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Total nonnegativity

Let Aj pr denote the (I, I')-minor of A: the
determinant of the submatrix corresponding
to rows I and columns I’

A:

Af1,3y{2,33 = det [
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4740
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44]—12.

Define a matrix to be totally nonnegative
(TNN) if each of its minors is nonnegative.



Planar networks

Define a planar network of order n to be
a directed acyclic planar graph, in which 2n
boundary vertices are labeled counterclock-
wise as S1,...,Sn,tn,...,t1 as below.
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Define the path matriz A = |a;;] by
a;; = #F paths from s; to t;.



Theorem: (K-McG'59, L’73) The path ma-
trix of a planar network 1s always TNN.

Proof idea: Aj p counts families of nonin-
tersecting paths from sources

Sr={sili €I}
to sinks
Tp={t;|i € ]’}.

Theorem: (W’52 L’55, C’76, B’95) All
TNN matrices are essentially path matrices
of planar networks.



TNN polynomials

Call a polynomial f in n? variables TNN if
for any TNN matrix A we have

flai1,...,anpn) > 0.

Theorem: (Lusztig '94) The elements of
Zelevinsky and Berenstein’s dual canonical

basis for the coordinate ring of GL,, are
TNN.

Problem: Find a simple description of the
dual canonical basis for G L,,.

Problem: Find a simple description of any
family of TNN polynomials.



Fact: The inequality

A13.94894 13 < A1313094 94
holds for all TNN matrices.
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Equivalently, the polynomial

A13.130894 94 — A13 94094 13
1s TINN.



Combinatorial interpretation of the
products of minors

A I, I’ATF counts families of n paths from
S to T such that

1. paths from Sy to Ty don’t intersect.
2. paths from 57 to TT' don’t intersect.

We will say that such a path family obeys
the (I,1") crossing rule.
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Question: When is

AJJ/AJ N — Ay [/A[],
a TNN polynomial?
Question: When does

A][/A[], < AJJ/AJJ,

hold for all TNN matrices?

Question: When do path families which
obey the (J, J') crossing rule outnumber those
which obey the (I, I’) crossing rule in every

planar network?



A planar network G.
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From G, define ¢(G).
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¢(G) induces a perfect matching of SUT
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whose edges define subintervals of [2n].
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— TNN?

Q When 1S AJ ]’A [ 7!

— Ap

J,J!

. J") backwards.
321
S —c

Swap (I',I'), swap (J', J'), renumber.
3
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A: (Theorem) When the set partition (J g
of [2n] is at least as sparse as (1", I").
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Corollary of main theorem

Corollary: (MS '01) If the polynomial
AJ)JIAj)T — A[,]/Aj,ﬁ
is TNN, it counts path families which

1. obey the (J, J') crossing rule
2. can not be covered by any path family
which obeys the (I, I") crossing rule.
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Theorem: (MS '01) The inequality
ArrAg k' < A5 AL L
holds for all TNN matrices if and only if we

can delete repeated indices and reduce to the
previous theorem.

Corollary: All of the inequalities of the
above form are consequences of inequalities
of the form

A[[A[]<AJJA]J7

where I, J are n-subsets of [2n]|. (Studied
by FGJ01.)
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Open questions

1. Which TNN polynomials can be written
as subtraction-free rational expressions (or
Laurent polynomials) in matrix minors?

2. How can one characterize inequalities

that hold between products of £ minors of
TNN matrices, for k& > 27

3. Which TNN polynomials when applied
to Jacobi-Trudi matrices evaluate to Schur-
positive symmetric functions?



