INEQUALITIES IN PRODUCTS OF MINORS OF TOTALLY NONNEGATIVE MATRICES

Mark Skandera

(U. Michigan)

Outline

- 1. Totally nonnegative (TNN) matrices
- 2. Path families in planar networks
- 3. TNN polynomials
- 4. Inequalities in products of minors
- 5. Characterization theorems
- 6. Open questions

Total nonnegativity

Let $\Delta_{I,I'}$ denote the (I,I')-minor of A: the determinant of the submatrix corresponding to rows I and columns I'.

$$A = \begin{bmatrix} 5 & 6 & 3 & 0 \\ 4 & 7 & 4 & 0 \\ 1 & 4 & 4 & 2 \\ 0 & 1 & 2 & 3 \end{bmatrix},$$

$$\Delta_{\{1,3\},\{2,3\}} = \det \begin{bmatrix} 6 & 3 \\ 4 & 4 \end{bmatrix} = 12.$$

Define a matrix to be *totally nonnegative* (TNN) if each of its minors is nonnegative.

Planar networks

Define a planar network of order n to be a directed acyclic planar graph, in which 2n boundary vertices are labeled counterclockwise as $s_1, \ldots, s_n, t_n, \ldots, t_1$ as below.

Define the path matrix
$$A = [a_{ij}]$$
 by $a_{ij} = \#$ paths from s_i to t_j .

Theorem: (K-McG'59, L'73) The path matrix of a planar network is always TNN.

Proof idea: $\Delta_{I,I'}$ counts families of nonintersecting paths from sources

$$S_I = \{s_i \mid i \in I\}$$

to sinks

$$T_{I'} = \{t_i \mid i \in I'\}.$$

Theorem: (W'52, L'55, C'76, B'95) All TNN matrices are essentially path matrices of planar networks.

TNN polynomials

Call a polynomial f in n^2 variables TNN if for any TNN matrix A we have

$$f(a_{1,1},\ldots,a_{n,n})\geq 0.$$

Theorem: (Lusztig '94) The elements of Zelevinsky and Berenstein's dual canonical basis for the coordinate ring of GL_n are TNN.

Problem: Find a simple description of the dual canonical basis for GL_n .

Problem: Find a simple description of any family of TNN polynomials.

Fact: The inequality

 $\Delta_{13,24}\Delta_{24,13} \leq \Delta_{13,13}\Delta_{24,24}$ holds for all TNN matrices.

Equivalently, the polynomial

is TNN.

$$\Delta_{13,13}\Delta_{24,24} - \Delta_{13,24}\Delta_{24,13}$$

Combinatorial interpretation of the products of minors

 $\Delta_{I,I'}\Delta_{\overline{I},\overline{I'}}$ counts families of n paths from S to T such that

- 1. paths from S_I to $T_{I'}$ don't intersect.
- 2. paths from $S_{\overline{I}}$ to $T_{\overline{I}'}$ don't intersect.

We will say that such a path family obeys the (I, I') crossing rule.

Question: When is

$$\Delta_{J,J'}\Delta_{\overline{J},\overline{J'}} - \Delta_{I,I'}\Delta_{\overline{I},\overline{I'}}$$

a TNN polynomial?

Question: When does

$$\Delta_{I,I'}\Delta_{\overline{I},\overline{I'}} \leq \Delta_{J,J'}\Delta_{\overline{J},\overline{J'}}$$

hold for all TNN matrices?

Question: When do path families which obey the (J, J') crossing rule outnumber those which obey the (I, I') crossing rule in every planar network?

A planar network G.

From G, define $\phi(G)$.

 $\phi(G)$ induces a perfect matching of $S \cup T$

whose edges define subintervals of [2n].

Q: When is $\Delta_{J,J'}\Delta_{\overline{J},\overline{J'}} - \Delta_{I,I'}\Delta_{\overline{I},\overline{I'}}$ TNN?

Write $(I', \overline{I'})$ and $(J', \overline{J'})$ backwards.

Swap $(I', \overline{I'})$, swap $(J', \overline{J'})$, renumber.

A: (**Theorem**) When the set partition $(J'', \overline{J''})$ of [2n] is at least as sparse as $(I'', \overline{I''})$.

Corollary of main theorem

Corollary: (MS '01) If the polynomial

$$\Delta_{J,J'}\Delta_{\overline{J},\overline{J'}} - \Delta_{I,I'}\Delta_{\overline{I},\overline{I'}}$$

is TNN, it counts path families which

- 1. obey the (J, J') crossing rule
- 2. can not be covered by any path family which obeys the (I, I') crossing rule.

Theorem: (MS '01) The inequality

$$\Delta_{I,I'}\Delta_{K,K'} \le \Delta_{J,J'}\Delta_{L,L'}$$

holds for all TNN matrices if and only if we can delete repeated indices and reduce to the previous theorem.

Corollary: All of the inequalities of the above form are consequences of inequalities of the form

$$\Delta_{I,I}\Delta_{\overline{I},\overline{I}} \leq \Delta_{J,J}\Delta_{\overline{J},\overline{J}},$$

where I, J are n-subsets of [2n]. (Studied by FGJ'01.)

Open questions

- 1. Which TNN polynomials can be written as subtraction-free rational expressions (or Laurent polynomials) in matrix minors?
- 2. How can one characterize inequalities that hold between products of k minors of TNN matrices, for k > 2?
- 3. Which TNN polynomials when applied to Jacobi-Trudi matrices evaluate to Schurpositive symmetric functions?