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Eulerian Statistics

Permutation statistics whose distributions on
Sp, are given by the nth Eulerian polynomial,

Ap(x) = iA(n, k—1)z",
k=1

are known as Fulerian statistics.



Two important examples are “des” (descents)
and “exc” (excedances).

des(m) = #{i|m; > mip1;0=1,...,n— 1}.
exc(m) = #{i|m; > ;i =1,...,n— 1}.



A third Eulerian statistic defined by Dumont,
counts the number of distinct non-zero letters
in the code of a permutation.

Example.

T =284367951
code(m) =162122210

The non-zero letters in code(w) are
LC(m) ={1,2,6}. Thus, dmc(w) = 3.



Generalizing permutations on n letters are
words w = wq - - - Wy, on n letters, where letters
may be repeated in w.

Given a word w, we define R(w) to be the set
of all rearrangements of w.

Example.
w=32331121
u=13212313¢€ R(w)
v =11122333 € R(w)



Dumont’s statistic is easy to define on words.

Example.

w =32331121
code(w) =53440010

LC(w) ={1,3,4,5}, dmc(w) = 4.



We define the non-decreasing rearrangement
of w to be the unique rearrangement w
satistying wy < -+ - < wy,.

To each word w we will associate the birword
w p—
W

Example. Let w = 31231121. Then,

o (w\ (11112233
U=lw/ T \31231121



Excedances

We will call position ¢ of w an excedance it
w; > w;. We will refer to w; as the value of
this excedance.

For example, if
o (w\ (11112233
U=\lw/ " \31231121)°

then the excedance set of w is F(w) = {1, 3,4},
and these excedances have values 3, 2, and 3.



MacMahon showed that the word statistics
des and exc are equally distributed on the
rearrangement class of any word w.

That is, for any word w,
#{v € R(w)|exc(v) = k}
= #{v € R(w)|des(v) = k}.



Theorem. For any word w, the distribution
on R(w) of the word statistic dmc is the same
as that of des and exc.



Proof.  We will define a  bijection
A R(w) — R(w), satisfying
E(w) = LC(A(w)).

Clearly, this guarantees that
exc(w) = dme(A(w)).

We define the bijection in three steps.



Lot (o) = (200 2)

1. Define the word d = dy - - - d;, by

(. cp . .
1 if ¢ 1s an excedance in w,

d; =< 0 if ¢; =0,
| ((7) otherwise,

where (3(7) is the ¢;th excedance of w with value
at least wj.



Example. Let w be the word 431431421,
and let ¢ be its code.

w' 111233444
wl|=1431431421
% 640430210

Since w has excedances at positions 1, 2, and 4,
we write these values into d.

w\ (431431421
d) ~\12 4 |

For non-excedances 7, we set d; equal to the ¢;th
excedance having value at least wj,

wy) 431431421

d] \12 44 41 '
We place zeros elsewhere.

d=(120440410)



w

2. Define the biword y = ( d)’ and let

d/
y satisfying code(w’) = d'.

/
y = (w)) be the unique rearrangement of

3. Set Mw) = w'.



Example. Rearranging

C/w\ (431431421
Y=\a) " \120440410)"

p (w' (314413241
y=\ad )" \104402110)"
We therefore set

A(431431421) = 314413241.



Proposition. Given the word w, construct
d as in the bijection. Then we may rearrange

/
the biword y = (g), as y = (Z,), so that

code(w’) = d'.



Proof. The necessary and sufficient condition

on y; = (wz> for it to appear in the biword

d;
(o)

is that d; be no greater than the number of
letters (with multiplicities counted) in w which
are less than w;.

We compare w; to w; and consider three cases.



Case 1: (w; > w;). Position 7 is an excedance
In w, so d; = ¢, and w; 1s greater than the ¢
letters w; > - -+ > wy.

Case 2: (w; < w;; ¢; =0). d; = 0.

Case 3: (w; < w;; ¢; > 0). Let k be the
number of letters in w which are strictly less
than w;. Since c¢; of these letters appear to
the right of position ¢, then at least ¢; of the

positions 1, ..., k are excedances.
d;, being of one of these, is at most k.



f-vectors and h-vectors

The f vector of a (d — 1)-dimensional simplicial
complex 1s

f: <f07f].7"'7fd—].>7

where f; counts the number of faces of
dimension 7.

The h-vector may be defined as
d

d
Y ficalw =10 =) bt
1=0 1=0
where f_1 =1, by convention.

Knowing the h-vector of a simplicial complex is
equivalent to knowing the f-vector.



Sometimes the A-vector of one simplicial
complex is the f-vector of another.

Theorem. If > is a Cohen Macauley
complex, then its h-vector is the f-vector ot
some multicomplex.

Theorem. If ¥ is a balanced Cohen
Macauley complex, then its h-vector is the
f-vector of some simplicial complex.



Fact. If J(P) is a distributive lattice, then
its h-vector is the f-vector of some simplicial
complex.

Conjecture. If J(P) is a distributive lattice,
then its h-vector is the f-vector of some poset.

Theorem. If the distributive lattice J(P)
is a product of chains, then its h-vector is the
f-vector of some poset.



The rearrangement class R(w) of any word
corresponds to linear extensions of a product

of chains J(P).

Leting C'(w) be the set of codes of R(w), we see
that the h-vector of J(P) counts codes in C'(w)
by dmec.



Fact. We may define a poset () on the
one-letter codes of C'(w) so that k-element
chains correspond to k-letter codes of C(w).

Thus, () satisfies h J(P) = fo-



Let ¢ and d be codes whose nonzero letters are
9 and k, respectively. Define the poset () by
setting ¢ <g d if

1.7 <k.
2. The multiplicity of 7 in c is strictly greater
than that of £ in d.

3. For each position ¢ such that d; = k, we have
Citk—j = J-



Example. Consider the codes ¢ <g d.

d=440040000
c=000111010

We see the comparison most easily by sliding the
letters of d to the right and decreasing them.

d=440040000
033003000
002200200
000110010

c=000111010



Example. The code 4501400200 corresponds
to the following chain.

0500000000

|
4040400000

0020202200

0101010110



