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Abstract. We combinatorially describe entries of the transition matrices which relate
monomial bases of the zero-weight space of the quantum matrix bialgebra. This description
leads to a combinatorial rule for evaluating induced sign characters of the type A Hecke
algebra Hn(q) at all elements of the form (1 + Tsi1

) · · · (1 + Tsim
), including the Kazhdan-

Lusztig basis elements indexed by 321-hexagon-avoiding permutations. This result is the
first subtraction-free rule for evaluating all elements of a basis of the Hn(q)-trace space at
all elements of a basis of Hn(q).

1. Introduction

Define the symmetric group algebra Z[Sn] and the (type A Iwahori-) Hecke algebra Hn(q)
to be the algebras with multiplicative identity elements e and Te, respectively, generated
over Z and Z[q

1
2 , q¯

1
2 ] by elements s1, . . . , sn−1 and Ts1 , . . . , Tsn−1 , subject to the relations

(1.1)

s2
i = e T 2

si
= (q − 1)Tsi + qTe for i = 1, . . . , n− 1,

sisjsi = sjsisj TsiTsjTsi = TsjTsiTsj for |i− j| = 1,

sisj = sjsi TsiTsj = TsjTsi for |i− j| ≥ 2.

Analogous to the natural basis {w |w ∈ Sn} of Z[Sn] is the natural basis {Tw |w ∈ Sn} of
Hn(q), where we define Tw = Tsi1· · ·Tsi` whenever si1· · · si` is a reduced (short as possible)

expression for w in Sn. We call ` the length of w and write ` = `(w). We define the one-line
notation w1 · · ·wn of w ∈ Sn by letting any expression for w act on the word 1 · · ·n, where
each generator sj acts on an n-letter word by swapping the letters in positions j and j + 1,

sj ◦ v1 · · · vn = v1 · · · vj−1vj+1vjvj+2 · · · vn.
It is known that `(w) is equal to inv(w), the number of inversions in the one-line notation

w1 · · ·wn of w. The specialization of Hn(q) at q
1
2 = 1 is isomorphic to Z[Sn]. Two partial

orders arising in the study of Sn are the Bruhat order ≤ and the weak order ≤W defined by

(1.2)
u ≤ v if every reduced expression for v contains a reduced expression for u,

u ≤W v if some reduced expression for v ends with a reduced expression for u.

In addition to the natural bases of Z[Sn] andHn(q), we have the (signless) Kazhdan-Lusztig
bases [8] {C ′w(1) |w ∈ Sn}, {C ′w(q) |w ∈ Sn}, defined in terms of certain Kazhdan-Lusztig
polynomials {Pv,w(q) | v, w ∈ Sn} in N[q] by

(1.3) C ′w(1) =
∑
v≤w

Pv,w(1)v, C ′w(q) = q−1
w

∑
v≤w

Pv,w(q)Tv,

Date: June 26, 2018.
1



2 RYAN KALISZEWSKI, JUSTIN LAMBRIGHT, AND MARK SKANDERA

where we define qw = q
`(w)
2 . A modification {qwC ′w(q) |w ∈ Sn} of the second basis belongs

to spanN[q]{Tw |w ∈ Sn}.
Representations of Z[Sn] and Hn(q) are often studied in terms of Z- and Z[q

1
2 , q¯

1
2 ]-linear

functionals called characters. The Z-span of the Sn-characters is called the space of Sn-
class functions, and has dimension equal to the number of integer partitions of n. Two
well-studied bases are the irreducible characters {χλ |λ ` n}, and induced sign characters

{ελ |λ ` n}, where λ ` n denotes that λ is a partition of n. The Z[q
1
2 , q¯

1
2 ]-span of the

Hn(q)-characters, called the space of Hn(q)-traces, has the same dimension and analogous
character bases {χλq |λ ` n}, {ελq |λ ` n}, specializing at q

1
2 = 1 to the Sn-character bases.

In each space, the Kostka numbers {Kλ,µ |λ, µ ` n} ⊆ N describe the expansion of induced
sign characters in the irreducible character basis, just as they describe the expansion of
elementary symmetric functions in the Schur basis of the space of homogeneous degree n
symmetric functions,

ελ =
∑
µ`n

Kµ>,λχ
µ, ελq =

∑
µ`n

Kµ>,λχ
µ
q , eλ =

∑
µ`n

Kµ>,λsµ.

(See, e.g., [13].) Here µ> denotes the transpose or conjugate of the partition µ.
The above characters θ ∈ {χλ, ελ} of Sn satisfy θλ(z) ∈ Z for all z ∈ Z[Sn] and λ ` n.

An ideal combinatorial formula for such evaluations would define sets R, S so that we have
θ(z) = (−1)|S||R|, or simply θ(z) = |R| if θ(z) ∈ N. For z in the natural or Kazhdan-Lusztig
basis of Z[Sn] we have the following results and open problems.

θ
Do we have

θ(w) ∈ N
for all w ∈ Sn?

Can we interpret
θ(w) as (−1)|S||R|

for all w ∈ Sn?

Do we have

θ(C ′w(1)) ∈ N
for all w ∈ Sn?

Can we interpret
θ(C ′w(1)) as |R|
for all w ∈ Sn?

ελ no yes yes open

χλ no open yes open

Of the four combinatorial interpretations asked for in the above table, the only one which
is known may be described as follows. Let λ = (λ1, . . . , λr). Then we have

ελ(w) = (−1)|S(w)||R(w, λ)|,

where S(w) is the set of inversions in the one-line notation of w and R(w, λ) is the set
of labelings of the cycles of w by 1, . . . , r such that exactly λi letters are contained in the
cycles labeled i (cf. formula for M(f, p)λ,µ in [1, p. 9]). For example, consider the partition
λ = (5, 4) ` 9 and permutation w = 234167589 ∈ S9 with inv(w) = 5. Writing w in cycle
notation as (1, 2, 3, 4)(5, 6, 7)(8)(9), we may label the cycles in three ways so that λ1 = 5
letters belong to cycles labeled 1 and λ2 = 4 letters belong to cycles labeled 2:

(1, 2, 3, 4) (5, 6, 7) (8) (9)

1 2 1 2,
1 2 2 1,
2 1 1 1.

Thus we have ελ(w) = (−1)53 = −3.
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The number χλ(w) may be computed by the well-known Murnaghan-Nakayama algorithm
but has no conjectured expression of the type stated above. (See, e.g., [13].) Interpretations
of ελ(C ′w(1)) and χλ(C ′w(1)) are not known for general w ∈ Sn, but nonnegativity follows
from work of Haiman [6] and Stembridge [15]. In the special case that w avoids the patterns
3412 and 4231, interpretations of these numbers are given in [4, Thm. 4.7]. We say that
w ∈ Sn avoids the pattern p1 · · · pk ∈ Sk if no subsequence (wi1 , . . . , wik) of w1 · · ·wn consists
of letters appearing in the same relative order as p1 · · · pk.

The characters θq ∈ {χλq , ελq} of Hn(q) satisfy θq(z) ∈ Z[q] for all z ∈ Hn(q) and λ ` n. An
ideal combinatorial formula for such evaluations would define sequences (Sk)k≥0, (Rk)k≥0 of
sets so that we have θq(z) =

∑
k(−1)|Sk||Rk|qk, or simply θq(z) =

∑
k |Rk|qk if θq(z) ∈ N[q].

For z in the natural basis or modified Kazhdan-Lusztig basis of Hn(q) we have the following
results and open problems.

θq

Do we have

θq(Tw) ∈ N[q]

for all w ∈ Sn?

Can we interpret
θq(Tw) as∑

k (−1)|Sk||Rk|qk
for all w ∈ Sn?

Do we have

θq(qwC
′
w(q)) ∈ N[q]

for all w ∈ Sn?

Can we interpret
θq(qwC

′
w(q)) as∑

k|Rk|qk
for all w ∈ Sn?

ελq no open yes open

χλq no open yes open

The polynomial χλq (Tw), and therefore ελq (Tw), may be computed via a q-extension of
the Murnaghan-Nakayama algorithm. (See, e.g., [11].) However, neither of these has a
conjectured expression of the type asked for above. Interpretations of ελq (qwC

′
w(q)) and

χλq (qwC
′
w(q)) are not known for general w ∈ Sn, but results concerning containment in N[q]

follow from work of Haiman [6]. In the special case that w avoids the patterns 3412 and
4231, formulas for these polynomials are given in [4, Thms. 6.4, 8.1].

To obtain ideal combinatorial interpretations analogous to those asked for above, we will
consider the infinite spanning set of Hn(q) which consists of all elements of the form

(1.4) (1 + Tsi1 ) · · · (1 + Tsim ) = q
m
2 C ′si1 (q) · · ·C ′sim (q),

where si1· · · sim varies over all products of generators of Sn. It is easy to see that if we
arbitrarily choose one reduced expression for each element of Sn, then the n! corresponding
products (1.4) form a basis for Hn(q). Different collections of reduced expressions can yield
different bases. For z belonging to the above spanning set, we have the following results and
open problems.

θq

Do we have

θq((1 + Tsi1 ) · · · (1 + Tsim )) ∈ N[q]

for all si1· · · sim?

Can we interpret
θq((1 + Tsi1 ) · · · (1 + Tsim )) as∑

k |Rk|qk for all si1· · · sim?

ελq yes Stated in Section 5

χλq yes open
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Results concerning containment in N[q] follow from work of Haiman, since every product
of the form quC

′
u(q)qvC

′
v(q) belongs to spanN[q]{qwC ′w(q) |w ∈ Sn}. (See [6, Appendix].)

