GENERATING FUNCTIONS FOR MONOMIAL CHARACTERS OF
WREATH PRODUCTS Z/dZ: 6,

MARK SKANDERA

ABSTRACT. Let Z/dZ)S,, denote the wreath product of the cyclic group Z/dZ with the sym-
metric group &,,. We define generating functions for monomial (induced one-dimensional)
characters of Z/dZ!&,, and express these in terms of determinants and permanents. This ex-
tends work of Littlewood (The Theory of Group Characters and Representations of Groups,
1940) and Merris and Watkins (Linear Algebra Appl., 64, 1985) on generating functions for
the monomial characters of &,,.

1. INTRODUCTION

Let z = (z;;) be an n x n matrix of variables and let &,, be the symmetric group. For
each linear functional 6 : C[&,,] — C, define the generating function

(1.1) Immy(2) = > 0(w) 21w, Zna, € Clz11, -, Zna

’LUEGTL

for 0, and call this the #-immanant. Such functions appeared originally in [7, p.81] for
equal to irreducible &,-characters x*, and were extended in [14, §3] to general . As is the
case with many functions, a simple formula for a generating function for # can be as useful
as a simple formula for the numbers {f(w)|w € &, } themselves.

Particularly simple generating functions for the monomial (induced one-dimensional) char-
acters of G,, are expressed in terms of integer partitions, ordered set partitions, and subma-
trices of z. Call a nonnegative integer sequence A = (A, ..., \,) satisfying \y +---+ A\, =n
a weak composition of n and write |A\| = n, £(A) = r. If the components of A are weakly
decreasing and positive, call it an (integer) partition of n and write A = n. For any weak
composition X of n, call a sequence (11, ..., I,.) of pairwise disjoint subsets of [n| :== {1,...,n}
an ordered set partition of [n] of type A if |I;| = A; for j = 1,...,7r. (We remark that our
nonstandard terminology allows empty sets in set partitions, whereas standard terminol-
ogy [13, pp. 39, 73] does not.) Given subsets I, J of [n], define the (I, J)-submatriz of z to
be 21,0 = (Zi,j)ieLjeJ-

The class function space of &,, has two standard bases consisting of monomial characters:
the induced trivial character basis {n* = tring’; | A n} and the induced sign character
basis {e* = sgnng | A n}, where &, is the Young subgroup of &,, indexed by A. (See, e.g.,
[9].) Littlewood [7, §6.5] and Merris and Watkins [8] came close to expressing the n*- and
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A

e'-immanants as
(1.2) Imma(2) = Y det(zy,s,) - det(zy,,1,),
(J1y-3J0)
(1.3) Imm,x(2) = Z per(zy g,) - -per(zg,.0,)s
(J1yeees o)
where the sums are over all ordered set partitions (Ji, ..., Jy) of [n] of type A = (A1,..., Ar).

For example, we have

211 *1,2 211 21 222 22
Imm, 2 (Z) = det ’ 233 + det ’ 3 Z29 + det ’ 3 21,1
221 222 23,1 <33 23,2 233

= 32’1,12'2,223,3 — R1,222,123,3 — 21,3%2,223,1 — 21,122,3%3,2,

and €21(123) = 3, €21(213) = €*1(321) = €*1(132) = —1, €?!(312) = €*!(231) = 0. While
Littlewood, Merris, and Watkins may not have written Equations (1.2) — (1.3) explicitly, we
call them the Littlewood—Merris—Watkins identities. These identities have played an impor-
tant role in the evaluation of (type-A) Hecke algebra characters at Kazhdan-Lusztig basis
elements [3], [4], [5], the formulation of a generating function for irreducible Hecke algebra
characters [6], and the interpretation of coefficients of chromatic symmetric functions [3],
[10]. The identity in our main result (Theorem 3.1) plays an important role in the eval-
uation of hyperoctahedral group characters at elements of the type-BC Kazhdan-Lusztig
basis [11].

