Total nonnegativity and Hecke algebra characters

Adam Clearwater University of Pennsylvania, Mark Skandera† Lehigh University

Total nonnegativity

Call a matrix totally nonnegative (TNN) if each of its minors is nonnegative. Call a polynomial $p(x) := p(x_{1,1}, x_{1,2}, \dots, x_{n,n}) \in \mathbb{Z}[x_{1,1}, x_{1,2}, \dots, x_{n,n}]$ totally nonnegative (TNN) if $p(A) := p(a_{1,1}, a_{1,2}, \dots, a_{n,n}) \ge 0$ for each TNN matrix $A = (a_{i,j})$.

Question: For what functions $\theta:\mathfrak{S}_n\to\mathbb{Z}$ is the polynomial

$$\operatorname{Imm}_{\theta}(x) := \sum_{w \in \mathfrak{S}_n} \theta(w) x_{1,w_1} \cdots x_{n,w_n}$$

TNN? Can we combinatorially interpret $\mathrm{Imm}_{\theta}(A)$?

Fact: For each irreducible character χ^{λ} , the polynomial $\mathrm{Imm}_{\chi^{\lambda}}(x)$ is TNN. No combinatorial interpretation for $\mathrm{Imm}_{\chi^\lambda}(A)$ is known.

The Hecke algebra $H_n(q)$

Generated over $\mathbb{Z}[q^{rac{1}{2}}, q^{rac{1}{2}}]$ by $T_{s_1}, \ldots, T_{s_{n-1}}$ $(T_e := 1)$ with relations

$$T_{s_i}^2 = (q-1)T_{s_i} + qT_e \qquad \text{for } i = 1, \dots, n-1,$$
 $T_{s_i}T_{s_j}T_{s_i} = T_{s_j}T_{s_i}T_{s_j} \qquad \text{for } |i-j| = 1,$ $T_{s_i}T_{s_j} = T_{s_j}T_{s_i} \qquad \text{for } |i-j| \ge 2.$

Natural basis: $\{T_w = T_{s_{i_1}} \cdots T_{s_{i_\ell}} | w = s_{i_1} \cdots s_{i_\ell} \text{ reduced in } S_n \}$.

(Modified) Kazhdan-Lusztig basis: $\{\widetilde{C}_w(q) \mid w \in S_n\}$,

$$\widetilde{C}_w(q) = q^{rac{\ell(w)}{2}} C_w'(q) = \sum_{v \leq w} P_{v,w}(q) T_v.$$

 $H_n(1) \cong \mathbb{Z}[\mathfrak{S}_n].$

Total nonnegativity and linear functionals on $H_n(q)$

Call $s_{[i,j]} = 1 \cdots (i-1)j \cdots i(j+1) \cdots n \in \mathfrak{S}_n$ a reversal.

Fact (S '91, H '93): Fix a linear function $heta_q:H_n(q) o \mathbb{Z}[q^{rac{1}{2}},q^{rac{1}{2}}]$ and its specialization $\theta:\mathfrak{S}_n\to\mathbb{Z}$. Then each of the following statements implies the next:

- 1. $\theta_q(C_w(q)) \in \mathbb{N}[q]$ for all $w \in \mathfrak{S}_n$.
- 2. $\theta_q(\widetilde{C}_{s_{[i_1,j_1]}}(q)\cdots\widetilde{C}_{s_{[i_m,j_m]}}(q))\in\mathbb{N}[q]$ for all reversal sequences $(s_{[i_1,j_1]},\ldots,s_{[i_m,j_m]})$.
- 3. $\theta(\widetilde{C}_{s_{[i_1,j_1]}}(1)\cdots\widetilde{C}_{s_{[i_m,j_m]}}(1))\in\mathbb{N}$ for all reversal sequences $(s_{[i_1,j_1]},\ldots,s_{[i_m,j_m]})$.
- 4. $\mathrm{Imm}_{\theta}(x)$ is TNN.

Question: For what functions $heta_q:H_n(q) o \mathbb{Z}[q^{rac{1}{2}},ar{q^{rac{1}{2}}}]$ can we combinatorially interpret $\theta_q(C_{s_{[i_1,i_1]}}(q)\cdots C_{s_{[i_m,i_m]}}(q))$?

Fact (H '93): For each irreducible character χ^λ_q and each $w\in\mathfrak{S}_n$ we have $\chi_q^{\lambda}(C_w(q)) \in \mathbb{N}[q]. \text{ Thus } \chi_q^{\lambda}(C_{s_{[i_1,j_1]}}(q) \cdots C_{s_{[i_m,j_m]}}(q)) \in \mathbb{N}[q] \text{ for all } \lambda \vdash n; \ w \in \mathfrak{S}_n.$ No combinatorial interpretation known.

Star networks and path families

To each Kazhdan-Lusztig basis element $\widetilde{C}_{s_{[a,b]}}(q)\in H_n(q)$ associate the star network

$$G_{[a,b]} = \begin{matrix} \mathbf{n} & \mathbf{-} & \mathbf{n} \\ \vdots & \mathbf{b}-1 \\ \mathbf{b} & \mathbf{b} \\ \mathbf{k} & \mathbf{b} \\ \vdots & \vdots & \mathbf{a} \\ \mathbf{a}-1 & \mathbf{-} & \mathbf{a}-1 \\ \vdots & \vdots & \vdots \\ \mathbf{a} & \mathbf{a}-1 \end{matrix}$$

(edges oriented left to right). Associate concatenations to products.