Interpretation of the polynomials ελq ((1 + Tsi1 ) · · · (1 + Tsim )) is new, and is the first result
of its kind to include evaluation of all elements of a basis of the Hn(q)-trace space at all
elements of a basis of Hn(q). Its justification depends upon the transition matrices which
relate natural bases of Drinfeld’s quantum matrix bialgebra, and an identity in this bialgebra
which was stated by Konvalinka and the third author [9, Thm. 5.4].

In Section 2 we introduce the quantum matrix bialgebra A and prove combinatorial for-
mulas for the entries of transition matrices that relate monomial bases of the zero-weight
space of A. In Section 3 we define a function σ : A → Z[q

1
2 , q¯

1
2 ] which allows us to compute

θq((1 +Tsi1 ) · · · (1 +Tsim )) for any linear function θq : Hn(q)→ Z[q
1
2 , q¯

1
2 ] in terms of a gener-

ating function in A for θq and a wiring diagram for the product si1· · · sim . In Sections 4–5 we
use the map σ to combinatorially evaluate induced sign characters of Hn(q) at all elements
of the spanning set (1.4). We finish with some open problems in Section 6.

2. Bases of the zero-weight space of the quantum matrix bialgebra

The study of quantum groups in the 1980s led to the study of algebras of functions on these
and to the related quantum matrix bialgebra A = A(n, q). A is the associative algebra with

unit 1 generated over Z[q
1
2 , q¯

1
2 ] by n2 variables x = (x1,1, . . . , xn,n), subject to the relations

(2.1)
xi,`xi,k = q

1
2xi,kxi,`, xj,kxi,` = xi,`xj,k,

xj,kxi,k = q
1
2xi,kxj,k, xj,`xi,k = xi,kxj,` + (q

1
2 − q¯

1
2 )xi,`xj,k,

for all indices 1 ≤ i < j ≤ n and 1 ≤ k < ` ≤ n. The counit and coproduct maps

ε(xi,j) = δi,j, ∆(xi,j) =
n∑
k=1

xi,k ⊗ xk,j

give A a bialgebra structure. While A is not a Hopf algebra, two Hopf algebras closely
related to it are the quantum coordinate rings of SLn(C) and GLn(C),

Oq(SLn(C)) ∼= C⊗A/(detq(x)− 1), Oq(GLn(C)) ∼= C⊗A[t]/(detq(x)t− 1),

where

(2.2) detq(x) =
def

∑
v∈Sn

(−q¯
1
2 )`(v)x1,v1· · ·xn,vn =

∑
v∈Sn

(−q¯
1
2 )`(v)xv1,1 · · ·xvn,n

is the (n × n) quantum determinant of the matrix x = (xi,j). (The second equality holds

in A but not in the noncommutative ring Z[q
1
2 , q¯

1
2 ]〈x1,1, . . . , xn,n〉.) The antipode maps of

these Hopf algebras are

S(xi,j) = (−q
1
2 )j−idetq(x[n]r{j},[n]r{i}), S(xi,j) =

(−q 1
2 )j−idetq(x[n]r{j},[n]r{i})

detq(x)
,

respectively, where

(2.3) [n] =
def
{1, . . . , n}, xL,M =

def
(x`,m)`∈L,m∈M ,

and detq(xL,M) is defined analogously to (2.2), assuming |L| = |M |. SpecializingA at q
1
2 = 1,

we obtain the commutative ring Z[x1,1, . . . , xn,n].
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A has a natural Z[q
1
2 , q¯

1
2 ]-basis {xa1,11,1 · · ·x

an,n
n,n | a1,1, . . . , an,n ∈ N} of monomials in which

variables appear in lexicographic order, and the relations (2.1) provide an algorithm for ex-
pressing any other monomial in terms of this basis. (See, e.g., [17, Lem. 2.1].) The submodule
A[n],[n] spanned by the monomials

(2.4) {xu,v =
def
xu1,v1 · · ·xun,vn | u, v ∈ Sn}

is called the zero-weight space of A and has the natural basis {xe,w |w ∈ Sn}. The relations
(2.1) imply that the monomials {xu,v |u, v ∈ Sn} satisfy

(2.5) xu,v =

{
xsiu,siv if siu < u and siv > v,

xsiu,siv + (q
1
2 − q¯12 )xsiu,v if siu < u and siv < v.

It follows that for fixed t, u, v ∈ Sn satisfying t ≤W u, each monomial xu,v belongs to∑
w N[q

1
2−q¯12 ]xt,w. In particular, since nonnegative powers of q

1
2−q¯12 are linearly independent,

there are uniquely defined polynomials {ru,v,t,w(q1) | w ∈ Sn} in N[q1] which satisfy

(2.6) xu,v =
∑
w∈Sn

ru,v,t,w(q
1
2 − q¯

1
2 )xt,w.

Some of these polynomials are identically 1 or 0.

Proposition 2.1. For fixed t, u, v ∈ Sn with t ≤W u, the polynomials {ru,v,t,w(q1) | w ∈ Sn}
in N[q1] satisfy ru,v,t,w(q1) = 0 unless w ≥ tu−1v, and ru,v,t,tu−1v(q1) = 1, i.e.,

xu,w = xt,tu
−1w +

∑
v>tu−1w

ru,w,t,v(q
1
2 − q¯

1
2 )xt,v.

Proof. By definition we have rt,v,t,w(q1) = δv,w. Thus the claim holds when u = t. Now fix t
and assume that the claim holds for `(u) ≤ `(t)+k−1, consider u of length `(t)+k ≥ `(t)+1,
and let s be a left descent of ut−1 and therefore of u. It follows that we have t ≤W su.

By (2.5) and the linear independence of powers of q
1
2 − q¯12 , we have

(2.7) ru,v,t,w(q1) =

{
rsu,sv,t,w(q1) if sv > v,

rsu,sv,t,w(q1) + (q1)rsu,v,t,w(q1) if sv < v.

Suppose that w 6≥ tu−1v. Since t(su)−1sv = tu−1v and `(su) = `(t) + k − 1, we have by
induction that rsu,sv,t,w(q1) = 0 in both cases of (2.7). Furthermore since tu−1s < tu−1, we
have by [3, Lem. 2.2.10] that tu−1sv > tu−1v when sv < v. Thus in the second case above,
the condition w � tu−1v also implies that w � tu−1sv, which by induction implies that
rsu,v,t,w(q1) = 0. Therefore we have ru,v,t,w(q1) = 0 unless w ≥ tu−1v.

Setting w = tu−1v in (2.7) we have rsu,sv,t,tu−1v(q1) = 1 in both cases. When sv < v we
also have rsu,v,t,tu−1v(q1) = 0 since tu−1v � tu−1sv. Therefore we have ru,v,t,tu−1v(q1) = 1. �

Corollary 2.2. For each fixed u ∈ Sn, the set {xu,v | v ∈ Sn} is a basis for A[n],[n].

Proof. Setting t = e in (2.6) and applying Proposition 2.1 we have

xu,v = xe,u
−1v +

∑
w>u−1v

ru,v,e,u−1v(q
1
2 − q¯

1
2 )xe,w.

Now ordering the monomials xu,v
(1)
, . . . , xu,v

(n!)
so that u−1v(1), . . . , u−1v(n!) is a linear exten-

sion of the Bruhat order, we have a unitriangular system of equations. �
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By the unitriangularity of the coefficient matrix in the above proof, we may extend the
statement containing (2.6).

Corollary 2.3. For for fixed t, u ∈ Sn, not necessarily related in the weak order, there are
uniquely defined polynomials {ru,v,t,w(q1) | v, w ∈ Sn} in Z[q1] which satisfy

(2.8) xu,v =
∑
w∈Sn

ru,v,t,w(q
1
2 − q¯

1
2 )xt,w.

Now we turn to the problem of combinatorially interpreting coefficients of the polynomials
{ru,v,t,w(q1) |u, v, t, w ∈ Sn} when t ≤W u. To begin, we consider a seemingly unrelated
generating function for certain walks in the weak order.

Definition 2.4. Fix permutations t, u, v, w ∈ Sn with t ≤W u, and a reduced expression
si1· · · sik for ut−1. Define Cb

u,v,t,w(si1 · · · sik) to be the set of sequences π = (π(0), . . . , π(k))
satisfying

(1) π(0) = v, π(k) = w,
(2) π(j) ∈ {sijπ(j−1), π(j−1)} for j = 1, . . . , k,

(3) π(j) = sijπ
(j−1) if sijπ

(j−1) > π(j−1) for j = 1, . . . , k,

(4) π(j) = π(j−1) for exactly b values of j for j = 1, . . . , k,

and define the polynomial

(2.9) pu,v,t,w(q1; si1· · · sik) =
∑
b

|Cb
u,v,t,w(si1· · · sik)|qb1 ∈ N[q1].

Observe that we have pt,v,t,w(q1; ∅) = δv,w. We also have the following recursive formula.

Proposition 2.5. Fix t, u, v, w ∈ Sn with t <W u, and fix a reduced expression si1 · · · sik
for ut−1. Then we have
(2.10)

pu,v,t,w(q1; si1· · · sik) =

{
psi1u,si1v,t,w(q1; si2· · · sik) if si1v > v,

psi1u,si1v,t,w(q1; si2· · · sik) + q1psi1u,v,t,w(q1; si2· · · sik) if si1v < v.

Proof. The coefficient of qb1 on the left-hand side of (2.10) is |Cb
u,v,t,w(si1· · · sik)|. Since t <W u

and si1 is a left descent for ut−1, we have that t ≤W si1u and that si2 · · · sik is a reduced
expression for si1ut

−1. Thus the coefficient of qb1 on the right-hand side of (2.10) is equal to
the cardinality of

D =
def

{
Cb
si1u,si1v,t,w

(si2· · · sik) if si1v > v,

Cb
si1u,si1v,t,w

(si2· · · sik) ∪ Cb−1
si1u,v,t,w

(si2· · · sik) if si1v < v.