Let G = G(n,d) be the wreath product Z/dZ1&,,. Its class function space has 2¢ standard
bases consisting of monomial characters, and it is possible to use a matrix of dn? variables to
construct generating functions analogous to (1.2) — (1.3) for the elements of these bases. In
Section 2 we review G and its monomial characters; in Section 3 we present our generating
functions for these.

2. G AND ITS MONOMIAL CHARACTERS

The group G is generated by n elements sq,...,s,_1,t subject to the relations
si=e fori=1,...,n—1,
td = e,
2.1) tsitsy = sitsqt, o
8iS; = 8;8; for |i — 7] > 2,
ts; = s;t for j > 2,

$;i5j8; = sjs;s;  for |t —j| = 1.

A one-line notation for elements of G, analogous to that for elements of &,,, uses sequences
of integer multiples of complex dth roots of unity. Let ¢ be a primitive dth root of unity,
and let S be the set of sequences

(2.2) {([("Mwy, ..., wy) |wy - wy, € Gy, (11, -+, Ym) € Z/dZ™}
We define an action of G on S by letting the generators act on a sequence (aq,...,a,) as
follows.

(1) S; © (al, Ce ,an) = (al, ey A1, A1, Ay A2, . ,an),
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(2) to(ay,...,a,) = (Cay,as, ..., a,).
A bijection between G and S is given by letting each element g € G act on the sequence
(1,...,n). Iff go(1,...,n) = ((Mwy,...,("w,), we define this second sequence to be the
one-line notation of g, and we write g = (v, w), where v = (71, ...,7) € Z/dZ", w € &,,.
In particular, the identity element e has one-line notation 1---n.

Since G is a finite group, Brauer’s Induced Character Theorem implies that the set of
monomial characters of G spans trace space T(G) of G, the set of all linear functionals
0 : C[G] — C satistying 0(gh) = 6(hg) for all g,h € G. (See, e.g., [12].) This includes all G-
characters. 7(G) has dimension equal to the number of conjugacy classes of G, equivalently,
to the number of sequences XA = (A%, ..., X?71) of d (possibly empty) integer partitions, with

X X =

We call such a sequence a d-partition of [n] and write A F n.

In order to describe natural bases of T (G), we introduce certain subgroups of G which are
analogous to Young subgroups of &,,. Fix d-partition X = (\°,... A4"!) F n, and define
re = ((A\F) for k=0,...,d — 1. We will say that an ordered set partition of [n] of type

(2.3) PYD LD LD LD L D L |

» Nrgo » Nryo » g1

has type A. In particular, let K(A) = (K?,... K% K! ... K! ... K&' .. K%')bethe

ro’ 1) Td—1
ordered set partition of [n] of type A whose blocks are the g + - - - + r4_1 subintervals

(24) KV'=[1,19), KI=D04+1,X0+7), ..., K&'=[n—X\' 410

Td—1 Td—1

of [n]. For 1 <i < j <n, define the element t; = s;,_1 -~ s1ts1---s;_1 € G, and let G([z, j]) =
Z/dZ S ;_;+1 be the subgroup of G generated by {¢;,s;,...,sj_1}. For k=0,...,d—1, use
(2.4) to define the subgroup

(25 GO\ k) = GUEE) -+ GUEE) 2= GO) x - x GO,
of G, and finally define the Young subgroup

d—1
(2.6) GA) == GA0)---G(Ad—1) = T (GO x - x G(AL)

k=0
of G. Each element y € G factors uniquely as yo - - - yq4—1 with yx € G(\, k).

