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Eulerian Statistics

Permutation statistics whose distributions on

S

n

are given by the nth Eulerian polynomial,

A

n

(x) =

n

X

k=1

A(n; k � 1)x

k

;

are known as Eulerian statistics.



Two important examples are \des" (descents)

and \exc" (excedances).

des(�) = #fij�

i

> �

i+1

; i = 1; : : : ; n� 1g:

exc(�) = #fij�

i

> i; i = 1; : : : ; n� 1g:



A third Eulerian statistic de�ned by Dumont,

counts the number of distinct non-zero letters

in the code of a permutation.

Example.

� = 2 8 4 3 6 7 9 5 1

code(�) = 1 6 2 1 2 2 2 1 0

The non-zero letters in code(�) are

LC(�) = f1; 2; 6g. Thus, dmc(�) = 3.



Generalizing permutations on n letters are

words w = w

1

� � �w

m

on n letters, where letters

may be repeated in w.

Given a word w, we de�ne R(w) to be the set

of all rearrangements of w.

Example.

w = 3 2 3 3 1 1 2 1

u = 1 3 2 1 2 3 1 3 2 R(w)

v = 1 1 1 2 2 3 3 3 2 R(w)



Dumont's statistic is easy to de�ne on words.

Example.

w = 3 2 3 3 1 1 2 1

code(w) = 5 3 4 4 0 0 1 0

LC(w) = f1; 3; 4; 5g; dmc(w) = 4:



We de�ne the non-decreasing rearrangement

of w to be the unique rearrangement �w

satisfying �w

1

� � � � � �w

m

.

To each word w we will associate the biword

~w =

�

�w

w

�

Example. Let w = 31231121. Then,

~w =

�

�w

w

�

=

�

1 1 1 1 2 2 3 3

3 1 2 3 1 1 2 1

�



Excedances

We will call position i of w an excedance if

w

i

� �w

i

. We will refer to w

i

as the value of

this excedance.

For example, if

~w =

�

�w

w

�

=

�

1 1 1 1 2 2 3 3

3 1 2 3 1 1 2 1

�

;

then the excedance set of w is E(w) = f1; 3; 4g,

and these excedances have values 3; 2, and 3.



MacMahon showed that the word statistics

des and exc are equally distributed on the

rearrangement class of any word w.

That is, for any word w,

#fv 2 R(w)jexc(v) = kg

= #fv 2 R(w)jdes(v) = kg:



Theorem. For any word w, the distribution

on R(w) of the word statistic dmc is the same

as that of des and exc.

#fy 2 R(w)jdmc(y) = kg

= #fy 2 R(w)jdes(y) = kg

= #fy 2 R(w)jexc(y) = kg:



Proof. We will de�ne a bijection

� : R(w)! R(w), satisfying

E(w) = LC(�(w)):

Clearly, this guarantees that

exc(w) = dmc(�(w)):

We de�ne the bijection in three steps.



Let

�

w

code(w)

�

=

�

w

1

� � � w

m

c

1

� � � c

m

�

.

1. De�ne the word d = d

1

� � � d

m

by

d

i

=

8

>

<

>

:

i if i is an excedance in w;

0 if c

i

= 0;

�(i) otherwise;

where �(i) is the c

i

th excedance of w with value

at least w

i

.



Example. Let w be the word 431431421,

and let c be its code.

0

@

w

0

w

c

1

A

=

0

@

1 1 1 2 3 3 4 4 4

�

4

�

3 1

�

4 3 1 4 2 1

6 4 0 4 3 0 2 1 0

1

A

Since w has excedances at positions 1; 2; and 4,

we write these values into d.

�

w

d

�

=

�

�

4

�

3 1

�

4 3 1 4 2 1

1 2 4

�

:

For non-excedances i, we set d

i

equal to the c

i

th

excedance having value at least w

i

,

�

w

d

�

=

�

�

4

�

3 1

�

4 3 1 4 2 1

1 2 4 4 4 1

�

:

We place zeros elsewhere.

d =

�

1 2 0 4 4 0 4 1 0

�



2. De�ne the biword y =

�

w

d

�

, and let

y

0

=

�

w

0

d

0

�

, be the unique rearrangement of

y satisfying code(w

0

) = d

0

.