We claim that the map

(2.11) π = (π(0), π(1), . . . , π(k)) 7→ (π(1), . . . , π(k))

is a bijection from Cb
u,v,t,w(si1· · · sik) to D. Clearly it is injective, since each element of

Cb
u,v,t,w(si1· · · sik) satisfies π(0) = v.
To see that the map (2.11) is well-defined and surjective, assume first that si1v > v. Then

π satisfies π(1) = si1v and we have b ≤ k−1. It follows that for b = 0, . . . , k−1, the sequence
(π(1), . . . , π(k)) satisfies the conditions
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(1′) π(1) = si1v, π(k) = w,
(2′) π(j) ∈ {sijπ(j−1), π(j−1)} for j = 2, . . . , k,

(3′) π(j) = sijπ
(j−1) if sijπ

(j−1) > π(j−1) for j = 2, . . . , k,

(4′) π(j) = π(j−1) for exactly b values of j for j = 2, . . . , k.

Thus (π(1), . . . , π(k)) belongs to Cb
si1u,si1v,t,w

(si2· · · sik). Moreover, since prepending v to any

sequence in Cb
si1u,si1v,t,w

(si2· · · sik) produces a sequence belonging to Cb
u,v,t,w(si1· · · sik), the

map (2.11) is surjective as well.
Now assume that si1v < v. Then π satisfies π(1) = si1v or π(1) = v. If π(1) = si1v, then the

sequence (π(1), . . . , π(k)) satisfies conditions (1′) – (4′) above. Otherwise it satisfies conditions
(2′) – (3′) and

(1′′) π(1) = v, π(k) = w,
(4′′) π(j) = π(j−1) for exactly b− 1 values of j for j = 2, . . . , k.

Thus the sequence (π(1), . . . , π(k)) belongs to

Cb
si1u,si1v,t,w

(si2· · · sik) ∪ Cb−1
si1u,v,t,w

(si2· · · sik).

Moreover, since prepending v to any sequence in this union produces a sequence belonging
to Cb

u,v,t,w(si1· · · sik), we again have surjectivity. �

For fixed t, u, w and reduced expression si1· · · sik as in Definition 2.4, the above initial
conditions and recursive formula allow one to compute {pu,v,t,w(q1; si1· · · sik) | v ∈ Sn} by
considering the sets

{psikt,v,t,w(q1; sik) | v ∈ Sn}, {psik−1
sikt,v,t,w

(q1; sik−1
sik) | v ∈ Sn}, . . . ,

in order. Somewhat surprisingly, these polynomials do not depend upon the choice of a
reduced expression for ut−1, although each set Cb

u,v,t,w(si1 · · · sik) does depend upon such a
choice. Also, perhaps surprisingly, these polynomials provide a combinatorial interpretation
for entries of the transition matrices relating pairs ({xu,v | v ∈ Sn}, {xt,w |w ∈ Sn}) of bases
of the zero-weight space of A.

Theorem 2.6. For t, u in Sn with t ≤W u, the polynomials {ru,v,t,w(q1) | v, w ∈ Sn} defined
in (2.6) satisfy ru,v,t,w(q1) = pu,v,t,w(q1, si1· · · sik), where si1· · · sik is any reduced expression
for ut−1.

Proof. Observe that the claimed equality holds when t = u, since

ru,v,u,w(q1) = pu,v,u,w(q1; ∅) = δv,w

by (2.8) and (2.9). Now assume the equality to hold for u and t differing in length by at
most k − 1, and consider the case that u and t differ in length by k. Let s be a left descent
of ut−1, and therefore a left descent of u.

Expanding both sides of (2.6) in terms of the basis {xt,w |w ∈ Sn} and using induction
we obtain

(2.12) ru,v,t,w(q1) =

{
psu,sv,t,w(q1; sj2 · · · sjk) if sv > v,

psu,sv,t,w(q1; sj2 · · · sjk) + q1psu,v,t,w(q1; sj2 · · · sjk) if sv < v,

where sj2 · · · sjk is an arbitrary reduced expression for sut−1. Since s is an arbitrarily chosen
left descent of ut−1, we have the desired result. �
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Using Definition 2.4 and Theorem 2.6 we compute some special cases of the polynomials
ru,v,t,w(q1).

Proposition 2.7. Fix w ∈ Sn and any generator s. We have

rws,w,e,s(q1) = rw,w,e,e(q1) = 1,(2.13)

rw,w,e,s(q1) =

{
q1 if ws < w,

0 if ws > w.
(2.14)

Proof. (2.13) follows from Proposition 2.1.
To see (2.14), consider the coefficient of qb1 in rw,w,e,s(q1) for b ≥ 0, and let `(w) = m. By

Theorem 2.6 this is equal to the number of m-step walks

π = (π(0) = w, π(1), . . . , π(m) = s)

in the weak order satisfying conditions stated in Definition 2.4. In particular, b of the
indices j ∈ {1, . . . ,m− 1} satisfy π(j−1) = π(j), while the others satisfy π(j−1) > π(j). Since
`(w) − `(s) = m − 1, the coefficient must be 0 unless b = 1. Furthermore, the coefficient
must be 0 if ws > w, equivalently s 6<W w, because in this case the shortest walk in the
weak order from w to s consists of m+ 1 steps with no repetition.

Suppose therefore that we have b = 1 and ws < w, equivalently s <W w. Then w has a
reduced expression of the form si1 · · · sim−1s, and the sequence

(2.15) (w, si1w, si2si1w, . . . , sim−1· · · si1w = s, s)

is one walk satisfying the conditions of Definition 2.4 using the above reduced expression
(which may be chosen arbitrarily by Theorem 2.6). Assume that another such walk satisfies
the conditions of the definition, using the same reduced expression. Then for some index
j < m− 1 this walk satisfies π(j) = π(j−1) and has the form

(w, si1w, . . . , sij · · · si1w, sij · · · si1w, sij+2
sij · · · si1w, . . . , ssim−1· · · sij+2

sij · · · si1w = s).

But the equation in the last component of this walk implies that we have

w = si1· · · sijsij+2
· · · sim−1 ,

contradicting the fact that `(w) = m. It follows that (2.15) is the only walk satisfying the
conditions of Definition 2.4 for the chosen reduced expression, and that the coefficient of q1

1

is 1 when ws < w. �

3. Wiring diagrams and the q-immanant evaluation theorem

To evaluate induced sign characters at elements (1 + Tsi1 ) · · · (1 + Tsim ) of Hn(q), we
will associate to each such element a graph G called a wiring diagram, a related matrix
B, and a map σB : A[n],[n] → Z[q

1
2 , q¯

1
2 ]. A generating function Immελq

(x) ∈ A[n],[n] for

{ελq (Tw) |w ∈ Sn} will then allow us to compute

(3.1) ελq ((1 + Tsi1 ) · · · (1 + Tsim )) = σB(Immελq
(x))

and to combinatorially interpret the resulting polynomial.
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3.1. Wiring diagrams and the classical immanant evaluation identity.
Call a directed planar graph G a wiring diagram if it is a concatenation of any combination

of the diagrams

(3.2) G∅ = , G[1,2] = , G[2,3] = , G[3,4] = , . . . , G[n−1,n] = ,

representing the elements e, s1, s2, s3, . . . , sn−1 of Sn, respectively. Each wiring diagram has
n implicit vertices on the left and right, labeled source 1, . . . , source n and sink 1, . . . , sink
n, respectively, from bottom to top. Edges are implicitly oriented from left to right. Let
π = (π1, . . . , πn) be a sequence of source-to-sink paths in a wiring diagram G. We call π a
(bijective) path family if there exists a permutation w = w1 · · ·wn ∈ Sn such that πi is a
path from source i to sink wi. In this case, we say more specifically that π has type w. We
say that the path family covers G if it contains every edge exactly once.

The number of path families covering

(3.3) G = G[i1,i1+1] ◦ · · · ◦G[im,im+1]

is 2m: for j = 1, . . . ,m, the two paths intersecting at the central vertex of G[ij ,ij+1] either
cross or do not cross at that vertex. In these two cases, we call the index j a crossing
or noncrossing of the path family, respectively. We call (3.3) the wiring diagram of the
expression si1 · · · sim , whether or not this expression is reduced. It is well known that if we
have the equality si1· · · sim = v in Sn, then v is the type of the unique path family covering
G in which all indices 1, . . . ,m are crossings.

Alternatively, one may use the same diagram G to encode the element (1+si1) · · · (1+sim)
of Z[Sn]. The 2m terms in the expansion of this product may be written and collected as∑

β∈2[m]

sβ1i1 · · · s
βm
im

=
∑
v∈Sn

dvv,

where the 2m binary words β = β1 · · · βm correspond to path families covering G by

(3.4) βj =

{
1 if j is a crossing,

0 otherwise,

and where we define s0
ij

= e. Thus each coefficient dv ∈ N in the second sum counts the
number of path families of type v which cover G.