Several natural representations of G are defined by using symmetric group representations
and induction from G(X). First, observe that the subgroup of G generated by sy, ...,s,_1 is
isomorphic to &,,, and that each r-dimensional G,,-representation p can trivially be extended
to a r-dimensional G-representation in at least d ways: by defining p(t) = ¢*I for k =
0,...,d— 1. If the character of the &,,-representation is Y, call its extension d;x. Thus the
two one-dimensional G,,-representations

1:s;—1 (w—1forallw e &,,),
€8 — —1 (w — (=1)™® for all w € &,,)
yield 2d one-dimensional representations of G:
0+ (sint) = (1,¢5), (9= (y,w) = (n--7)" forall g € G),

(27) . k _ inv(w) k
oke : (s4,t) — (—1,¢%), (9= (y,w)— (1) (1 7)" for all g € G),
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for k = 0,...,d — 1. Here, inv(w) denotes the Coxeter length of w. (See, e.g., [2, p.15].)
Next, observe that for any d-tuple (Hy, ..., Hq_1) of subgroups of a group G which satisfy

(28) HZ:HO"'Hd,12H0X"‘XHd,h

and characters 6y, ...,0,_1 of these, we have that the function 8 = 6y ® - - - ® 0;_1 defined
by 0(hg -+ ha-1) = Oo(ho) - - - 04—1(hg_1) is a character of H, and 6] is a character of G.
In particular, the Young subgroup G(A) has the form (2.8) with H, = G(A, k). For every

d-tuple B = (Bo, ..., B4-1) € {1, e}? of one-dimensional symmetric group characters we have
the one-dimensional G(A)-character

(2.9) 0080 ® -+ ® 041841,

the corresponding monomial G-character

(2.10) B = (6fr @ ® Sa—1Ba-1) 1Gexn):

and the basis {8 | A F n} of T(G). The irreducible character basis {x*| X F n} of T(G)
can be defined somewhat similarly. Given A = (A%, ..., A471)  n, define the d-partition
X = (|A\%,..., A1), and the G(A®)-character

d—1

50X/\0® e ®0gaxY

where x*" is the irreducible &) e -character indexed by the partition A*. The corresponding
induced characters

(2.11) X = (00 ® - @ 6™ ) e

are the irreducible characters of G. (See, e.g., [1, p.219].)

For the purpose of creating generating functions for characters 8%, it will be convenient
to realize each as the character of a submodule of C[G], with G acting by left multiplication.
To do this, we consider an arbitrary finite group G, a subgroup H, an H-character 6, and
the element

(2.12) T =Y _0(h™")h € C[G).

heH
Proposition 2.1. Let H be a subgroup of a finite group G and let p be a one-dimensional
complex representation of H with character 0 (= p). Let U = (uq,...,u,) be a transversal
of representatives of cosets of H in G. Let G act by left multiplication on the submodule
(2.13) V = spanc{uTh |1 <i <r}

of C[G]. Then'V is a G-module with character 015

Proof. To see that V' is a GG-module, consider the action of ¢ € G on the jth element of the
defining basis of V. Let u;H be the unique coset satisfying gu;H = u,H, i.e., ui_lguj € H.
Then we have
qu;Th = gu; Z O(h~"h = u; Z O(h~ Y gujh = u; Z O((h) tu; tguy) W
(2.14) heH heH h'eH
= 0(u; " gu;)u Ty,

since # = p is a homomorphism. It follows that in the jth column of the matrix representing
g, all components are 0 except for the ith, which is 6(u; 1guj). But this is precisely the
formula for entries of the matrix p]%(g). (See, e.g., [9, Defn. 1.12.2].) O
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For x = HTg, Proposition 2.1 allows us to express T)% as a sum of conjugates of T%.

