On the impossibility of parabolic factorization of certain Kazhdan–Lusztig basis elements

Tommy Parisi¹, Mark Skandera¹, Ben Spahiu¹, and Jiayuan Wang¹

¹Department of Mathematics, Lehigh University, Bethlehem, PA, USA

Abstract. For w in the symmetric group \mathfrak{S}_n , let \widetilde{C}_w be the corresponding modified, signless Kazhdan–Lusztig basis element of the type-A Hecke algebra $H_n(q)$. An extension [*Ann. Comb.* **25**, no.3 (2021) pp. 757–787] of a result of Deodhar [*Geom. Dedicata* **36**, (1990) pp. 95–119] implies that any factorization of the form

$$\widetilde{C}_w = rac{1}{f(q)}\widetilde{C}_{v^{(1)}}\cdots\widetilde{C}_{v^{(r)}}$$
,

with $v^{(1)},\ldots,v^{(r)}$ maximal elements of parabolic subgroups of \mathfrak{S}_n and $f(q) \in \mathbb{N}[q]$ depending on these, provides cancellation-free combinatorial interpretations of the polynomials $\{P_{v,w}(q) \mid v \in \mathfrak{S}_n\}$ appearing in the expansion $\sum_v P_{v,w}(q) T_v$ of \widetilde{C}_w in terms of the natural basis $\{T_v \mid v \in \mathfrak{S}_n\}$ of $H_n(q)$. While the set of permutations $w \in \mathfrak{S}_n$ admitting such a factorization of \widetilde{C}_w has not yet been characterized, we apply a result of Gaetz–Gao [$Adv.\ Math.\ 457\ (2024)$ Paper No. 109941] to describe a set for which such a factorization cannot exist.

Keywords: Hecke algebra, Kazhdan–Lusztig basis, planar network, factorization.

1 Introduction

The Kazhdan–Lusztig polynomials $\{P_{v,w}(q) \mid v,w \in \mathfrak{S}_n\} \subset \mathbb{N}[q]$ are entries of the change-of-basis matrix relating a certain Kazhdan–Lusztig basis of the Hecke algebra with another natural basis. First appearing in the study of representations of the Hecke algebra, they were given existential and recursive definitions in [19]. Appearances of the polynomials in other areas such as Lie Theory [1], [2], [9], quantum groups [14], and Schubert varieties [19], [20] have inspired a search for simpler descriptions. Ideally, such a description should interpret each coefficient of $P_{v,w}(q)$ as a set cardinality.

Some famous alternative formulas for the Kazhdan–Lusztig polynomials are due to Brenti and Deodhar. Brenti expressed $P_{v,w}(q)$ in two different ways as simple linear combinations of recursively defined polynomials in $\mathbb{Z}[q]$ having both positive and negative coefficients [7, §3], [8, §3]. Because of negative coefficients and recursive definitions, these formulas do not interpret coefficients in $P_{v,w}(q)$ as set cardinalities. Deodhar [13] developed an algorithm which takes any reduced expression for w an an input, and outputs a set \mathscr{E}_{\min} of (not necessarily reduced) expressions for other permutations in \mathfrak{S}_n .

For each $v \in \mathfrak{S}_n$ and k > 0, the coefficient of q^k in $P_{v,w}(q)$ is equal to the cardinality of a certain subset of \mathscr{E}_{\min} . On the other hand, the algorithmic component of Deodhar's method makes it difficult to apply his combinatorial interpretation in practice.

Billey and Warrington showed [4, Thm. 1, Rmk. 6] that when w has certain properties, Deodhar's algorithm is trivial, and the output set \mathcal{E}_{\min} of expressions can be replaced by a more visually appealing set of path families in a certain wiring diagram. Again for each v and k, the coefficient of q^k in $P_{v,w}(q)$ is equal to the cardinality of a subset of these path families. Clearwater and the second author [11, Cor. 5.3] then extended this result to permutations w for which the Kazhdan–Lusztig basis element \widetilde{C}_w factors nicely, but did not solve the problem [23, Quest. 4.5] of characterizing such permutations w.

In Sections 2 – 3 we review basic facts about the symmetric group, planar networks, the Hecke algebra, and the Kazhdan–Lusztig basis and polynomials. In Section 4 we use the result [11, Cor. 5.3] to state properties of polynomials which arise in the natural expansion of products of certain Kazhdan–Lusztig basis elements of the Hecke algebra. This leads to a partial answer in Section 5 to the characterization question [23, Quest. 4.5]: a description of certain Kazhdan–Lusztig basis elements which do not factor as desired.

2 The symmetric group and planar networks

Let \mathfrak{S}_n be the symmetric group, with standard generators s_1, \ldots, s_{n-1} , length function ℓ , and Bruhat order \leq . (See, e.g., [6] for definitions.) Given a word $u = u_1 \cdots u_k$ in \mathfrak{S}_k , and a word $y = y_1 \cdots y_k$ having k distinct letters, we say that y matches the pattern u if the letters of y appear in the same relative order as those of u; that is, if we have $u_i < u_j$ if and only if $y_i < y_j$ for all $i, j \in [k] := \{1, \ldots, k\}$. On the other hand, say that $w \in \mathfrak{S}_n$ avoids the pattern u if no subword of w matches the pattern u.