Similar to the above encoding is the use of G to encode the element (1+Tsi1 ) · · · (1+Tsim )
of Hn(q). Expanding this product and collecting terms we have

(3.5)
∑
β∈2[m]

(Tsi1 )β1 · · · (Tsim )βm =
∑
v∈Sn

avTv,

where binary words β correspond to path families as in (3.4). Now the coefficients av in the
expansion belong to N[q] and are defined in terms of a path familiy statistic called defects.
Call index j a defect of path family π if the two paths containing the central vertex of G[ij ,ij+1]

have previously crossed an odd number of times. (Equivalently, a crossing or noncrossing is
defective if the path entering the common vertex on top has a lower source index.) We will
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call an index j a proper crossing or noncrossing if it is not defective. Letting d(π) denote
the number of defects in π we have [5, Prop. 3.5]

(3.6) av =
∑
π

qd(π),

where the sum is over path families of type v which cover G.
One can enhance a wiring diagram by associating to each edge a weight belonging to some

ring R, and by defining the weight of a path to be the product of its edge weights. If R
is noncommutative, then one multiplies weights in the order that the corresponding edges
appear in the path. For a family π = (π1, . . . , πn) of n paths in a planar network, one defines
wgt(π) = wgt(π1) · · ·wgt(πn). The (weighted) path matrix B = B(G) = (bi,j) of G is defined
by letting bi,j be the sum of weights of all paths in G from source i to sink j. Thus the product
b1,w1 · · · bn,wn is equal to the sum of weights of all path families of type w in G (covering G or
not). It is easy to show that path matrices respect concatenation: B(G1◦G2) = B(G1)B(G2).
When R is commutative, a result known as Lindström’s Lemma [7], [10] asserts that for row
and column sets I, J with |I| = |J |, the minor det(BI,J) is equal to the sum of weights of
all nonintersecting path families from sources indexed by I to sinks indexed by J .

Assigning weights to the edges of G (3.3) can aid in the evaluation of a linear function
θ : Z[Sn]→ Z at (1 + si1) · · · (1 + sim) by relating this evaluation to the generating function

(3.7) Immθ(x) =
def

∑
w∈Sn

θ(w)x1,w1· · ·xn,wn ∈ Z[x1,1, . . . , xn,n],

called the θ-immanant in [14, Sec. 3]. In particular, for j = 1, . . . ,m, we assign weight 1 to
the n − 2 horizontal edges of G[ij ,ij+1], and we assign (commuting) indeterminate weights
zij ,j,1, zij ,j,2, zij+1,j,1, zij+1,j,2 to the remaining nonhorizontal edges a, b, c, d, respectively,

(3.8)

c

a

d

b
.

Thus wiring diagrams corresponding to expressions si1si2si3 = s1s2s1 and si4si5si6 = s1s2s1

are weighted differently because of the different indexing of the generators. Let zG be the
product of all 4m indeterminates zi,j,k, and for f ∈ Z[z1,1,1, . . . , zim,m,2], let [zG]f denote the
coefficient of zG in f . Then we have the following immanant evaluation identity for wiring
diagrams (cf. [16, p. 1081]).

Proposition 3.1. Assign weights to the edges of G (3.3) as above and let B be the resulting
path matrix. Then for any linear function θ : Z[Sn]→ Z we have

(3.9) θ((1 + si1) · · · (1 + sim)) = [zG]Immθ(B).

To illustrate, we let n = 3 and consider the element

(1 + s1)(1 + s2)(1 + s1) = 2 + 2s1 + s2 + s1s2 + s2s1 + s1s2s1

and its wiring diagram

(3.10) G = G[i1,i1+1] ◦G[i2,i2+1] ◦G[i3,i3+1] = G[1,2] ◦G[2,3] ◦G[1,2].
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Assigning weights to the edges of G we have

(3.11)

3

2

1

3

2

1

z3,2,1 z3,2,2

z2,1,1 z2,1,2

z2,2,1 z2,2,2

z2,3,1 z2,3,2

z1,1,1 z1,1,2 z1,3,1 z1,3,2

and zG = z1,1,1 · · · z3,2,2. The weighted path matrix of G is
(3.12)

B =

z1,1,1z1,1,2 z1,1,1z2,1,2 0
z2,1,1z1,1,2 z2,1,1z2,1,2 0

0 0 1

1 0 0
0 z2,2,1z2,2,2 z2,2,1z3,2,2

0 z3,2,1z2,2,2 z3,2,1z3,2,2

z1,3,1z1,3,2 z1,3,1z2,3,2 0
z2,3,1z1,3,2 z2,3,1z2,3,2 0

0 0 1


=

z1,1,1zUz1,3,2 + z1,1,1zDz1,3,2 z1,1,1zUz2,3,2 + z1,1,1zDz2,3,2 z1,1,1z2,1,2z2,2,1z3,2,2

z2,1,1zUz1,3,2 + z2,1,1zDz1,3,2 z2,1,1zUz2,3,2 + z2,1,1zDz2,3,2 z2,1,1z2,1,2z2,2,1z3,2,2

z3,2,1z2,2,2z2,3,1z1,3,2 z3,2,1z2,2,2z2,3,1z2,3,2 z3,2,1z3,2,2

 ,
where zU = z2,1,2z2,2,1z2,2,2z2,3,1, zD = z1,1,2z1,3,1.

Now we consider the linear function θ : Z[S3] → Z defined by θ(e) = 1, θ(s1s2s1) = −1,
θ(w) = 0 otherwise. Computing the left-hand side of (3.9) we have

θ((1 + s1)(1 + s2)(1 + s1)) = 2− 1 = 1.

To compute the right-hand side of (3.9), we first factor the immanant as

Immθ(x) = x1,1x2,2x3,3 − x1,3x2,2x3,1 = det(x13,13)x2,2.

By Lindström’s Lemma and inspection of the wiring diagram (3.11), we have

[zG]Immθ(B) = [zG] det(B13,13)b2,2 = 1,

since exactly one family of paths π = (π1, π2, π3) from all sources to the corresponding sinks
satisfies

(1) π1 and π3 do not intersect,
(2) π covers G and therefore has weight zG.

3.2. The q-immanant evaluation identity for wiring diagrams. It is natural to ask for
a q-analog of Proposition 3.1 which applies to the computation of θq((1 +Tsi1 ) · · · (1 +Tsim ))

for a linear function θq : Hn(q)→ Z[q
1
2 , q¯

1
2 ], and which uses the generating function

(3.13) Immθq(x) =
def

∑
w∈Sn

θq(Tw)q−1
w x1,w1 · · ·xn,wn ∈ A[n],[n]

introduced in [9, Eqn. (4.5)].
We begin by assigning weights to the edges of the wiring diagram G (3.3) exactly as in

(3.8). But now we define two indeterminates zh,j,k, zh′,j′,k′ to commute if j 6= j′ or if k 6= k′;
otherwise we impose the relation

(3.14) zij+1,j,kzij ,j,k = q
1
2 zij ,j,kzij+1,j,k.
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Let ZG be the quotient of the noncommutative ring

Z[q
1
2 , q¯

1
2 ]〈zij ,j,1, zij ,j,2, zij+1,j,1, zij+1,j,2 | j = 1, . . . ,m, 〉

modulo the ideal generated by the above commuting and quasicommuting relations, and
assume that q

1
2 , q¯

1
2 commute with all other indeterminates. Let zG be the product of all 4m

indeterminates zi,j,k, in lexicographic order.
This small change in the indeterminates z1,1,1, . . . , zim,m,2 does not imply that the most

naive q-analog of Proposition 3.1 holds, however. Indeed, the evaluation of an element of A
at a matrix is not well defined unless the entries of that matrix satisfy the relations (2.1).

We therefore define the Z[q
1
2 , q¯

1
2 ]-linear map

(3.15)
σB : A[n],[n] → Z[q

1
2 , q¯

1
2 ]

x1,v1· · · xn,vn 7→ [zG]b1,v1· · · bn,vn ,
where [zG]b1,v1 · · · bn,vn denotes the coefficient of zG in b1,v1· · · bn,vn , taken after b1,v1· · · bn,vn
is expanded in the lexicographic basis of ZG. Note that the “substitution” xi,j 7→ bi,j
is performed only for monomials of the form xe,v in A[n],[n]: we define σB(xu,w) by first
expanding xu,w in the basis {xe,v | v ∈ Sn}, and then performing the substitution.

For example let us compute σB(x2,2x1,1x3,3) for the path matrix B of the wiring diagram
in (3.12). Using (2.1) and linearity of σB, we write

(3.16)
σB(x2,2x1,1x3,3) = σB(x1,1x2,2x3,3) + (q

1
2 − q¯

1
2 )σB(x1,2x2,1x3,3)

= [zG]b1,1b2,2b3,3 + (q
1
2 − q¯

1
2 )[zG]b1,2b2,1b3,3.

Expanding b1,1b2,2b3,3 and omitting terms with repeated indeterminates, we have

[zG]b1,1b2,2b3,3 = [zG](z1,1,1z1,1,2z1,3,1z1,3,2z2,1,1z2,1,2z2,2,1z2,2,2z2,3,1z2,3,2z3,2,1z3,2,2

+ z1,1,1z2,1,2z2,2,1z2,2,2z2,3,1z1,3,2z2,1,1z1,1,2z1,3,1z2,3,2z3,2,1z3,2,2).

Sorting indeterminates into lexicographic order and using (3.14), we see that this is

[zG](zG + qzG) = 1 + q.

Similarly computing [zG]b1,2b2,1b3,3, we obtain (q
1
2 + q

3
2 ). Thus Equation (3.16) gives

σB(x2,2x1,1x3,3) = (1 + q) + (q
1
2 − q¯

1
2 )(q

1
2 + q

3
2 ) = q + q2.

For special combinations of u, v ∈ Sn and an expression si1· · · sim , there are simple rules
for computing σB(xu,v).

Proposition 3.2. Fix u, v ∈ Sn, and an expression si1· · · si` whose wiring diagram has
weighted path matrix B. Then we have the following.

(i) σB(xu,v) = 0 unless si1· · · si` contains a subexpression for u−1v.
(ii) If si1· · · si` is a reduced expression for w ∈ Sn, then σB(xe,w) = qw, and σB(xe,v) = 0

unless v ≤ w.

Proof. (i) Suppose that bu1,v1 · · · bun,vn 6= 0. Then there is a path family π of type u−1v which
covers the wiring diagram G of si1 · · · si` . Define the binary word β = β1 · · · β` by

βj =

{
1 if two paths of π cross at the central vertex of G[ij ,ij+1],

0 otherwise.
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Then we have type(π) = sβ1i1 · · · s
β`
i`

and the factors with βj = 1 form a subexpression of
si1· · · si` which is equal in Sn to type(π).

