the
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span of all semistandard bitableau (U: T')(x) of size m and such that U and T have entries
in [n]. By specializing Theorem 1 to the case where some rows and columns of x are equal,
we get the following.

CoroLLARY 1 For all positive integers n, m, k we have that U, ,, ,(x) =V, ().

3. Products of immanants

Recalling that the determinant is the Kazhdan—Lusztig immanant corresponding to the
identity permutation, we see that the problem of expanding bitableaux on x in the basis of
Kazhdan—Lusztig immanants {Imm,(x)|w € S,} is a problem of multiplying together
certain Kazhdan—Lusztig immanants of submatrices of x and expanding the result in the
Kazhdan—-Lusztig immanants basis. In this section we consider the more general situation
of analysing these expansions where the immanants in the product do not all necessarily
correspond to the permutation 1.

Given an n x n matrix x=(x;;) and subsets /, J of [n], define the I, J submatrix of x
to be

X1J ;f(xi,j)iel,je-/-

Assuming that |I|=|J| and defining I=[n]\L,J =[n]\J, one sees immediately that
any product of immanants of x;; and x;; is an immanant of x. Moreover, one may
use properties of the dual canonical basis of to show that a product of Kazhdan—Lusztig
immanants of such submatrices expands with nonnegative coefficients in the
Kazhdan-Lusztig immanant basis of Z,(x). Combinatorial interpretations of these
coefficients have been given in [20,21] when the two immanants are minors.
These results (or alternately Theorem 1) show that a product of two complementary
minors belongs to Z, »(x). More generally, we have the following result which states that in
the expansion of a product Imm,(x;,)Imm,(x;7) in terms of the Kazhdan-Lusztig
immanant basis of Z,(x), the immanants appearing with nonzero coefficient are indexed by
permutations whose longest decreasing subsequences are bounded in terms of « and v.

COROLLARY 2 Given index sets I, J with |I|=|J| =k and permutations u € Si.q,V € Sy—_i.p>
then the product Imm,(x;)Imm,(x; ;) belongs to I, 44p(x).

Proof Since Imm,(x;,) belongs to Zy,(x5,J), it is equal to a linear combination
of products of at most ¢ minors of x, ;. Similarly, Imm, is equal to a linear combination of
at most b minors of x; ;. By definition, the product of these linear combinations belongs to
In,a+b(x)~ u

Note that a direct proof of Corollary 2 in terms of the V filtration would have involved
the identification of various sums of products of Kazhdan—Lusztig polynomials, while
Corollary 1 enables us to give a very simple proof in terms of the I/ filtration.

No simple formula is known for the expansion of a general product of the form
Imm, (x7,)Imm,(x} ;) in terms of the Kazhdan—Lusztig immanant basis of Z,(x). However,
the following result gives such an expansion in the special case that the submatrices x;,
and xj; are related antidiagonally within x. That is,

3 @)

I =[k] J=h—-k+1,....n}
I={k+1,....n} J=[n—k].
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THEOREM 2 The Kazhdan—Lusztig immanant Imm,(x) factors as a product of Kazhdan—
Lusztig immanants of submatrices of x if and only if there exists an index k < n such that
{wk+1),...,w(n)} C[k]. In this case we have

Imm,,(x) = Imm,(x7,)Imm,(x} ),
where I, 1, J, J are defined by (7) and u € Sk, v € S,_i are defined in terms of the longest
elements wo, wy, wy of Sy, Sk, Sp—k by wwo = uwy @ vwy.

Proof To economize notation, we shall write ¢,,, = (—l)g(””)*é(”’) and
Q. = Pleasecheckbreak Py, yow = P> fOr permutations w, w’ € S, and the corre-
sponding longest eclement wy € S,,. Suppose that there exist u € Sk, v € S,_; satisfying
wwo = Pleasecheckbreakuw;, @ vw;. Then we have

Immw(x) - Z 6\«u,tQ\«u,t(l)xl,,(1) e xn,t(n)~ (8)

1> (uwy @vwg)wo

Note that ¢ satisfies ¢ > (uw; @ vwg)wy if and only if we have 1 = (ywy @ zwy)wy for y>u
and z >v. In this case, the one-line notation for ¢ is

(n—k+y(1))---(n=k+yk) - z(1)---z(n — k)

and we have

€ = €4, y€rz,

Owi(l) = Q(uwé@vwg o, (}f'u{)ea:wg)wo(l)
= P (W @zwy), () @vwy) ( 1 )
= Piywiaory ) P v (1)
- Qu,y(l)Qv.z(l)-

Thus, equation (8) becomes

Immw(x) = Z Eu,yGV,zQu,y(1)Qv,z(l)xl,n—k-k—)f"(l) < Xen—k4y(m) Xk+1,2(1) * * * Xn,z(n—k)
yzu
=y

= lmmu(xl,l)lmmv(xl_j)a

where, I, I, J, and J are as in 7.
Now suppose that Imm,(x) factors as a product of Kazhdan-Lusztig immanants
of submatrices of x