It is easy to see that for each subinterval $[a,b] := \{a,\ldots,b\}$ of [n], the *reversal*

$$s_{[a,b]} := 1 \cdots (a-1)b \cdots a(b+1) \cdots n \in \mathfrak{S}_n$$
 (2.1)

avoids the patterns 3412 and 4231. This element is the unique longest (maximum length) element of the subgroup of \mathfrak{S}_n generated by s_a, \ldots, s_{b-1} . More generally, each *parabolic* subgroup of \mathfrak{S}_n generated by a subset of generators has longest element equal to a product of reversals on disjoint intervals. Multiplication of reversals in \mathfrak{S}_n or of related elements

$$D_{[a,b]} := \sum_{v \le s_{[a,b]}} v \tag{2.2}$$

in $\mathbb{Z}[\mathfrak{S}_n]$ can be performed graphically with certain planar networks.

Define a *planar network of order n* to be a directed, planar, acyclic multigraph with 2n boundary vertices having n source vertices on the left and n sink vertices on the right, both labeled $1, \ldots, n$ from bottom to top. We will allow edges (x, y) to be marked by a

positive integer multiplicity m(x,y). Let \mathcal{F}_n denote the set of such networks. For each subinterval [a,b] of [n] we define a *simple star network* $F_{[a,b]} \in \mathcal{F}_n$ by

- 1. an interior vertex x lies between the sources and sinks,
- 2. for $i \in [a, b]$ we have edges from source i to x and from x to sink i,
- 3. for $i \notin [a, b]$ we have edges from source i to sink i.

For example, the simple star network $F_{[2,4]} \in \mathcal{F}_4$ is

For economy, we will omit edge orientations and the words "source" and "sink" from figures. Thus the seven simple star networks in \mathcal{F}_4 are

Given networks $E, F \in \mathcal{F}_n$, in which all sources have outdegree 1 and all sinks have indegree 1, define the concatenation $E \circ F$ of E and F as follows. For i = 1, ..., n, do

- 1. remove sink *i* of *E* and source *i* of *F*,
- 2. merge each edge $(x, \sin k i)$ in E with each edge (source i, y) in F to form a single edge (x, y) in $E \circ F$.

Thus a concatenation of the form $F_{[a_1,b_1]} \circ \cdots \circ F_{[a_m,b_m]} \in \mathcal{F}_n$ has 2n+m edges: n sources inherited from $F_{[a_1,b_1]}$, n sinks inherited from $F_{[a_m,b_m]}$, and m internal vertices x_1,\ldots,x_m , where x_j is inherited from $F_{[a_j,b_j]}$. Sometimes in a concatenation $E \circ F$, there may exist internal vertices x in E, y in F with m(x,y) > 1 multiplicity-1 edges incident upon both. Define the *condensed concatenation* $E \bullet F$ to be the subdigraph of $E \circ F$ obtained by removing, for all such pairs (x,y), all but one of the m(x,y) edges incident upon both, and by marking this edge with the multiplicity m(x,y). For example, in \mathcal{F}_4 we have the graphs

$$F_{[1,3]} \circ F_{[2,4]} \circ F_{[1,3]} = \begin{cases} 3 & & & & \\ & & & \\ 2 & & & \\ & & & \\ 1 & & & \\ & & & \\ 1 & & & \\ & & & \\ 1 & & & \\ & & & \\ 1 & & & \\ & & & \\ 1 & & & \\ & & & \\ 1 & & & \\ & & & \\ 1 & & & \\ & & & \\ 1 & & & \\ & & & \\ 1 & & & \\ & & & \\ 1 & & & \\ & & & \\ 1 & & & \\ & & & \\ 1 & & & \\ & & & \\ 1 & & & \\ & & & \\ 1 & & & \\ & & & \\ 1 & & & \\ & & & \\ 1 & & & \\ & & & \\ 1 & & \\ 1 & & \\ 1 & & \\ 1 & &$$

in which the two multiplicity-2 edges (x_1, x_2) , (x_2, x_3) of $F_{[1,3]} \bullet F_{[2,4]} \bullet F_{[1,3]}$ are the remnants of pairs of edges incident upon the same internal vertices in $F_{[1,3]} \circ F_{[2,4]} \circ F_{[1,3]}$.

Define a *star network* to be an element of \mathcal{F}_n constructed by concatenation or condensed concatenation of simple star networks. Let \mathcal{F}_n^{\bullet} denote the subset of \mathcal{F}_n consisting of condensed concatenations of finitely many simple star networks. Call a sequence $\pi = (\pi_1, \dots, \pi_n)$ of source-to-sink paths in a star network $F \in \mathcal{F}_n^{\bullet}$ a path family of type $v = v_1 \cdots v_n \in \mathfrak{S}_n$ if for all i, path π_i begins at source i and terminates at sink v_i . Say that π covers F if each edge (x_i, x_j) of F belongs to $m(x_i, x_j)$ of the paths in π , and define the sets

$$\Pi(F) = \{ \pi \mid \pi \text{ a path family covering } F \},$$

$$\Pi_v(F) = \{ \pi \in \Pi(F) \mid \text{type}(\pi) = v \}.$$
(2.5)

In terms of the definitions (2.5), we may combinatorially interpret products of elements (2.2) quite simply. We say that *F graphically represents*

$$\sum_{v \in \mathfrak{S}_n} |\Pi_v(F)| \, v \tag{2.6}$$

as an element of $\mathbb{Z}[\mathfrak{S}_n]$. For $F = F_{[a_1,b_1]} \circ \cdots \circ F_{[a_m,b_m]}$, this element is $D_{[a_1,b_1]} \cdots D_{[a_m,b_m]}$; for $F = F_{[a_1,b_1]} \bullet \cdots \bullet F_{[a_m,b_m]}$, it is $D_{[a_1,b_1]} \cdots D_{[a_m,b_m]}$ divided by the product, over all edges (x_i,x_j) , of the numbers $m(x_i,x_j)$!.