(ii) If si1 · · · si` is reduced, then there is exactly one path family π which covers G and
has type u−1v. Its component paths cross at the central vertex of each simple transposition
graph G[ij ,ij+1]. Each crossing causes the variables zij ,j,1, zij+1,j,2 to appear earlier than the

variables zij+1,j,1, zij ,j,2, contributing q
1
2 to σB(xe,w). Now consider a permutation v with

v 6≤ w. By definition of the Bruhat order (1.2) there is no subexpression of si1 · · · si` which
is an expression for v. By (i.) we have σB(xe,v) = 0. �

An important special case of Proposition 3.2 concerns wiring diagrams for a single gener-
ator.

Corollary 3.3. Let wiring diagram H of the reduced expression si1 = sj have weighted path
matrix C. For u, v ∈ Sn we have

σC(xu,v) =


q

1
2 if u = vsj,

q if u = v and vsj < v,

1 if u = v and vsj > v,

0 if u 6∈ {v, vsj}.

Proof. The matrix C is obtained from the n × n identity matrix by replacing its [j, j + 1],
[j, j + 1] submatrix by [

zj,1,1zj,1,2 zj,1,1zj+1,1,2

zj+1,1,1zj,1,2 zj+1,1,1zj+1,1,2

]
,

and we have zH = zj,1,1zj,1,2zj+1,1,1zj+1,1,2. Using Proposition 2.1 to expand xu,v in the
natural basis of A[n],[n] and recalling that Proposition 3.2 (ii) implies σC(xe,w) to vanish
unless w ∈ {e, sj}, we can write

σC(xu,v) = σC(xe,u
−1v) +

∑
w>u−1v
w≤sj

ru,v,e,w(q
1
2 − q¯

1
2 )σC(xe,w).

Now observe that the restrictions on w imply this expression to vanish unless u ∈ {v, vsj}.
When u = vsj we have

(3.17)
σC(xvsj ,v) = σC(xe,sj) = [zH ]zj,1,1zj+1,1,2zj+1,1,1zj,1,2

= [zH ]q
1
2 zj,1,1zj,1,2zj+1,1,2zj+1,1,1 = q

1
2 ,

since zj,1,2 commutes with zj+1,1,1 and quasicommutes with zj+1,1,2. On the other hand, when
u = v, we may use (2.13) and (3.17) to obtain

(3.18)

σC(xv,v) = σC(xe,e) + rv,v,e,sj(q
1
2 − q¯

1
2 )σC(xe,sj)

= [zH ]zj,1,1zj,1,2zj+1,1,1zj+1,1,2 + q
1
2

{
q

1
2 − q¯12 if vsj < v,

0 otherwise

=

{
q if vsj < v,

1 otherwise.

�



14 RYAN KALISZEWSKI, JUSTIN LAMBRIGHT, AND MARK SKANDERA

The map σB behaves well with respect to concatenation of wiring diagrams.

Proposition 3.4. Let wiring diagrams G, H of expressions si1· · · sik , sik+1
· · · sim have

weighted path matrices B, C, respectively. Then for all u,w ∈ Sn we have

(3.19) σBC(xu,w) =
∑
v∈Sn

σB(xu,v)σC(xv,w).

Proof. Write A = (ai,j) = BC for the weighted path matrix of G ◦H, and consider

σBC(xu,w) = [zG◦H ]au1,w1 · · · aun,wn

= [zG◦H ]
( n∑
j1=1

bu1,j1cj1,w1

)
· · ·
( n∑
jn=1

bun,jncjn,wn

)
.

In all but n! of the nn resulting terms, repeated indices among j1, . . . , jn lead to repeated
indeterminates or matrix entries equal to 0, which cause the coefficient of zG◦H to be 0. Thus
we may consider only the n! terms in which j1, . . . , jn are all distinct, and the expression
reduces to

(3.20) [zG◦H ]
∑
v∈Sn

bu1,v1cv1,w1 · · · bun,vncvn,wn .

Now observe that bui,vi commutes with cvj ,wj for all i, j, since our indexing of the expressions
si1 · · · sik , sik+1

· · · sim guarantees all edge weights {zij ,j,1, zij ,j,2, zij+1,j,1, zij+1,j,2 | 1 ≤ j ≤ k}
of G to commute with all edge weights {zij ,j,1, zij ,j,2, zij+1,j,1, zij+1,j,2 | k + 1 ≤ j ≤ m} of H.
Thus (3.20) is equal to∑

v∈Sn

[zG◦H ]bu1,v1 · · · bun,vncv1,w1 · · · cvn,wn =
∑
v∈Sn

[zG]bu1,v1 · · · bun,vn [zH ]cv1,w1 · · · cvn,wn

=
∑
v∈Sn

σB(xu,v)σC(xv,w).

�

The special case of Proposition 3.4 in which we have m = k + 1 (so that H is the wiring
diagram of the single generator sik+1

) leads to a simple formula for σBC(xu,w) in terms of the
matrix B.

Corollary 3.5. Let wiring diagrams G, H of expressions si1 · · · sik , sik+1
have weighted path

matrices B, C, respectively. Then for all w ∈ Sn we have

σBC(xu,w) = q
1
2σB(xu,wsik+1 ) +

{
qσB(xu,w) if wsik+1

< w,

σB(xu,w) if wsik+1
> w.

Proof. By Corollary 3.3, the expansion in Proposition 3.4 has only two nonzero terms:

σBC(xu,w) = σB(xu,wsik+1 )σC(xwsik+1
,w) + σB(xu,w)σC(xw,w).

Evaluating σC as in Corollary 3.3 we then have the desired expression. �

Another important property of the map σB is that its evaluation at natural basis elements
of A[n],[n] is closely related to coefficients in the natural expansion of (1 + Tsi1 ) · · · (1 + Tsim )
in Hn(q).
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Proposition 3.6. Let G be the wiring diagram in (3.3) with weighted path matrix B, and fix
w ∈ Sn. Then σB(xe,w) is equal to qw times the coefficient of Tw in (1 + Tsi1 ) · · · (1 + Tsim ).

Proof. Consider the wiring diagram G = G[j,j+1] of the simple transposition sj and its
weighted path matrix B. By Corollary 3.3 we have

σB(xe,w) =


q

1
2 if w = sj,

1 if w = e,

0 otherwise.

Thus the result is true for any simple transposition wiring diagram in (3.2).
Now assume that the result holds for concatenations of 1, . . . ,m− 1 simple transposition

diagrams, and define {aw |w ∈ Sn} ⊂ Z[q] by

(1 + Tsi1 ) · · · (1 + Tsim−1
) =

∑
w∈Sn

awTw.

Consider the wiring diagram G = G[i1,i1+1] ◦ · · · ◦ G[im,im+1] and decompose G as G′ ◦ H,
where G′ = G[i1,i1+1] ◦ · · · ◦ G[im−1,im−1+1] has weighted path matrix B′ and H = G[im,im+1]

has weighted path matrix C. By Corollary 3.5 we have

σB(xe,w) = σB′C(xe,w) = q
1
2σB′(x

e,wsim ) +

{
qσB′(x

e,w) if wsim < w,

σB′(x
e,w) if wsim > w.

By induction, this is

q
1
2 qwsimawsim +

{
qqwaw if wsim < w,

qwaw if wsim > w
=

{
qw(awsim + qaw) if wsim < w,

qw(qawsim + aw) if wsim > w.

On the other hand, consider the element

(3.21) (1 + Tsi1 ) · · · (1 + Tsim ) =
( ∑
v∈Sn

avTv

)
(1 + Tsim ).

By (1.1) we have

TwTsim =

{
(q − 1)Tw + qTwsim if wsim < w,

Twsim if wsim > w.

Thus qw times the coefficient of Tw in (3.21) is

qw

(
aw +

{
awsim + (q − 1)aw if wsim < w,

qawsim if wsim > w

)
=

{
qw(awsim + qaw) if wsim < w,

qw(qawsim + aw) if wsim > w.

�

As a consequence of Proposition 3.6, we have a q-analog of Proposition 3.1. The evaluation

B 7→ Immθ(B)

of Immθ(x) ∈ Z[x1,1, . . . , xn,n] at the n× n matrix B is now replaced by the map

B 7→ σB(Immθq(x))

for Immθq(x) ∈ A.
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Theorem 3.7. Let θq : Hn(q) → Z[q
1
2 , q¯

1
2 ] be linear, and let wiring diagram G of si1· · · sim

have weighted path matrix B. Then we have

(3.22) θq((1 + Tsi1 ) · · · (1 + Tsim )) = σB(Immθq(x)).

Proof. Write (1 + Tsi1 ) · · · (1 + Tsim ) =
∑

v∈Sn avTv. Then the right-hand side of (3.22) is

σB

( ∑
v∈Sn

θq(Tv)q
−1
v xe,v

)
=
∑
v∈Sn

θq(Tv)q
−1
v σB(xe,v) =

∑
v∈Sn

θq(Tv)q
−1
v qvav = θq

( ∑
v∈Sn

avTv

)
,

where the second equality follows from Proposition 3.6. But this is precisely the left-hand
side of (3.22). �

Now observe that if one fixes a reduced expression si1· · · sim for each w ∈ Sn and uses
each such expression to define an element

Dw =
def

(1 + Tsi1 ) · · · (1 + Tsim ) ∈ Hn(q),

then the set {Dw |w ∈ Sn} forms a basis of Hn(q): we have Dw ∈ Tw + spanZ[q]{Tv | v < w}.
(See also [5, Cor. 3.6].) Thus we can evaluate θq(g) for every g ∈ Hn(q), provided that we
can expand g in this basis.