Lemma 2.2. Let groups G, H, transversal U = (uq, ..., u,), H-character 6, and G-module
V' be as in Proposition 2.1, and let A = (a;;) be the matriz of g € G with respect to the
defining basis (2.13) of V.. Then a;; equals the coefficient of g~ in uijIui_l. In particular
if x is the character of V', then we have the identity

(2.15) > uiThut =Y x(g)g™
=1

geG
in C[G].
Proof. By the proof of Proposition 2.1, we have a;; = H(ui’lguj) if some h € H satisfies
g = uihuj’l, and is 0 otherwise. On the other hand, we have
(2.16) w; Thu; ™! Z O(h~Hu;hu;
heH

If there is no h € H satisfying g7' = ujhu; ', then the coefficient of g1 in (2.16) is 0.
Otherwise, the coefficient of g~! is

O(h™") = 0(u; ' guy).
It follows that a; ; is equal to the coefficient of g~' in ujTgui_l. Thus x(g) = >, a;,; is equal
to the coefficient of g~ in Y, u; Tu; . O

For G =G, H=G(\), and 6 as in (2.9), the module V' (2.13) has a particularly nice form.
The element T% factors as Tg[()f?o) fe Tg‘(i;dﬁf[)l, and each coset uG(A) of G(A) has a unique

representative g = (v, w) satisfying y; = - -+ ==, = 0 and w; < w; 4, for 7,7+ 1 belonging to
the same block of K(A), i.e

(2.17) wy < - < wyo, Wyo gy < < WNOLAGs - s Wy _pdt g <0 < W

Letting G(A)~ be the set of such coset representatives, we have
da-1P
V = V(X B) = spanc{uTgily - Ty "y [u € G},
and the following special case of Lemma 2.2.

Corollary 2.3. Fiz a d-partition A+ n. For each one-dimensional G(X)-character 0 of the
form (2.9), the monomial G-character B> = HTg(A) satisfies

(2.18) Z UTg => BMNg g
u€G(A g€y

For d = 1,2, the group G (equal to the symmetric group or the hyperoctahedral group) has
real-valued irreducible characters. Therefore each group element is conjugate to its inverse,
and the final sum of (2.18) may be expressed as ) g B*(9)g.
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3. MAIN RESULT

A generalization of the generating functions (1.2) — (1.3) to monomial characters of G
requires a polynomial ring and a |G| = d"n!-dimensional subspace analogous to the n!-
dimensional span of the functions (1.1). Let Cy = {¢¥|k € Z/dZ} be the subgroup of C
consisting of dth roots of unity, and for any subset M C [n], let C;M be the complex numbers
of the form {¢*m |k € Z/dZ,m € M}, and define the set x = {x;;|i € [n],j € Cy[n]} of
dn? variables. One can think of x as a collection of d matrices of n? variables. For example

when n = 2 and d = 3, the variables are
{Il,i xl,é:| {xﬁ ‘7712}
. . ) .. e ,
Toi Toj Loj Lo

11 T12
3.1 ’ ’
( ) |:$2,1 1’2,2} ’

where we define i := (m, 7 := (*m for variable subscripts m = 1,2, e.g., 27 = o c2.
For u € G,,, g € G, write

u,9 .— e
T = Ty, Lt ,gn s

and define the G-immanant subspace of C[z] to be

spanc{z®? = Tigt Tng, |9 € G}.

It is easy to see that these monomials satisfy

(3.2) g9 = gon

for all u € &,,, g € G. Thus for any fixed u € &,,, the G-immanant subspace of Clx] may
also be expressed as spanc{z"9|g € G}. The left- and right-regular representations of G
define left- and right-actions of G on the G-immanant space,

(3.3) hy o x99 o hy = x®M9hz,

for g, hy,hy € G. For any function 6 : G — C, define the type-G 0-immanant to be the
generating function

(3.4) Imm{ (z) :ZG(g_l)xe’g

9eg
for evaluations of 8. Our counterintuitive use of g~! in place of g is necessitated by Propo-
sition 2.1 — Corollary 2.3. (See also [15, Eq. (1)].) By the comment following Corollary 2.3,
symmetric group and hyperoctahedral group (8, = Z/271 S,,) immanants can be written

(3.5) Imm,"(x) = Z O(w)x=", Immj" (z) = Z O(w)x™".

wEGn we%n

For economy, we will generally supress &,, from the notation of symmetric group immanants.
Define the d n x n matrices Qo(x), ..., Q4—1(x) by Qr(x) = (¢ijr(T))i e, Where