3 The Hecke algebra and planar networks

Define the (*type-A Iwahori-*) Hecke algebra $H_n(q)$ to be the $\mathbb{Z}[q^{\frac{1}{2}}, q^{\frac{1}{2}}]$ -span of its natural basis $\{T_w \mid w \in \mathfrak{S}_n\}$, with multiplication given by

$$T_{s_i}T_w = \begin{cases} T_{s_iw} & \text{if } s_iw > w, \\ (q-1)T_{s_iw} + qT_w & \text{if } s_iw < w. \end{cases}$$

Specializing at $q^{\frac{1}{2}} = 1$ we have $H_n(1) \cong \mathbb{Z}[\mathfrak{S}_n]$ with $T_w \mapsto w$.

A semilinear involution on $H_n(q)$, known as the *bar involution*, is defined by

$$\overline{q^{\frac{1}{2}}} = \overline{q^{\frac{1}{2}}}, \qquad \overline{T_w} = (T_{w^{-1}})^{-1}, \qquad \overline{\sum_{w \in \mathfrak{S}_n} B_w(q) T_w} = \sum_{w \in \mathfrak{S}_n} \overline{B_w(q)} \, \overline{T_w}.$$

Kazhdan and Lusztig showed [19] that $H_n(q)$ has a unique basis $\{C'_w \mid w \in \mathfrak{S}_n\}$ satisfying $\overline{C'_w} = C'_w$ for all w and

$$q^{\frac{\ell(w)}{2}}C'_{w} = \sum_{v \le w} P_{v,w}(q)T_{w}, \tag{3.1}$$

where coefficients $P_{v,w}(q) \in \mathbb{Z}[q]$, known as the *Kazhdan–Lusztig polynomials*, satisfy $\deg(P_{v,w}(q)) < \frac{\ell(w) - \ell(v) - 1}{2}$ for v < w, and $P_{w,w}(q) = 1$ for all w. It is known that these

polynomials satisfy $P_{v,w}(q) \in \mathbb{N}[q]$, and $P_{v,w}(0) = 1$ for $v \leq w$. We also have [21] that if w avoids the patterns 3412 and 4231, then $P_{v,w}(q) = 1$ for all $v \leq w$. For convenience, we define

$$\widetilde{C}_w := q^{\frac{\ell(w)}{2}} C_w'. \tag{3.2}$$

Kazhdan–Lusztig basis elements and their products appear in various settings, including intersection homology [3], [25], algorithmic and combinatorial description of Kazhdan–Lusztig basis elements themselves [4], [13], Schubert varieties [4], total nonnegativity [16], [23], [27], [28], trace evaluations [10], [11], [17], [18], [24], and chromatic symmetric functions [10], [24].

Deodhar [13, Prop. 3.5] studied sequences $(s_{i_1}, \ldots, s_{i_k})$ of generators of \mathfrak{S}_n , products of the corresponding Kazhdan–Lusztig basis elements $\widetilde{C}_{s_{i_j}} = T_e + T_{s_{i_j}}$ of $H_n(q)$, and their natural expansions

$$\widetilde{C}_{s_{i_1}}\cdots\widetilde{C}_{s_{i_m}}=\sum_{v\in\mathfrak{S}_n}A_v(q)T_v.$$
 (3.3)

He described the coefficients $\{A_v(q) \mid v \in \mathfrak{S}_n\} \subset \mathbb{Z}[q]$ in terms of *subexpressions* of $(s_{i_1}, \ldots, s_{i_m})$, sequences $\sigma = (\sigma_1, \ldots, \sigma_m)$ with $\sigma_j \in \{e, s_{i_j}\}$ for $j = 1, \ldots, m$. (Our treatment here differs slightly from that of [13] but is equivalent.) Call index j a *defect* of σ if

$$\sigma_1 \cdots \sigma_{j-1} s_{i_j} < \sigma_1 \cdots \sigma_{j-1} \tag{3.4}$$

and let $dfct(\sigma)$ denote the number of defects of σ . (Observe that j=1 cannot be a defect: we have $s_{i_1} > e$ always.) Each coefficient on the right-hand side of (3.3) is given by

$$A_v(q) = \sum_{\sigma} q^{\text{dfct}(\sigma)},\tag{3.5}$$

where the sum is over all subexpressions σ of $(s_{i_1}, \ldots, s_{i_m})$ satisfying $\sigma_1 \cdots \sigma_m = v$.

Billey and Warrington observed [4, Rmk.6] that the defect statistic has a simple graphical interpretation. Specifically, subexpressions of $(s_{i_1}, \ldots, s_{i_m})$ correspond bijectively to path families covering

$$F = F_{[i_1, i_1+1]} \bullet \cdots \bullet F_{[i_m, i_m+1]}$$

$$(3.6)$$

in \mathcal{F}_n^{\bullet} with $(\sigma_1, \ldots, \sigma_m)$ corresponding to the family $\pi \in \Pi(F)$ constructed by prescribing

the paths meeting at
$$x_j$$
 $\begin{cases} \text{cross there} & \text{if } \sigma_j = s_{i_j}, \\ \text{do not cross there} & \text{if } \sigma_j = e. \end{cases}$

By this bijection, index j is a defect of σ in the sense of (3.4) if and only if the paths meeting at x_i have previously crossed an odd number of times.