4. G-tableaux and the combinatorics of the evaluation map

Theorem 3.7 provides half of the solution to the problem of evaluating ελq (Dw). The
other half is a combinatorial interpretation of the right-hand-side of (3.22), which is a linear

combination of expressions of the form σB(xu,w) ∈ Z[q
1
2 , q¯

1
2 ]. To combinatorially interpret

such evaluations, we will arrange the paths of a path family π covering a wiring diagram G
into a (French) Young diagram. We will call the resulting structure a G-tableau, or more
specifically a π-tableau. If type(π) = w, we will say also that the tableau has type w.
For example, the following path family π covering the wiring diagram of (3.3) yields six
π-tableaux of shape 21 and type 213:

(4.1)
π3

π2

π1

,
π3

π1 π2
,

π2

π1 π3
,

π3

π2 π1
,

π1

π2 π3
,

π2

π3 π1
,

π1

π3 π2
.

Given a π-tableau U , we define (integer) Young tableaux L(U), R(U) by replacing each path
by its source index and sink index, respectively. For example, if U is the first π-tableau in
(4.1), then we have

L(U) =
3
1 2

, R(U) =
3
2 1

.

It is easy to see that given two Young tableaux P , Q of the same shape, there is at most one
π-tableau U satisfying L(U) = P , R(U) = Q.

We will also define several statistics on G-tableaux. Let U be a π-tableau of any shape
λ ` n. Define invnc(U), the number of inverted noncrossings of U , to be the number of
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noncrossings j of π such that πa, πb intersect at the central vertex of G[ij ,ij+1] (3.3) with πb
above πa,

(4.2)

πb

πa

,

and πb appears in an earlier column of U than πa (whether or not b > a). Thus inverted
noncrossings may be proper or defective. Define c(U) = c(π) to be the number of crossings
of π, i.e., the number of occurrences of

(4.3)

πb

πa

or

πa

πb

.

This depends only upon π; not upon the locations of πa and πb in U . For example, each
tableau U in (4.1) satisfies c(U) = 1 because c(π) = 1. The inverted noncrossings in these
tableaux are appearances of π3 in an earlier column than π2, or π2 in an earlier column than
π1. The numbers of these for the six tableaux are 1, 0, 0, 0, 1, 1, respectively.

Combining the above tableau statistics, we have a combinatorial interpretation of σB(xu,w).

Proposition 4.1. Let wiring diagram G have weighted path matrix B. For u,w ∈ Sn we
have

(4.4) σB(xu,w) =
∑
π

q
c(π)
2 qinvnc(U),

where the sum is over path families π of type u−1w covering G, and U = U(π, u, w) is the
unique π-tableaux of shape (n) satisfying L(U) = u1 · · ·un, R(U) = w1 · · ·wn.

Proof. Let G = G[i1,i1+1] ◦ · · · ◦G[im,im+1]. If si1· · · sim contains no reduced subexpression for
u−1w, then there is no path family of type u−1w which covers G, and the right-hand side of
(4.4) is 0. By Proposition 3.2, the left-hand side is 0 as well. Now suppose m = `(u−1w)
and let si1 · · · sim be a reduced expression for u−1w. Then there is exactly one path family of
type u−1w that covers G. It has `(u−1w) crossings and no noncrossings. Thus the right-hand
side of (4.4) is qu−1w. By Proposition 2.1 and Proposition 3.2, the left-hand side is the same.
Thus the claim is true for wiring diagrams G which are concatenations of 0, . . . , `(u−1w)
simple transposition diagrams.

Now suppose the claim is true for G a concatenation of m ≥ `(u−1w) simple transposition
diagrams and consider G = G′ ◦H where

G′ = G[i1,i1+1] ◦ · · · ◦G[im,im+1], H = G[im+1,im+1+1].

Let B′, C be the path matrices of G′, H, respectively so that B = B′C is the path matrix
of G. Then by Corollary 3.5 we have

(4.5) σB(xu,v) = q
1
2σB′(x

u,wsim+1 ) +

{
qσB′(x

u,w) if wsim+1 < w,

σB′(x
u,w) if wsim+1 > w.
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By induction we may interpret σB′(x
u,wsim+1 ) and σB′(x

u,w), respectively, as

(4.6)
∑
πB′

q
c(πB

′
)

2 qinvnc(U(πB
′
,u,wsim+1

)),
∑
πB′

q
c(πB

′
)

2 qinvnc(U(πB
′
,u,w)),

where the sums are over path families of type u−1wsim+1 and u−1w, respectively, which cover
the wiring diagram G′. Substituting these two expressions into the right-hand side of (4.5),
we obtain

(4.7)
∑
πB′

q
c(πB

′
)+1

2 qinvnc(U(πB
′
,u,wsim+1

)) +


∑
πB′

q
c(πB

′
)+2

2 qinvnc(U(πB
′
,u,w)) if wsim+1 < w,

∑
πB′

q
c(πB

′
)

2 qinvnc(U(πB
′
,u,w)) if wsim+1 > w,

where the sums are as in (4.6).
Concatenating a path family πB

′
which covers G′ to a path family πC which covers H we

obtain a new path family πB
′C which covers G and satisfies type(πB

′C) = type(πB
′
)type(πC).

Conversely, every path family which covers G decomposes this way. If type(πB
′
) = u−1wsim+1

and type(πC) = sim+1 then we have

(4.8) invnc(U(πB
′C, u, w)) = invnc(U(πB

′
, u, wsim+1)), c(πB

′C) = c(πB
′
) + 1.

Otherwise, if type(πB
′
) = u−1w and type(πC) = e, then let j and k be the source indices of

the paths in πB
′

which terminate at sinks im+1 and im+1 + 1, respectively. Then we have
(4.9)

invnc(U(πB
′C, u, w)) = invnc(U(πB

′
, u, w)) +

{
1 if k precedes j in u, i.e., u−1

k < u−1
j ,

0 otherwise,

c(πB
′C) = c(πB

′
).

Since type(πB
′
) = u−1w, the index k is given by k = (u−1w)−1

im+1+1 = (w−1u)im+1+1. Thus

the first condition in (4.9) is equivalent to

(u−1)(w−1u)im+1+1
< (u−1)(w−1u)im+1

.

Simplifying the two expressions in this inequality to (w−1uu−1)im+1+1 = (w−1)im+1+1 and
(w−1uu−1)im+1 = (w−1)im+1 , respectively, we obtain the equivalent inequality wsim+1 < w.

It follows that the expression in (4.7) and therefore the right-hand side of (4.5) can be
written as

(4.10)
∑
πB′C

q
c(πB

′C )
2 qinvnc(U(πB

′C,u,w),

where the sum is over path families of type u−1w which cover G. Thus the claim is true by
induction. �

The special case u = e of Proposition 4.1 yields another proof of the formula (3.6).
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Corollary 4.2. The coefficients in the expansion (1 + Tsi1 ) · · · (1 + Tsim ) =
∑

w awTw are
given by

aw =
∑
π

qd(π),

where the sum is over all path families of type w which cover the wiring diagram of si1· · · sim.

Proof. Substitute u = e in Proposition 4.1.
The right-hand side of (4.4) is a sum over path families π of type w, and each tableau

U = U(π, e, w) is simply the sequence π = (π1, . . . , πn). Thus an inverted noncrossing of U
is simply a noncrossing (4.2) in which the upper path has index less than that of the lower
path, i.e., a defective noncrossing. To relate these to all defects, let us temporarily define

dnc(π) = number of defective noncrossings of π,

dc(π) = number of defective crossings of π,

so that d(π) = dnc(π) + dc(π). Now observe that for any path familiy of type w we have

c(π) = inv(w) + 2dc(π)

because if paths πa, πb cross k times, then at most one of those crossings contributes to
inv(w), while exactly half of the remaining crossings are defective. Thus the right-hand side
of (4.4) becomes

(4.11)
∑
π

q
inv(w)+2dc(π)

2 qdnc(π) =
∑
π

qwq
dc(π)+dnc(π) = qw

∑
π

qd(π),

where the sum is over all path families of type w which cover the wiring diagram of si1· · · sim .
By Proposition 3.6, the left-hand side of (4.4) is qwaw. Combining this with (4.11), we

have the desired result. �

5. Evaluation of induced sign characters

By Theorem 3.7, the map σB (3.15) can be used to evaluate ελq (Dw) when one has a
simple expression for the generating function Immελq

(x) and can evaluate σB(Immελq
(x)).

Such an expression was given by Konvalinka and the third author in [9, Thm. 5.4]: for
λ = (λ1, . . . , λr), we have

(5.1) Immελq
(x) =

∑
I

detq(xI1,I1) · · · detq(xIr,Ir),

where detq and xL,M are defined as in Section 2, and the sum is over all ordered set partitions
I = (I1, . . . , Ir) of [n] satisfying |Ij| = λj. We will say that such an ordered set partition has
type λ.

To evaluate σB(Immελq
(x)), we expand each term on the right-hand side of (5.1) in a

monomial basis {xu,v | v ∈ Sn} of A[n],[n], where u = u(I) is the concatenation of the r
strictly increasing subwords

(5.2) u1 · · ·uλ1 , uλ1+1 · · ·uλ1+λ2 , uλ1+λ2+1 · · ·uλ1+λ2+λ3 , . . . , un−λr+1 · · ·un
formed by listing the elements of each block I1, . . . , Ir in increasing order. As I varies over all
ordered set partitions of [n] of type λ, the permutations u(I) vary over the Bruhat-minimal
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representatives S−λ of cosets Sλu, where Sλ is the Young subgroup of Sn generated by

{s1, . . . , sn−1}r {sλ1 , sλ1+λ2 , sλ1+λ2+λ3 , . . . , sn−λr}.
Expanding each term on the right-hand side of (5.1) and applying σB we have

(5.3) σB(detq(xI1,I1) · · · detq(xIr,Ir)) =
∑
y∈Sλ

(−1)`(y)q−1
y σB(xu(I),yu(I)).