(3.6) qu(a:) =X+ C_kxi,Cj + C_2kxi7czj + -4 C_(d_l)kxi7<(d—l)j.
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The permanent and determinant of these matrices are equal to G-immanants for the one-

dimensional characters dg,...,0q_1, 0€,...,0q_1€ of G. Specifically, we have
per(Qu(@) = D (n-+-7) 2" = Immf (a),
(37) g:("/vw)%g .
det(Qr(z)) = Y (=)™ (y1-+-4,) F2 = Imm§ (x).
g:(’Yﬂw)eg

More generally, we obtain G-analogs of the Littlewood-Merris-Watkins generating func-
tions (1.2) — (1.3) by taking sums of products of immanants ImmS,I”, Imm&™ of submatrices
of Qo(x),...,Q4 1(x), where n# = ngT and et = eTgT are monomial characters of &,,, for

m < n.

Theorem 3.1. Fiz d-partition A = (\°,... A% 1) F n, and let ap, = |N\¥|, rp, = ((\F). Fiz
character sequence 3 = (B, ..., Ba_1) € {1,€}* and define

= miz; e{M M), k=0,....d—1.

Then we have

(3.8) Immgs () = Tmmgo (Qo(@) ) -+ Tmm et (Quo1 (#) 1,100
oy Ta—1)
where the sum is over all ordered set partitions of [n] of type X* = (ag, ..., aq4-1).

Proof. Define the G(X)-character 0 = 0pfy ® -+ ® d4_104-1 and let B> = GTg(A). By Corol-
lary 2.3, (3.3), and (3.4) we can express the left-hand side of (3.8) as

(3.9) Y BMgHoa =) Mg Ngoa= > ulfuutoa.
9€g geG ueG(A)~

Now consider the right-hand side of (3.8). By (1.2) — (1.3), we may rewrite this as a sum
of products of permanents and determinants,

310) Y (ﬂlmmﬁo@o(w)g,m) (H fins | (Qucs(0),6-0 ) ).

J

where the sum is over all ordered set partitions J = (J{,...,J% ... J{~' ..., J&1) of [n]

of type A, and where Imm, = det, Imm; = per. For all i, k, the variables that appear in
Qr(x) o yr are T o, . By (3.7), we may again rewrite (3.10) as a sum

Td—1
g o g/\d 1
(3.11) g (l_IImrnéo(ﬁ0 T 70,000 ) (Hlmméd( 5 de Lo 1))

in which each factor of each term has the form

Z (’71 e 'yn)dik(.’lfjik,crdjik)e’g lf /Bk = 1’
k =(v,w)€G(JF)
Immg(Al ) (I‘Jk o Jk) — g=(v,w)€ i .
et = 4O e ot e

g=(7,w)eG(JF)
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Define the set partition K = (K7,..., K%, ..., K{' .. L KT of type A as in (2.4), and
for each ordered set partition J of type A define v = u(J ) € G(A)~ to be the element whose
one-line notation has the A\¥ consecutive letters K¥ in positions J¥, for k =0,...,d — 1 and
i=1,...,r, In particular, u=! is the element in &,, C G whose one-line notation contains
the increasing rearrangement of J¥ in the consecutive positions K¥ for k =0,...,d — 1 and
i =1,...,7 By (2.17), the map J — wu(J) defines a bijective correspondence between
ordered set partitions of type A and G(A)~. Thus in the expansion of the product (3.11), the
monomials which appear are precisely the set {z* ¥* " |y € G(A)}. Factoring y = o - - - Ya—1
with y, € G(A, k), we may express the coefficient of each such monomial as