Clearwater–Skandera extended this result [11, Cor. 5.3] to products of the form

$$\widetilde{C}_{s_{[a_1,b_1]}}\cdots\widetilde{C}_{s_{[a_m,b_m]}} = \sum_{v\in\mathfrak{S}_n} A_v(q)T_v,\tag{3.7}$$

where each factor satisfies

$$\widetilde{C}_{s_{[a_j,b_j]}} = \sum_{u \leq s_{[a_j,b_j]}} T_u,$$

since reversals avoid the patterns 3412 and 4231. This extension requires a more general definition of defects. While the intersection of two paths in (3.6) is a union of vertices, the intersection of two paths in

$$F = F_{[a_1,b_1]} \bullet \cdots \bullet F_{[a_m,b_m]} \tag{3.8}$$

is a subgraph of F whose connected components are vertices or paths of the form

$$(x_k, \dots, x_\ell) \tag{3.9}$$

for some $k < \ell$. For each initial vertex x_k in a component (3.9) of the intersection of two paths, we will say that the paths meet at x_k . Our embedding of star networks in the plane naturally allows us to declare an edge entering (exiting) a vertex x_k to be above or below another edge entering (exiting) x_k . We will call a component (3.9) in the intersection of paths π_i , π_j , a crossing of π_i and π_j if the two paths enter x_k and exit x_ℓ in different orders. Extending the Billey–Warrington definition of defect to accommodate three or more paths passing through a vertex, we have the following [11, §5].

Definition 3.1. Given a path family π covering $F = F_{[a_1,b_1]} \bullet \cdots \bullet F_{[a_m,b_m]}$, define a *defect* of π at x_k to be a triple (π_i, π_j, k) with i < j and π_i and π_j meeting at x_k after having crossed an odd number of times. Define $\operatorname{dfct}(\pi)$ to be the number of defects of π .

Extending the interpretation (2.6) of a planar network, we define the set

$$\Pi_{v,d}(F) = \{ \pi \in \Pi_v(F) \mid \text{dfct}(\pi) = d \}$$
 (3.10)

and we say that F graphically represents the element

$$\sum_{v \in \mathfrak{S}_n} \sum_{d>0} |\Pi_{v,d}(F)| q^d T_v = \sum_{\pi \in \Pi(F)} q^{\operatorname{dfct}(\pi)} T_{\operatorname{type}(\pi)}$$
(3.11)

as an element of $H_n(q)$. For $F = F_{[a_1,b_1]} \circ \cdots \circ F_{[a_m,b_m]}$, this element is $\widetilde{C}_{s_{[a_1,b_1]}} \cdots \widetilde{C}_{s_{[a_m,b_m]}}$; for $F = F_{[a_1,b_1]} \bullet \cdots \bullet F_{[a_m,b_m]}$, it is $\widetilde{C}_{s_{[a_1,b_1]}} \cdots \widetilde{C}_{s_{[a_m,b_m]}}$, divided by the product, over all edges (x_i,x_j) , of the q-factorial polynomials $m(x_i,x_j)_q!$. (See, e.g., [26].)

The denominator above can also be expressed in terms of intervals appearing in reversals. Given a sequence of m intervals

$$A = ([a_1, b_1], \dots, [a_m, b_m]),$$
 (3.12)

define $\binom{m}{2}$ more intervals $\{I_{i,j} | i < j\}$ by

$$I_{i,j} = [a_i, b_i] \cap [a_j, b_j] \setminus ([a_{i+1}, b_{i+1}] \cup \dots \cup [a_{j-1}, b_{j-1}]). \tag{3.13}$$

Let $f_A(q)$ be the product of the *q*-factorials of the cardinalities of the intervals (3.13),

$$f_{\mathcal{A}}(q) := \prod_{i < j} |I_{i,j}|_q!.$$
 (3.14)

Say that a Kazhdan–Lusztig basis element \widetilde{C}_w has a *parabolic factorization* if there is a sequence (3.12) of intervals satisfying

$$\widetilde{C}_{w} = \frac{1}{f_{\mathcal{A}}(q)} \widetilde{C}_{s_{[a_{1},b_{1}]}} \cdots \widetilde{C}_{s_{[a_{m},b_{m}]}}.$$
(3.15)

Two results on parabolic factorization are the following [4, Thm. 1], [23, Thm. 4.3].

Theorem 3.2. If $w \in \mathfrak{S}_n$ avoids the patterns 321, 56781234, 46781235, 56718234, 46718235, and if $s_{i_1} \cdots s_{i_\ell}$ is a reduced expression for w, then we have $\widetilde{C}_w = \widetilde{C}_{s_{i_1}} \cdots \widetilde{C}_{s_{i_\ell}}$.

Theorem 3.3. If $w \in \mathfrak{S}_n$ avoids the patterns 3412 and 4231, then there exists a sequence (3.12) of intervals such that we have the factorization (3.15).