To combinatorially interpret the sum in (5.3) we may apply Proposition 4.1 and compute
statistics for tableaux belonging to the set

UI = UI(G) =
def
{U(π, u, yu) | π covers G, u = u(I), type(π) = y ∈ Sλ}.

Note that our restriction on y forces the sink indices of paths in components

(5.4) (λ1 + · · ·+ λk−1 + 1), . . . , (λ1 + · · ·+ λk)

of U(π, u, yu) to be a permutation of the source indices of the same paths.
On the other hand, the sum in (5.3) has both positive and negative signs. We will obtain

a subtraction-free expression for the sum by applying a sign-reversing involution to the
tableaux in each set UI . It will be convenient to define this involution on a second set TI
of tableaux, in obvious bijection UI . For a wiring diagram G let TI = TI(G) be the set of
all column-closed, left column-strict G-tableaux W of shape λ> such that L(W>)k = Ik (as
sets) for k = 1, . . . , r. The bijection δ = δI : UI → TI maps U ∈ U to the left column-strict
G-tableau W of shape λ>whose kth column consists of entries (5.4) of U .

Since U and δ(U) contain the same path family, it is easy to see that δ does not affect the
statistic c. On the other hand, it changes the statistic invnc in a very simple way. Define
cdnc(U) to be the number of defective noncrossings of pairs of paths appearing in the same
column of U , i.e., the number of occurrences of (4.2) where b < a and πb, πa appear in the
same column of U .

Lemma 5.1. Let I be an ordered set partition. For U ∈ UI we have

(5.5) invnc(U) = invnc(δ(U)) + cdnc(δ(U)).

Proof. Let λ = (λ1, . . . , λr) be the type of I, and let π be the path family in a G-tableau U ,
where G = G[i1,i1+1] ◦ · · · ◦ G[im,im+1]. Choose an index j, 1 ≤ j ≤ m and let πa, πb be the
two paths which intersect at the central vertex of G[ij ,ij+1], with πb entering from above, as
in (4.2) or as in the first figure in (4.3). For some k, πb appears among the entries

(5.6) λ1 + · · ·+ λk−1 + 1, . . . , λ1 + · · ·+ λk

of U . The indices of these λk paths increase from left to right in U , since the indices of all
paths in U form the permutation u = u(I) ∈ S−λ (5.2).

Suppose that index j is an inverted noncrossing of U and therefore contributes 1 to
invnc(U). Then πa and πb intersect as in (4.2) and πb appears earlier than πa in U . If
πa appears among the entries (5.6), then we must have b < a. Thus πa, πb both appear in
column k of δ(U), and j contributes 0 to invnc(δ(U)) and 1 to cdnc(δ(U)). On the other
hand, if πa does not appear in entries (5.6) of U , then it appears strictly to the right of
column k of δ(U). Thus j contributes 1 to invnc(δ(U)) and 0 to cdnc(δ(U)).

Now suppose that j is not an inverted noncrossing in U and therefore contributes 0 to
invnc(U). If j is a crossing in π, then it contributes 0 to invnc(δi(U)) and cdnc(δ(U)). If
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j is a noncrossing of π, then πa appears before πb in U . If πa appears before the entries (5.6)
of U , then in δ(U) it appears in an earlier column than πb and contributes 0 to invnc(δi(U))
and cdnc(δ(U)). If πa appears as one of the entries (5.6) of U , then it appears in the
same column of δ(U) as πb and satisfies a < b. Again j contributes 0 to invnc(δi(U)) and
cdnc(δ(U)). �

Now we define the involution ζ = ζI : TI → TI as follows.

(1) If W ∈ TI is column-strict, then define ζ(W ) = W .
(2) Otherwise,

(a) Let t be the greatest index such that column t of W is not column-strict.
(b) Let k be the greatest index such that two paths πj, πj′ with j, j′ ∈ It both

pass through the central vertex of G[ik,ik+1], and let π̂ = (π̂1, . . . , π̂n) be the
path family obtained from π by swapping the terminal subpaths of πj and πj′ ,
beginning at the central vertex of G[ik,ik+1]. (π̂i = πi for i /∈ {j, j′}.)

(c) Define ζ(W ) to be the tableau obtained from W by replacing π by π̂.

Observe that each fixed point W of ζ has type e since it is column-closed and column
strict. On the other hand, when W ∈ TI is not a fixed point of ζ, one can show that the two
tableaux δ−1(W ), δ−1(ζ(W )) in UI are closely related.

Lemma 5.2. Let I = (I1, . . . Ir) be an ordered set partition of type λ, and define u = u(I)

as in (5.2). Let G-tableaux W ∈ TI and U, Û ∈ UI satisfy W = δ(U) 6= ζ(W ) = δ(Û), and
define path families π, π̂ as above. Then for some generator s ∈ Sλ and some permutations

v, v̂ = sv ∈ Sλu we have U = U(π, u, v), Û = U(π̂, u, v̂).

Proof. The tableaux U , Û contain the same path families as W and ζ(W ), respectively, and
these path families are π, π̂, as defined in the definition of ζ.

Since elements of TI are column-closed, it follows that the set of sink indices of paths in
each column is equal to the set of source indices of paths in the same column. Thus the
sequences v, v̂ of sink indices, read bottom-to-top in columns 1, . . . , r, belong to Sλu. By
the definition of ζ, the permutations v and v̂ differ from one another in exactly two positions:
those holding the letters vj = v̂j′ and vj′ = v̂j. Both letters belong to the same block of the
ordered set partition I. Since we used the rightmost vertex in πj ∩ πj′ to define π̂j and π̂j′ ,
the letters must appear consecutively in v and in v̂. It follows that v̂ = sv for some adjacent
transposition s ∈ Sλ. �

Furthermore, when W ∈ TI is not a fixed point of ζ, the values of the statistics invnc
and cdnc on W and ζ(W ) are closely related.

Proposition 5.3. Let W ∈ TI satisfy W = δ(U(π, u, v)) 6= ζ(W ) = δ(U(π̂, u, v̂)) for π, π̂,
v, v̂ as in Lemma 5.2. Then we have

(5.7) invnc(ζ(W )) = invnc(W ),

(5.8) cdnc(ζ(W )) +
c(π̂)

2
=

{
cdnc(W ) + c(π)+1

2
if v < v̂,

cdnc(W ) + c(π)−1
2

if v > v̂.

Proof. To verify (5.7), let t, k be as in the definition of ζ and let ` be an index which does
not belong to It. Then π` is an entry of W and ζ(W ) which does not appear in column t.
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Clearly, any point of intersection between π` and πj or πj′ which occurs in G to the left of
the central vertex of G[ik,ik+1] exactly matches an intersection between π` and π̂j or π̂j′ . On
the other hand, suppose that π` and πj (or πj′) have a point of intersection in G to the right
of the central vertex of G[ik,ik+1]. Since j and j′ both belong to It, this point is an inverted
noncrossing of π` and πj (or πj′) in W if and only if it is an inverted noncrossing of π` and
π̂j′ (or π̂j) in ζ(W ).

To verify (5.8), consider the intersection of πj and πj′ at the central vertex of G[ik,ik+1]

and the tableaux U(π, u, v), U(π̂, u, v̂). If v > v̂ then our choice of (j, j′) implies that this
intersection is either a defective noncrossing or a crossing that sends πj above πj′ . In the first
case, the map ζ removes exactly one defective noncrossing and creates exactly one crossing,
changing the statistic sum cdnc + c/2 by −1 + 1/2 = −1/2. In the second case, the map
ζ removes exactly one crossing and creates exactly one proper noncrossing, changing the
same sum by −1/2 + 0 = −1/2. Similarly, if v < v̂ then our choice of (j, j′) implies that
the intersection is either a proper noncrossing or a crossing that sends πj′ above πj. In both
cases, the statistic sum increases by 1/2. �

Finally we can state and justify a subtraction-free formula for ελq ((1 + Tsi1 ) · · · (1 + Tsim )).

Theorem 5.4. Let G be the wiring diagram of si1· · · sim. Then for λ ` n we have

(5.9) ελq ((1 + Tsi1 ) · · · (1 + Tsim )) =
∑
W

qinvnc(W )+c(W )/2,

where the sum is over all column-strict G-tableaux of type e and shape λ>.

Proof. Let B be the path matrix of G. Combining the Theorems 3.7 and [9, Thm. 5.4] (i.e.,
(5.1)) with the identity (5.3), we see that the left-hand side of (5.9) is

(5.10)

σB(Immελq
(x)) =

∑
I

σB(detq(xI1,I1) · · · detq(xIr,Ir))

=
∑
I

∑
y∈Sλ

(−1)`(y)q−1
y σB(xu(I),yu(I)),

where the first two sums are over ordered set partitions I = (I1, . . . , Ir) of [n] of type λ. Fixing
one such partition I and writing u = u(I), we may use Proposition 4.1 and Lemma 5.1 to
express the third sum as

(5.11)
∑
y∈Sλ

∑
π

(−1)`(y)q−1
y q

c(π)
2 qinvnc(U(π,u,yu)) =

∑
y∈Sλ

∑
π

(−1)`(y)q−1
y q

c(π)
2 qinvnc(W )+cdnc(W ),

where the inner sums are over path families π of type u−1yu which cover G, and where
W = δI(U(π, u, yu)). As y and π vary in the above sums, U(π, u, yu) varies over all tableaux
in UI , and W varies over all tableaux in TI .