3. Set �(w) = w

0

.



Example. Rearranging

y =

�

w

d

�

=

�

4 3 1 4 3 1 4 2 1

1 2 0 4 4 0 4 1 0

�

;

we have

y

0

=

�

w

0

d

0

�

=

�

3 1 4 4 1 3 2 4 1

4 0 4 4 0 2 1 1 0

�

:

We therefore set

�(431431421) = 314413241:



Proposition. Given the word w, construct

d as in the bijection. Then we may rearrange

the biword y =

�

w

d

�

, as y

0

=

�

w

0

d

0

�

, so that

code(w

0

) = d

0

.



Proof. The necessary and su�cient condition

on y

i

=

�

w

i

d

i

�

for it to appear in the biword

�

w

0

code(w

0

)

�

is that d

i

be no greater than the number of

letters (with multiplicities counted) in w which

are less than w

i

.

We compare w

i

to ~w

i

and consider three cases.



Case 1: (w

i

> ~w

i

). Position i is an excedance

in w, so d

i

= i, and w

i

is greater than the i

letters ~w

i

� � � � � ~w

1

.

Case 2: (w

i

� ~w

i

; c

i

= 0). d

i

= 0.

Case 3: (w

i

� ~w

i

; c

i

> 0). Let k be the

number of letters in w which are strictly less

than w

i

. Since c

i

of these letters appear to

the right of position i, then at least c

i

of the

positions 1; : : : ; k are excedances.

d

i

, being of one of these, is at most k.



f-vectors and h-vectors

The f vector of a (d�1)-dimensional simplicial

complex is

f = (f

0

; f

1

; : : : ; f

d�1

);

where f

i

counts the number of faces of

dimension i.

The h-vector may be de�ned as

d

X

i=0

f

i�1

(x� 1)

d�i

=

d

X

i=0

h

i

x

d�i

;

where f

�1

= 1, by convention.

Knowing the h-vector of a simplicial complex is

equivalent to knowing the f -vector.



Sometimes the h-vector of one simplicial

complex is the f -vector of another.

Theorem. If � is a Cohen Macauley

complex, then its h-vector is the f -vector of

some multicomplex.

Theorem. If � is a balanced Cohen

Macauley complex, then its h-vector is the

f -vector of some simplicial complex.



Fact. If J(P ) is a distributive lattice, then

its h-vector is the f -vector of some simplicial

complex.

Conjecture. If J(P ) is a distributive lattice,

then its h-vector is the f -vector of some poset.

Theorem. If the distributive lattice J(P )

is a product of chains, then its h-vector is the

f -vector of some poset.



The rearrangement class R(w) of any word

corresponds to linear extensions of a product

of chains J(P ).

Leting C(w) be the set of codes of R(w), we see

that the h-vector of J(P ) counts codes in C(w)

by dmc.



Fact. We may de�ne a poset Q on the

one-letter codes of C(w) so that k-element

chains correspond to k-letter codes of C(w).

Thus, Q satis�es h

J(P )

= f

Q

.



Let c and d be codes whose nonzero letters are

j and k, respectively. De�ne the poset Q by

setting c <

Q

d if

1. j < k.

2. The multiplicity of j in c is strictly greater

than that of k in d.

3. For each position i such that d

i

= k, we have

c

i+k�j

= j.



Example. Consider the codes c <

Q

d.

d = 4 4 0 0 4 0 0 0 0

c = 0 0 0 1 1 1 0 1 0

We see the comparison most easily by sliding the

letters of d to the right and decreasing them.

d = 4 4 0 0 4 0 0 0 0

0 3 3 0 0 3 0 0 0

0 0 2 2 0 0 2 0 0

0 0 0 1 1 0 0 1 0

c = 0 0 0 1 1 1 0 1 0



Example. The code 4501400200 corresponds

to the following chain.

0500000000

j

4040400000

j

0020202200

j

0101010110