The combination of Theorems 3.2, 3.3 is not the strongest result possible. Indeed, the known parabolic factorization $\widetilde{C}_{4231} = \widetilde{C}_{s_{[1,2]}} \widetilde{C}_{s_{[2,4]}} \widetilde{C}_{s_{[1,2]}}$ is guaranteed by neither theorem.

4 Reduction of defects

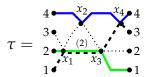
Our defect reduction theorem asserts that if a star network can be covered by a path family having d defects, then it can also be covered by a path family of the same type having d-1 defects. In certain simple cases, we can easily produce a (d-1)-defect family from a d-defect family by swapping a pair of subpaths. For example, consider the star network and path families

$$F_{[1,2]} \circ F_{[1,2]} = \begin{pmatrix} 2 & & & & & \\ & 1 & x_1 & x_2 & 1 \end{pmatrix}, \qquad \pi = \begin{pmatrix} 2 & & & & \\ & 1 & x_1 & x_2 & 1 \end{pmatrix}, \qquad \sigma = \begin{pmatrix} 2 & & & & \\ & 1 & x_1 & x_2 & 1 \end{pmatrix},$$

with $dfct(\pi) = 1$, σ constructed from π by swapping the two x_1 -to- x_2 subpaths of π , and $dfct(\sigma) = 0$. On the other hand, this simple procedure does not always reduce defects by 1. Consider the star network and path families of type 3124

$$F_{[1,3]} \bullet F_{[3,4]} \bullet F_{[1,3]} \bullet F_{[3,4]} = \begin{cases} 4 & x_2 & x_4 & 4 \\ 3 & 3 & 3 \\ 2 & x_1 & x_3 & 1 \end{cases} = \begin{cases} 4 & x_2 & x_4 & 4 \\ 3 & 3 & 3 & 3 \\ 2 & x_1 & x_3 & 1 \end{cases} = \begin{cases} 4 & x_2 & x_4 & 4 \\ 3 & 3 & 3 & 3 \\ 2 & x_1 & x_3 & 1 \end{cases} = \begin{cases} 4 & x_2 & x_4 & 4 \\ 3 & 3 & 3 & 3 \\ 2 & x_1 & x_3 & 1 \end{cases} = \begin{cases} 4 & x_2 & x_4 & 4 \\ 3 & 3 & 3 & 3 \\ 2 & x_1 & x_3 & 1 \end{cases} = \begin{cases} 4 & x_2 & x_4 & 4 \\ 3 & 3 & 3 & 3 \\ 2 & x_1 & x_3 & 1 \end{cases} = \begin{cases} 4 & x_2 & x_4 & 4 \\ 3 & 3 & 3 & 3 \\ 2 & x_1 & x_3 & 1 \end{cases} = \begin{cases} 4 & x_2 & x_4 & 4 \\ 3 & 3 & 3 & 3 \\ 2 & x_1 & x_3 & 1 \end{cases} = \begin{cases} 4 & x_2 & x_4 & 4 \\ 3 & 3 & 3 & 3 \\ 2 & x_1 & x_3 & 1 \end{cases} = \begin{cases} 4 & x_2 & x_4 & 4 \\ 3 & 3 & 3 & 3 \\ 2 & x_1 & x_3 & 1 \end{cases} = \begin{cases} 4 & x_2 & x_4 & 4 \\ 3 & 3 & 3 & 3 \\ 2 & x_1 & x_3 & 1 \end{cases} = \begin{cases} 4 & x_1 & x_2 & x_4 & 4 \\ 2 & x_1 & x_3 & 1 \end{cases} = \begin{cases} 4 & x_1 & x_2 & x_4 & 4 \\ 2 & x_1 & x_3 & 1 \end{cases} = \begin{cases} 4 & x_1 & x_2 & x_1 & x_2 & x_1 \\ 2 & x_1 & x_2 & x_2 & x_1 \\ 2 & x_1 & x_2 & x_2 & x_2 \\ 2 & x_1 & x_2 & x_3 & x_2 \\ 2 & x_1 & x_2 & x_2 & x_2 \\ 2 & x_1 & x_2 & x_2 & x_3 \\ 2 & x_1 & x_2 & x_2 & x_2 \\ 2 & x_1 & x_2 & x_3 & x_3 & x_3 \\ 2 & x_1 & x_2 & x_3 & x_3 \\ 2 & x_1 & x_2 & x_3 & x_3 \\ 2 & x_1 & x_2 & x_3 & x_3 \\ 2 & x_1 & x_2 & x_3 & x_3 \\ 2 & x_1 & x_2 & x_3 & x_3 \\ 2 & x_1 & x_2 & x_3 & x_3 \\ 2 & x_1 & x_2 & x_3 & x_3 \\ 2 & x_1 & x_2 & x_3 & x_3 \\ 2 & x_1 & x_2 & x_3 & x_3 \\ 2 & x_1 & x_2 & x_3 & x_3 \\ 2 & x_1 & x_2 & x_3 &$$

with $dfct(\pi) = 1$, and σ constructed from π by swapping the x_2 -to- x_4 subpaths of π_1 and π_4 . The swap eliminates the defect $(\pi_1, \pi_4, 4)$, but introduces two more: $(\sigma_1, \sigma_2, 3)$, $(\sigma_1, \sigma_3, 3)$. Thus we have $dfct(\sigma) = 2$. There is in fact a path family



of type 3124 satisfying $dfct(\tau) = dfct(\pi) - 1 = 0$, but the naive approach above does not produce it from π .