Now consider a tableau W ∈ TI which satisfies ζ(W ) 6= W . Let tableaux W and ζ(W )
contain path families π of type u−1yu and π̂ of type u−1ŷu, respectively. By Lemma 5.2 we
have ŷ = sy for some s ∈ Sλ. Assume without loss of generality that y < ŷ and consider
the term on the right-hand side of (5.11) corresponding to ζ(W ),

(−1)`(ŷ)q−1
y′ q

c(π̂)
2 qinvnc(ζ(W ))+cdnc(ζ(W )).
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By Proposition 5.3, this is

(−1)`(y)+1q−1
y q¯

1
2 q

c(π)+1
2 qinvnc(W )+cdnc(W ) = −(−1)`(y)q−1

y q
c(π)
2 qinvnc(W )+cdnc(W ),

i.e., the opposite of the term corresponding to W . Thus it suffices to sum the right-hand side
of (5.11) over only the pairs (y, π) corresponding to tableaux W satisfying W = ζ(W ). By the
definition of ζ, each such tableau W is column-strict and therefore satisfies cdnc(W ) = 0.
By the definition of TI , each such tableau has type e. Thus each tableau

δ−1
I (W ) = U = U(π, u, yu) ∈ UI

satisfies y = type(π) = e. It follows that the right-hand side of (5.11) and the third sum in
(5.10) are equal to ∑

W

q
c(π)
2 qinvnc(W ),

where the sum is over all tableau W in TI which are column-strict of type e. By the definition
of TI , each such tableau has shape λ>. Thus the three expressions in (5.10) are equal to the
right-hand side of (5.9). �

To illustrate the theorem, we compute ε21
q ((1 + Ts1)(1 + Ts2)(1 + Ts1)) using the wiring

diagram (3.11). There are two path families of type e which cover G, and one column-strict
G-tableau of shape 21>= 21 for each:

(5.12)
π3

π2

π1

, Uπ =
π3

π1 π2
;

ρ3

ρ2

ρ1

, Uρ =
ρ3

ρ2 ρ1
.

Tableau Uπ contributes qinvnc(Uπ)qc(Uπ)/2 = q1q0/2 = q, since π has no crossings, and for only
one of its noncrossings are the two paths inverted in Uπ: π3 intersects π2 from above and
appears in an earlier column of Uπ. Tableau Uρ contributes qinvnc(Uρ)qc(Uρ)/2 = q1q2/2 = q2,
since ρ has two crossings, and for its unique noncrossing, the two paths are inverted in
Uρ: ρ3 intersects ρ1 from above and appears in an earlier column of Uρ. Adding the two
contributions together, we have ε21

q ((1 + Ts1)(1 + Ts2)(1 + Ts1)) = q + q2.
Using the other reduced expression s2s1s2 for the long element of S3, one similarly com-

putes ε21
q ((1 + Ts2)(1 + Ts1)(1 + Ts2)) = q + q2. It is not generally true, however, that

distinct reduced expressions si1· · · sim and sj1· · · sjm for w ∈ Sn lead to equal evaluations
ελq ((1 + Tsi1 ) · · · (1 + Tsi` )) and ελq ((1 + Tsj1 ) · · · (1 + Tsj` )). For example, consider the re-
duced expressions s3s2s1s2, s3s1s2s1 for 3241 ∈ S4, the corresponding wiring diagrams G,
H, and the G- and H-tableaux of type e and shape 211. It is easy to see that there is only
one column-strict G-tableau of this type and shape, while there are no such column-strict
H-tableaux. Since the G-tableau has one inverted noncrossing and two crossings, we have

ε31
q ((1 + Ts3)(1 + Ts2)(1 + Ts1)(1 + Ts2)) = q2,

ε31
q ((1 + Ts3)(1 + Ts1)(1 + Ts2)(1 + Ts1)) = 0.

A special case of Theorem 5.4 allows one to combinatorially interpret evaluations of ελq
at certain elements qwC

′
w(q) of the Kazhdan-Lusztig basis of Hn(q). Call a permutation

321-hexagon-avoiding if it avoids the patterns 321, 56781234, 56718234, 46781235, 46718235.
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Corollary 5.5. Let G be the wiring diagram of a reduced expression si1· · · sim for a 321-
hexagon-avoiding permutation w ∈ Sn. Then we have

(5.13) ελq (qwC
′
w(q)) =

∑
U

qinvnc(U)+c(U)/2,

where the sum is over all column-strict G-tableaux of type e and shape λ>.

Proof. Billey and Warrington [2, Thm. 1] showed that for every reduced expression si1· · · sim
of a 321-hexagon-avoiding permutation w, we have qwC

′
w(q) = (1 + Tsi1 ) · · · (1 + Tsim ). �

A subclass of the 321-hexagon-avoiding permutations is the set of permutations avoiding
the patterns 321 and 3412. The special case of Corollary 5.5 corresponding to these permu-
tations is equivalent to the special case of [4, Thm. 6.4] corresponding to these permutations.
Given a column-strict G-tableau U containing a path family π = (π1, . . . , πn), define inv(U)
to be the number of intersecting pairs (πi, πj) with j > i and πj appearing in an earlier
column of U than πi.

Corollary 5.6. Let G be the wiring diagram of a reduced expression si1· · · sim for a 321-
avoiding, 3412-avoiding permutation w ∈ Sn. Then we have

ελq (qwC
′
w(q)) =

∑
U

qinv(U),

where the sum is over all column-strict G-tableaux of type e and shape λ>.

Proof. Since w is 321-hexagon-avoiding, we have the formula (5.13). Since w also avoids the
pattern 3412, the results [12, Thm. 4.3, Prop. 4.4] imply that G has the structure of a zig-zag
network [12, Sec. 5]. Thus the unique family π = (π1, . . . , πn) which covers G and has type
e satisfies

(1) π has no crossings,
(2) the intersection of any two paths of π is either empty, or consists of a single connected

component.

Thus we have that c(U) = 0 for each tableau U in (5.13). Since π covers G, we also have
that each nonempty intersection πi ∩ πj is a single vertex, more specifically a noncrossing.
It follows that each tableau U in (5.13) satisfies invnc(U) = inv(U). �

6. Open problems

While Theorem 5.4 provides a method for evaluating all Hn(q)-characters at all elements
(1 + Tsi1 ) · · · (1 + Tsim ) of Hn(q), this method leads to formulas involving subtraction: not

all Hn(q)-characters belong to the N[q]-span of the induced sign characters {ελq |λ ` n}. It
would therefore be interesting to state and prove an analog of Theorem 5.4 for irreducible
characters, since all other Hn(q)-characters belong to the N[q]-span of these. (See the table
following Equation (1.4).) This would also provide a combinatorial proof of a weakening of
Haiman’s result [6, Lem. 1.1].

Problem 6.1. For all irreducible characters χλq and all sequences (si1 , . . . sim) of generators

of Sn, combinatorially interpret the evaluation χλq ((1 + Tsi1 ) · · · (1 + Tsim )).
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Another possibility of strengthening Theorem 5.4 concerns Kazhdan-Lusztig basis elements
and parabolic subgroups of Sn. For 1 ≤ a ≤ b ≤ n, let s[a,b] denote the longest element of
the parabolic subgroup S[a,b] of Sn generated by sa, . . . , sb−1. Sometimes called a reversal,
s[a,b] has one-line notation

1 · · · (a− 1) · b(b− 1) · · · a · (b+ 1) · · ·n,
and the corresponding modified Kazhdan-Lusztig basis element satisfies

(6.1) qs[a,b]C
′
s[a,b]

(q) =
∑

w∈S[a,b]

Tw.

In the special case that b = a+ 1, this is qsaC
′
sa(q) = 1 + Tsa .

For some permutations w ∈ Sn, there exists a polynomial gw(q) ∈ N[q] and a reversal
factorization w = s[c1,d1] · · · s[cm,dm] such that the modified Kazhdan-Lusztig basis element
qwC

′
w(q) satisfies

g(q)qwC
′
w(q) = qs[c1,d1]C

′
s[c1,d1]

(q) · · · qs[cm,dm]
C ′s[cm,dm]

(q).

No characterization of these permutations is known, but two sets of sufficient conditions
are 321-hexagon avoidance [2, Thm. 1] and 3412-, 4231-avoidance [12, Thm. 4.3]. Work of
Stembridge [16, Sec. 5] suggests that 45312-avoidance may be a necessary condition. In order
to improve our ability to evaluate Hn(q)-characters at Kazhdan-Lusztig basis elements, it
would therefore be interesting to solve the following problem.

Problem 6.2. For all characters θq ∈ {ελq |λ ` n} or θq ∈ {χλq |λ ` n}, and all sequences
(s[c1,d1], . . . , s[cm,dm]) of reversals in Sn, combinatorially interpret the evaluation

θq(qs[c1,d1]C
′
s[c1,d1]

(q) · · · qs[cm,dm]
C ′s[cm,dm]

(q)).

For θq varying over {ελq |λ ` n}, this would provide a common generalization of Theo-

rem 5.4 and [4, Thm. 6.4]. For θq varying over {χλq |λ ` n}, this would provide a common
generalization of the solution to Problem 6.1 and [4, Thm. 8.1], and would provide a com-
binatorial interpretation of special cases of [6, Lem. 1.1]. Furthermore, by [15, Cor. 3.3]
we have that for each n × n totally nonnegative matrix B, and each partition λ ` n, the
evaluation Immχλ(B) is nonnegative. While this evaluation has no known combinatorial
interpretation, it is known to be equal to a nonnegative linear combination of evaluations of
the form χλ((C ′s[c1,d1]

(1) · · ·C ′s[cm,dm]
(1)). Thus a solution to the above problem would provide

the desired combinatorial interpretation of Immχλ(B).
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