Example: To $\widetilde{C}_{s_{[1,2]}}(q)\widetilde{C}_{s_{[2,4]}}(q)\widetilde{C}_{s_{[1,2]}}(q)\in H_4(q)$, associate the star network

$$G_{[1,2]} \circ G_{[2,4]} \circ G_{[1,2]} = \sum_{\mathbf{X}} \circ \sum_{\mathbf{X$$

Call $\pi = (\pi_1, \dots, \pi_n)$ a path family in G if π_i is a path from source i on left to sink i on right, and π covers all edges of G. Let $c(\pi) = \#$ crossings in π (always even).

Example: $G = G_{[1,2]} \circ G_{[2,4]} \circ G_{[1,2]}$ is covered by two path families.

$$au = au = au_3 au_1 au_2,$$

Path tableaux and inverted noncrossings

A π -tableau (G-tableau) of shape $\lambda \vdash n$ is an arrangement of π_1, \ldots, π_n into left-justified rows, with λ_i paths in row i. Call a π -tableau column-strict if

$$\frac{\pi_j}{\pi_i} \Rightarrow \frac{\pi_i \text{ lies entirely below } \pi_j}{\text{(no shared vertex.)}}$$

Example: Let $G = G_{[1,2]} \circ G_{[2,4]} \circ G_{[1,2]}$.

There are 8 column-strict G-tableaux of shape 31.

Let π cover star network $G=G_{[i_1,j_1]}\circ\cdots\circ G_{[i_m,j_m]}$ and let U be a π -tableau. If

- π_a, π_b pass through the central vertex of $G_{[i_p,j_p]}$ but do not cross there,
- π_b enters and exits above π_a ,
- π_b appears in an earlier column of U than π_a ,

then call the triple (p, π_a, π_b) an inverted noncrossing in U:

Let invnc(U) be the number of inverted noncrossings in U.

Example: The 8 tableaux above satisfy the following.

- 1. $\operatorname{invnc}(U_{\tau}^{(1)}) = 1$: $(2, \tau_3, \tau_2)$.
- 2. $\operatorname{invnc}(U_{\tau}^{(2)}) = 2$: $(2, \tau_3, \tau_2), (2, \tau_4, \tau_2)$.
- 3. $\operatorname{invnc}(U_{\tau}^{(3)}) = 2$: $(2, \tau_4, \tau_3), (2, \tau_4, \tau_2)$.
- 4. $\operatorname{invnc}(U_{\tau}^{(4)}) = 3$: $(2, \tau_4, \tau_3), (2, \tau_4, \tau_2), (2, \tau_3, \tau_2)$.
- 5. $\operatorname{invnc}(U_{\rho}^{(1)}) = 1$: $(2, \rho_3, \rho_1)$.
- 6. $\operatorname{invnc}(U_{\rho}^{(2)}) = 2$: $(2, \rho_4, \rho_1), (2, \rho_3, \rho_1)$.
- 7. $\operatorname{invnc}(U_{\rho}^{(3)}) = 2$: $(2, \rho_4, \rho_1), (2, \rho_4, \rho_3)$.
- 8. $\operatorname{invnc}(U_{\rho}^{(4)}) = 3$: $(2, \rho_4, \rho_3), (2, \rho_4, \rho_1), (2, \rho_3, \rho_1)$.

Observe that $(1, \tau_2, \tau_1)$ and $(3, \tau_2, \tau_1)$ are noncrossings which are not inverted in tableaux $U_{ au}^{(1)},\ldots,U_{ au}^{(4)}$.

Main result

Theorem (CS '18): Let $\epsilon_q^{\lambda} = \operatorname{sgn} \uparrow_{H_{\lambda}(q)}^{H_n(q)}$. Then we have

$$\epsilon_q^\lambda(\widetilde{C}_{s_{[i_1,j_1]}}(q)\cdots\widetilde{C}_{s_{[i_m,j_m]}}(q)) = \sum_\pi q^{rac{\mathsf{c}(\pi)}{2}} \sum_U q^{\mathsf{invnc}(U)},$$

where the first sum is over path families π in $G_{[i_1,j_1]} \circ \cdots G_{[i_m,j_m]}$, and the second sum is over all column-strict π -tableaux U of shape $\lambda^{\!\top}$.

Example: We compute $\epsilon_q^{211}(\widetilde{C}_{s_{[1,2]}}(q)\widetilde{C}_{s_{[2,4]}}(q)\widetilde{C}_{s_{[1,2]}}(q))$, with the 8 tableaux above of shape 211' = 31:

$$\begin{split} q^{\frac{\mathsf{c}(\tau)}{2}}(q^{\mathsf{invnc}(U_{\tau}^{(1)})} + q^{\mathsf{invnc}(U_{\tau}^{(2)})} + q^{\mathsf{invnc}(U_{\tau}^{(3)})} + q^{\mathsf{invnc}(U_{\tau}^{(4)})}) \\ + q^{\frac{\mathsf{c}(\rho)}{2}}(q^{\mathsf{invnc}(U_{\rho}^{(1)})} + q^{\mathsf{invnc}(U_{\rho}^{(2)})} + q^{\mathsf{invnc}(U_{\rho}^{(3)})} + q^{\mathsf{invnc}(U_{\rho}^{(4)})}) \\ = q^{\frac{0}{2}}(q^1 + 2q^2 + q^3) + q^{\frac{2}{2}}(q^1 + 2q^2 + q^3) \\ = q + 3q^2 + 3q^3 + q^4. \end{split}$$

Open question

Question: Is there a similar combinatorial interpretation of

$$\chi_q^{\lambda}(\widetilde{C}_{s_{[i_1,i_1]}}(q)\cdots\widetilde{C}_{s_{[i_m,i_m]}}(q)),$$

and therefore of $\mathrm{Imm}_{\chi^{\lambda}}(A)$ for all TNN matrices A?