To describe the process of reducing defects in a path family by exactly 1, we begin by stating a map which modifies a path family by removing a defect at a specified vertex, possibly creating earlier defects. For $F = F_{[a_1,b_1]} \bullet \cdots \bullet F_{[a_m,b_m]}$ and $k \in \{2,\ldots,m\}$, define

$$\phi_k : \{ \pi \in \Pi(F) \mid \pi \text{ has a defect at } x_k \} \to \Pi(F)$$

$$\pi \mapsto \hat{\pi}$$
(4.1)

by the following algorithm.

Algorithm 4.1. Given star network $F = F_{[a_1,b_1]} \bullet \cdots \bullet F_{[a_m,b_m]} \in \mathcal{F}_n^{\bullet}$, path family $\pi \in \Pi(F)$, and index k such that π has a defect at x_k , do

- 1. Let (r, t) be the lexicographically least pair such that (π_r, π_t, k) is a defect.
- 2. Let *s* be the largest index such that π_s enters vertex x_k through the same edge as π_r and (π_s, π_t, k) is a defect.
- 3. Let x_l be the final vertex in the unique crossing of π_s and π_t prior to x_k .
- 4. Create a new path family $\hat{\pi} = (\hat{\pi}_1, \dots, \hat{\pi}_n)$ by
 - (a) $\hat{\pi}_i = \pi_i \text{ if } i \notin \{s, t\}.$
 - (b) $\hat{\pi}_s$ is π_s with the x_l -to- x_k subpath replaced by that of π_t .
 - (c) $\hat{\pi}_t$ is π_t with the x_l -to- x_k subpath replaced by that of π_s .

Proposition 4.2. Algorithm 4.1 produces a path family $\phi_k(\pi) = \hat{\pi}$ that satisfies

- 1. $type(\hat{\pi}) = type(\pi)$,
- 2. for each p > k, we have $\{(i,j) \mid (\hat{\pi}_i, \hat{\pi}_j, p) \text{ defective}\} = \{(i,j) \mid (\pi_i, \pi_j, p) \text{ defective}\}$,
- 3. $\#\{(i,j) \mid (\hat{\pi}_i, \hat{\pi}_j, k) \text{ defective}\} = \#\{(i,j) \mid (\pi_i, \pi_j, k) \text{ defective}\} 1.$

Proof. Omitted.

We may further modify the path family $\hat{\pi}$ to produce a path family having no defects at x_1, \ldots, x_{k-1} .

Proposition 4.3. Fix $F = F_{[a_1,b_1]} \bullet \cdots \bullet F_{[a_m,b_m]} \in \mathcal{F}_n^{\bullet}$, and path family $\pi \in \Pi_v(F)$ having earliest defect at x_k . Then there exists a path family $\sigma \in \Pi_v(F)$ which satisfies

- 1. for all $p \neq k$, we have $\{(i,j) \mid (\sigma_i, \sigma_j, p) \text{ defective}\} = \{(i,j) \mid (\pi_i, \pi_j, p) \text{ defective}\}$,
- 2. for p = k, we have $\#\{(i, j) \mid (\sigma_i, \sigma_j, p) \text{ defective}\} = \#\{(i, j) \mid (\pi_i, \pi_j, p) \text{ defective}\} 1$.

Proof. By Proposition 4.2, $\hat{\pi} = \phi_k(\pi)$ has one fewer defect at x_k than π has, with defects at $\{x_p \mid p > k\}$ matching those of π . Now let d be the number of defects of $\hat{\pi}$ at x_{k-1} and let $\sigma^{(k-1)} = \phi_{k-1}^d(\hat{\pi})$. Then $\sigma^{(k-1)}$, like π , has no defects at x_{k-1} and belongs to $\Pi_v(F)$. Thus it satisfies (1), (2) for $p \geq k-1$. Similarly applying $\phi_{k-2}, \ldots, \phi_2$, we construct path families $\sigma^{(k-2)}, \ldots, \sigma^{(2)}$ in $\Pi_w(F)$ having no defects at x_{k-2}, \ldots, x_2 . By definition, no defect can occur at x_1 . Thus $\sigma = \sigma^{(2)}$ satisfies (1), (2) for all p.

By Proposition 4.3, we see that a path family having type v and d defects (i.e., in $\Pi_{v,d}(F)$) implies the existence of other path families of type v having $d-1,\ldots,0$ defects.

Theorem 4.4. Fix star network $F \in \mathcal{F}_n^{\bullet}$. If for some $v \in \mathfrak{S}_n$ and $d \geq 1$ the set $\Pi_{v,d}(F)$ is nonempty, then the sets $\Pi_{v,d-1}(F), \ldots, \Pi_{v,0}(F)$ are also nonempty, and $|\Pi_{v,0}(F)| = 1$.

Proof. Omitted.

Corollary 4.5. For $v \in \mathfrak{S}_n$ and $F \in \mathcal{F}_n^{\bullet}$, the number of path families of type v and having 0 defects is at most one. If v = e, then this number is exactly one.

Proof. Omitted.

Corollary 4.6. Fix star network $F \in \mathcal{F}_n^{\bullet}$. If $\Pi_e(F)$ contains more than one path family, then it contains a path family having exactly one defect.