Imm,,(x) = Imm,(x7,/)Imm,(x} ;) ©)

in at least one way, but that for no such factorization do the permutations u, v
satisfy the required identity. It follows that the sets 7, I, J, J do not satisfy (7).
Assume that we have named the index sets in all factorizations (9) so that we have 1€ I

Choose a particular factorization and let m be the smallest element of I. Suppose
that there exists an index i € I such that I > m and w(i) > w(m). Transposing the letters in
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the i-th and m-th positions of w, we obtain a permutation greater than w in the Bruhat
order. Thus the corresponding monomial

X1Lw(1) = Xiw(m) = Xmow(i) *°* Xnw(n)

appears with nonzero coefficient in Imm,,(x). Observe however that this monomial does
not appear in the product Imm,(x;,)Imm,(x;;) because the variables x; ., and x,, .
appear in neither of the submatrices x; s, x; 7. Thus the product of immanants is not equal
to Imm,,(x), and we deduce that m =k + 1 and that /=[m — 1].

Now we claim that the sets 7, J, I, and J satisfy the equations J = {n + 1 — i|i € I} and
J={n+1- i/|i/ e I}. If this is not the case, then the monomial X1y ...X1, corresponding
to wq appears with coefficient zero on the right-hand side of (9), and with coefficient £1 on
the left-hand side, a contradiction. From this claim it follows immediately that the sets 7, I,
J, J satisfy (7) and that the permutations u, v satisfy wwy = (uwy @ vwyp). |

We conclude that the existence of any factorization of the form (9) implies the existence
of one which satisfies the conditions of the theorem.
To illustrate the theorem with an example, let us factor Immsgssn(x). Writing

(365421)wy = 412365 = 4123 ® 21 = (1432)w) @ (12)w]).

where w;, and wj are the longest elements in S4 and S, respectively, we have that
Imm3esq12(x) = Imm432(X1234,3456) IMM 1 2(X56,12).-

In the event that x;; and x;; are not antidiagonally related within x, the expansion of
Imm,,(x;)Imm,(x; ;) in the Kazhdan—Lusztig immanant basis of Z,(x) is in general more
delicate. It is easy to see that this expansion has the form

Imm,,(x7/)Imm,(x;;5) = Z d,Imm,(x)

y=w

where w is permutation whose matrix P has submatrices P;, and P;; equal to the
permutation matrices of u and v. The problem of determining the coefficients d, can in
principle be solved using [21, Prop. 6.3]. Specifically, for each i € [n — 1] let P; be the
permutation matrix of the adjacent transposition s;. For w € S, the above result states
that

—Imm,,(x) if sw > w,
Imm,,(Px) = )
Imm,,(x) + Immy,(x) + > - . w(w, 2)Imm.(x) if sw>w
—Imm,,(x) if ws > w,
Imm,,(xP) = )
Imm,,(x) + Imm,,(x) + > o, u(w, 2)Imm.(x) if ws > w.
It is clear that some pair of sequences P; , - - -, P, P}, - - - P;, of the above form have the
property that the submatrices corresponding to x; s and x;j5in P, -+, Py xP;,---, P;, are

in block antidiagonal position. Therefore, the above equation may be used to inductively
determine the expansion of Imm,(y)Imm,(z) in the basis of Kazhdan—Lusztig immanants
of x itself. The efficiency of this method is bounded by our ability to compute the u
function.

The above equation also has application to the 0, 1-conjecture. It had been suspected
that the u(w, z) was equal to either 0 or 1 for any permutations w, z € S,,. This conjecture
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was disproven by McLarnan and Warrington [18], but the above equation implies that this
conjecture is true in some cases.

ProposITION 3 Let w and z be permutations in S, and suppose that w is contained in S, ;.
Suppose also that there exists a simple transposition s; such that either s;,w < w and s;z > z or
ws; < w and zs; > z. Then, u(w, z) is equal to either 0 or 1.

Proof Combine Proposition 3.12 of [20], the equivalence of the Kazhdan—Lusztig
immanants corresponding to permutations in S, , and Temperley—Lieb immanants proven
in [21], and the linear independence of the Kazhdan—Luszing immanants.

4. Total nonnegativity and Schur nonnegativity

The problem of deciding the total nonnegativity or Schur nonnegativity of an immanant is
not easy. In particular, there is no known algorithm to do this, unless we restrict our
attention to Z,, [20, Theorem 4.5]. Nevertheless, it is possible to state some simple
sufficient conditions which apply to immanants which are differences of products of
minors.

Define the poset P, on products of (at most) kK complementary minors by

Apg (X)) A (%) = Ap g (x) - Ag g ()

if and only if the difference Ay s (x)- -+ Ay s (x) = Ay g (x) -+ Ay (x) is TNN.