(3.12) 5oﬁo(yal) e 5d715d71(y;_11) = H(yfl)-

Using these facts and (3.2), (3.3), we may rewrite (3.10) as

> Z = D D 0y Huyutoa Z “Tgm“ oz

u€G(A)~ yeG(A u€G(A)~ yeG(A) u€EG(A

to see that it is equal to (3.9). O

We illustrate with an example. Consider the group G(6,3) = Z/3Z 1 S¢. It trace space
T(G(6,3)) has dimension equal to the number of 3-partitions of 6, and its immanant space

Spanc{xl,gl ©rT6,g6 | (917 cee agﬁ) € g(67 3)}

requires the 62 - 3 = 108 variables {z;;|4,j = 1,...,6;k = 0,...,2}, where ¢ = €*™/3,
To economize notation, we define i := (m, 7 := (*m, as in (3.1). The 23 = 8 monomial
character bases correspond to the triples of one-dimensional symmetric group characters
(1,1,1),(1,1,¢€),(1,¢,1),..., (€ € €), so that the basis corresponding to (e, €, 1) is

(3.13) {(e,6,1)* = (e ® b1 ® &) Tg "IAFG6).

Consider the basis element (¢, ¢, 1)2512) . To evaluate (e, ¢, 1)2552)(g) for all g € G, we write
G(6,3)
(e,6,1)

Immezl(Q0($)123,123)Imm51(Ql(iﬂ) 4)Imm (Q2($)56,56)

its immanant Imm (2112 () as a sum of 60 terms

( ) ( ) ( 2<Q7>46,46)
+Imm 2 (Qo ($)123,123)Immel (Ql ($)6 6)Imm (Q2 (55)45,45)
(x) (z) (Q2(2)

+Imme21 (Qo(x)124,124) Immer (Q1 () 3,3)Imm, 2 (Q2()56,56)

+Imm€21 (QO Xz 123’123)Imm61 (Ql T 55)11’[111177

(3.14)

+Imme1 (Qo (%) 456,456 ) Immer (Q1 () 3,3)Imm, 2 (Q2(x)12,12),

each corresponding to an ordered set partition of [6] of type (3,1,2). Consider the term
corresponding to the ordered set partition (136,4,25). It is a product of the three factors
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Tia+ &)+ 25 T3+ T3+ T3

Imm x = det
e (Qo{@)rao 110) [37371 Ty T a7 Tzt T3t Ty

} (w66 + 25+ 245)
Tia+ &)+ 25 Tie T T+ T4

+ det
Te1+ TgitTe7 Toe T Tgg T Lo

} (233 + Tzt x33)
(3.15) T33+ Ty3+ Tyy Tae+ Tyg+ Ty

+ det
T63+ Tg3+ Tes Tee + Tgp + T

} (T11 + 2,5 + 2 7),

Imma (Q1(2)44) = Ta4 + C2x474 + Cxy 4,

T2.2 + C.TQ,Q + C2I27'2' T25 + CxZ,t:) + C2$2"5:|

Imm x = per
nz(Qg( )25.25) = P {x572+(x57é+c2$57.2- $575+C$575+C21‘57'5'

It is easy to see that this term, like all others in (3.14), contributes 3 to the coefficient of
T11%22%33T44%55%66. Lhus we have (e, 1)(21:1:2)(123456) = 180. Now consider the com-
putation of (e, e, 1)2412(623451). The term (3.15) contributes —(? to the coefficient of
T16%22%33T44T55%6,1, as do the terms in (3.14) corresponding to the other two ordered set
partitions (1a6,4, bc). The term corresponding to the ordered set partition (235,4,16) con-
tributes 3¢%¢ = 3, and the three terms corresponding to the ordered set partitions (ab4, c, 16)
contribute 3¢. Terms corresponding to all other ordered set partitions contribute 0. Thus
we have

(€€, 1)(21»172)(623451) =3(1+¢—¢?).
It would be interesting to extend Theorem 3.1 to obtain a generating function for the

monomial characters of Hecke algebras of wreath products [1], as was done for monomial
characters of the Hecke algebra of &,, in [6, Thm. 2.1].
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