Proof. Suppose $\Pi_e(F)$ contains at least two path families. By Corollary 4.5, one element of $\Pi_e(F)$ is the unique element of $\Pi_{e,0}(F)$. Choose another path family in $\Pi_e(F)$ and let $d \ge 1$ be the number of its defects. By Theorem 4.4, the set $\Pi_{e,1}(F)$ is nonempty.

5 Main Result

Every polynomial in $\mathbb{N}[q]$ with constant term 1 arises as a Kazhdan–Lusztig polynomial [22]. Gaetz–Gao [15] studied the sequences of coefficients in these polynomials,

especially coefficients equal to 0 between other nonzero coefficients. Define a function singdeg : $\mathfrak{S}_n \to \mathbb{N} \cup \{\infty\}$ by

$$\operatorname{singdeg}(w) = \begin{cases} \infty & \text{if } P_{e,w}(q) = 1, \\ \min\{k > 0 \mid \text{coefficient of } q^k \text{ in } P_{e,w}(q) \text{ is nonzero}\} & \text{if } P_{e,w}(q) \neq 1. \end{cases}$$
(5.1)

This is a lower bound on degrees for which Poincaré duality fails in the Schubert variety X_w , and can be computed in terms of patterns in w and a related definition. Specifically, given $w \in \mathfrak{S}_n$ not avoiding the pattern 3412, define the 3412-gap of w by

$$gap_{3412}(w) = min\{w_{i_1} - w_{i_4} \mid \text{subword } w_{i_1}w_{i_2}w_{i_3}w_{i_4} \text{ matches the pattern 3412}\}.$$
 (5.2)

For w avoiding the patterns 3412 and 4231, we have $\operatorname{singdeg}(w) = \infty$. Otherwise, we can compute $\operatorname{singdeg}(w)$ in terms of $\operatorname{gap}_{3412}(w)$ as follows [15, Thm. 1.6].

Theorem 5.1. For w not avoiding the patterns 3412 and 4231 we have

$$singdeg(w) = \begin{cases} gap_{3412}(w) & \text{if } w \text{ avoids the pattern 4231,} \\ 1 & \text{otherwise.} \end{cases}$$

For example, consider the permutation $45312 \in \mathfrak{S}_5$, which avoids the pattern 4231 and has only the subword 4512 matching the pattern 3412. Since $gap_{3412}(45312) = 2$, Theorem 5.1 implies that the coefficient of q in $P_{e,45312}(q)$ is 0 and that the coefficient of q^2 is not. This is consistent with the fact that $P_{e,45312}(q) = 1 + q^2$. (See [5, p. 75].)

For each permutation w having singdeg(w) > 1, the Kazhdan–Lusztig basis element \widetilde{C}_w has no parabolic factorization (3.15) and therefore is not graphically representable by a star network, in the sense of (3.11).

Theorem 5.2. For $w \in \mathfrak{S}_n$ avoiding the pattern 4231, not avoiding the pattern 3412, and having $\operatorname{\mathsf{gap}}_{3412}(w) > 1$, the Kazhdan–Lusztig basis element \widetilde{C}_w has no parabolic factorization.

Proof. Fix w as above with $k = \text{gap}_{3412}(w)$ and suppose that the star network F graphically represents \widetilde{C}_w as an element of $H_n(q)$,

$$\widetilde{C}_w = \sum_{v \in \mathfrak{S}_n} \sum_{d \ge 0} |\Pi_{v,d}(F)| q^d T_v = \sum_{v \le w} P_{v,w}(q) T_v.$$

$$(5.3)$$

Since the constant term of $P_{e,w}(q)$ is 1, we have $|\Pi_{e,0}(F)|=1$. By our definition of k and Theorem 5.1, the coefficients of q,\ldots,q^{k-1} in $P_{e,w}(q)$ are 0, while the coefficient of q^k is positive. In particular, we have the cardinalities $|\Pi_{e,1}(F)|=\cdots=|\Pi_{e,k-1}(F)|=0$ and $|\Pi_{e,k}(F)|>0$, which contradict Theorem 4.4.

By Theorem 4.4, parabolic factorization of \widetilde{C}_w implies that *none* of the Kazhdan–Lusztig polynomials $P_{v,w}(q)$ has internal coefficients equal to zero.

Theorem 5.3. If \widetilde{C}_w has a parabolic factorization, then for every v < w there exists k = k(v) in \mathbb{N} such that we have $P_{v,w}(q) = 1 + a_1q + \cdots + a_kq^k$ with $a_1, \ldots, a_k > 0$.

It is easy to show that the inequality $\operatorname{gap}_{3412}(w) > 1$ implies that w does not avoid the pattern 45312. It is also easy to show that no star network graphically represents $\widetilde{C}_{453129786}$, even though the subword 9786 matches the pattern 4231. Indeed, some limited experimentation [12] suggests that avoidance of the pattern 45312 is important and avoidance of the pattern 4231 is unimportant in the classification of permutations w for which \widetilde{C}_w is graphically representable by a star network. We conjecture the following partial answer to [23, Quest. 4.5].

Conjecture 5.4. If $w \in \mathfrak{S}_n$ does not avoid the pattern 45312, then the Kazhdan–Lusztig basis element \widetilde{C}_w has no parabolic factorization.