In [23, Theorem 3.2] and [20, Proposition 4.1, Theorem 4.2, Cororollary 4.6],
the authors give several simple combinatorial characterizations of P,,. These
characterizations imply that this poset has a unique maximal element A, (x)A, ,(x)
given by /={1, 3, 5,...}, J={2, 4, 6,...} and that the determinant Ap; ;(x)Ag, 4(x)
is among the n minimal elements. In [21] the authors show that the combinatorial
tests in [20] provide sufficient conditions for an immanant in Z,,(x) to be SNN.
Therefore, whenever Aj(x)Ay jy(x) < Ag(X)Ag,(x) in P,, we also have that
Ag r(X)A g, (x) —A; Ax)Ap y(x) is SNN. It is unknown whether the converse of
this statement is true.

In [7,8,21], Drake et al. study the poset P, ,\P, 1 of products of » nonempty minors,
that is, permutation monomials X{ (1) - - - Xp(m)» W € Sp. This poset is isomorphic to (the
dual of) the Bruhat order, with unique maximal element x; ; - - - X,, 5, and unique minimal
element xy, - - - x,,,1. The comparison xi 1y - -+ Xpwm) < X1,(1) - - - Xn(n) 15 €quivalent to each
of the following statements.

(1) The difference X1u(1) - - Xnun) — X1w(1) - * - Xnw(my 13 TNN.

(2) The difference X1 " Xnwm) — X1Lw(l) ** * Xnw(n) 1s SNN.

(3) The difference x1,y(1) - - - Xp,0(1) — X1.0(1) - * - Xn(n) 1S @ NONNEgative linear combination
of Kazhdan-Lusztig immanants.

(4) v<w in the Bruhat order.

In analogy to some of the above results we show that P,, has a unique maximal
element for arbitrary k, and that certain comparable elements of P, have differences
which are SNN as well as TNN.

Lemma 3 Let (Iy,...,1,) and (Jy, ..., J),) be sequences of sets satisfying |I;| =|J;| for all i,
and LW W[, =Ji1W..-WJ,=[n]. Fix indices k<t and let a; < --- <, be the
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elements of I U Iy, and By < --- < B, be the elements of Ji U J;. Define two more sequences
of sets (Iy,..., I}) and (Jy,...,Jp) by

{ay,03,...) ifi=k, ), 05,...} ifi=k,
I =1 {o,04,...} ifi=4¢, Jo={{h,of,...} ifi=4¢,
I; otherwise, J; otherwise.

Then the immanant Ay s (x)--- Ay s (X) = Ap (%) - -+ Ag_y (x) is totally nonnegative
and Schur nonnegative.

Proof This difference is
Ap g (x) - Ap g (x)

2Ny (DA, 7 (x) — A A
g (A () (Ar, s ()AL (x) = Ap g ()AL, 5,(X)),

which is TNN and SNN by [21, Theorem 5.2] and [20, Propostion 4.6].
Like P, and P, ,\P, ,—1, each poset P, has a unique maximal element.

TueorReM 3 Let (1y,...,1,) and (Jy,...,J,) be sequences of sets as in Lemma 3, and define
a third sequence (Ky,...,K,) by
K; = {i € [n]|i = j(modp)}.
Then the immanant Ak, g, (X)--- Ak, k,(X) — Ap 5, (X) - Ag 5. (X) is totally nonnegative
and Schur nonnegative. [ |

Proof  Applying several iterations of Lemma 3 to the sets /y,...,1,, Ji,...,J,, we obtain
the desired result.

This theorem yields an easy method of constructing families of TNN and SNN
polynomials.

CoroLLARY 3 Let k<¢ and define the sequences of sets (/,...,1L), (Ji,...,Je) by
Ii=lie [n]|i = j(modk)}, J;={ie [n]|i = j(mod ¢)}. Then the immanant
Ay, 5, (x),-- -, Pleasecheckbreak A, j,(x) — Ay, j,(x), -+, Ay 1, (X) is totally nonnegative and
Schur nonnegative.

For example, we may apply the immanant
A14’14(X)A25’25(X)A3’3(X) — A135,135(X)A24,24(X) to the Jacobi-Trudi matrix

hy  hio hu hio his
he h: hg hy hy
ha hs he hy  hg
hy hy hs he Iy
U b hy

to deduce that the symmetric function

S(11,6)/25(9,4)/256 — S(11,7,4)/(2,1)5(8,6)/1

is SNN.
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Not much is known about the posets P, in general. Obviously we have that
P,y C P,y C--- C P,y By Theorem 2.6, P, , contains a subposet isomorphic to (the dual
of) the Bruhat order on S,,. Also, it is possible to show that any element of Z5(x) is TNN or
SNN if and only if it may be expressed as a nonnegative linear combination of Kazhdan—
Lusztig immanants. In particular, this allows one to construct the poset P 5 and see that it
coincides with the analogous poset constructed by considering SNN differences. Boocher
and Froehle [2] have produced several conjectures concerning the poset P,; with
numerical evidence for the n =4 case. It would be interesting to see what P, ; looks like in
general.
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