References

- [1] A. Beĭlinson and J. Bernstein. "Localization of g-modules". C. R. Acad.Sci. Paris Ser. I Math 292 (1981), pp. 15–18.
- [2] A. Beĭlinson and J. Bernstein. "A proof of Jantzen conjectures". *I. M. Gelfand Seminar*. Vol. 16, Part 1. Adv. Soviet Math. Amer. Math. Soc., Providence, RI, 1993, pp. 1–50.
- [3] A. Beĭlinson, J. Bernstein, and P. Deligne. "Faisceaux pervers". *Analysis and topology on singular spaces*, *I (Luminy*, 1981). Vol. 100. Astérisque. Soc. Math. France, Paris, 1982, pp. 5–171.
- [4] S. Billey and G. Warrington. "Kazhdan–Lusztig polynomials for 321-hexagon-avoiding permutations". *J. Algebraic Combin.* **13**.2 (2001), pp. 111–136.
- [5] S. Billey and V. Lakshmibai. *Singular loci of Schubert varieties*. Vol. 182. Progress in Mathematics. Boston, MA: Birkhäuser Boston Inc., 2000, pp. xii+251.
- [6] A. Björner and F. Brenti. *Combinatorics of Coxeter groups*. Vol. 231. Graduate Texts in Mathmatics. New York: Springer, 2005.
- [7] F. Brenti. "A combinatorial formula for Kazhdan–Lusztig polynomials". *Invent. Math.* **118**.2 (1994), pp. 371–394.
- [8] F. Brenti. "Combinatorial expansions of Kazhdan–Lusztig polynomials". *J. London Math. Soc.* **55**.2 (1997), pp. 448–472.
- [9] J.-L. Brylinski and M. Kashiwara. "Kazhdan–Lusztig conjecture and holonomic systems". *Invent. Math.* **64**.3 (1981), pp. 387–410. DOI.
- [10] S. Clearman, M. Hyatt, B. Shelton, and M. Skandera. "Evaluations of Hecke algebra traces at Kazhdan–Lusztig basis elements". *Electron. J. Combin.* **23**.2 (2016). Paper 2.7, 56 pages.
- [11] A. Clearwater and M. Skandera. "Total nonnegativity and Hecke algebra trace evaluations". *Ann. Combin.* **25** (2021), pp. 757–787.

- [12] A. Datko and M. Skandera. "Combinatorial interpretation of Kazhdan–Lusztig basis elements indexed by 45312-avoiding permutations in S_6 ". Pure Math. Appl. 30 (2022), pp. 68–74.
- [13] V. Deodhar. "A combinatorial setting for questions in Kazhdan–Lusztig theory". *Geom. Dedicata* **36**.1 (1990), pp. 95–119.
- [14] I. B. Frenkel, M. G. Khovanov, and A. A. Kirillov Jr. "Kazhdan–Lusztig polynomials and canonical basis". *Transform. Groups* **3.**4 (1998), pp. 321–336.
- [15] C. Gaetz and Y. Gao. "On the minimal power of *q* in a Kazhdan–Lusztig polynomial". *Adv. Math.* **457** (2024). Paper No. 109941, 25 pages. DOI.
- [16] I. Goulden and D. Jackson. "Immanants of combinatorial matrices". *J. Algebra* **148** (1992), pp. 305–324.
- [17] C. Greene. "Proof of a conjecture on immanants of the Jacobi–Trudi matrix". *Linear Algebra Appl.* **171** (1992), pp. 65–79.
- [18] R. Kaliszewski, J. Lambright, and M. Skandera. "Bases of the quantum matrix bialgebra and induced sign characters of the Hecke algebra". *J. Algebraic Combin.* **49**.4 (2019), pp. 475–505. DOI.
- [19] D. Kazhdan and G. Lusztig. "Representations of Coxeter groups and Hecke algebras". *Invent. Math.* **53** (1979), pp. 165–184.
- [20] D. Kazhdan and G. Lusztig. "Schubert varieties and Poincaré duality". *Proc. Symp. Pure. Math., A.M.S.* **36** (1980), pp. 185–203.
- [21] V. Lakshmibai and B. Sandhya. "Criterion for smoothness of Schubert Varieties in SL(n)/B". *Proc. Indian Acad. Sci. (Math Sci.)* **100**.1 (1990), pp. 45–52.
- [22] P. Polo. "Construction of arbitrary Kazhdan–Lusztig polynomials in symmetric groups". *Represent. Theory* **3** (1999), pp. 90–104. DOI.
- [23] M. Skandera. "On the dual canonical and Kazhdan–Lusztig bases and 3412, 4231-avoiding permutations". *J. Pure Appl. Algebra* **212** (2008).
- [24] M. Skandera. "Hyperoctahedral group characters and a type-BC analog of graph coloring". Preprint math.CO/2402.04148 on ArXiv. 2024.
- [25] T. Springer. "Quelques aplications de la cohomologie d'intersection". *Séminaire Bourbaki, Vol. 1981/1982*. Vol. 92. Astérisque. Paris: Soc. Math. France, 1982, pp. 249–273.
- [26] R. Stanley. *Enumerative Combinatorics*. Vol. 1. Cambridge: Cambridge University Press, 1997.
- [27] J. Stembridge. "Immanants of Totally Positive Matrices are Nonnegative". *Bull. London Math. Soc.* **23** (1991), pp. 422–428.
- [28] J. Stembridge. "Some conjectures for immanants". Canad. J. Math. 44.5 (1992), pp. 1079–1099.